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Abstract

Context: Although conventional therapies improve the conditions of patients with cancer, adverse side effects, and resistance to
different therapies have convinced scientists to use alternative methods to overcome these problems. One of the most promising
research directions is the application of specific types of bacteria and their components to prevent and treat different cancers. Apart
from the ability of bacteria to modulate immune responses, various particular properties such as toxin production and anaerobic
lifestyle, have made them one of the potential candidates to help cancer therapy.
Evidence Acquisition: In this review, the latest information on the role of bacteria in carcinogenesis and cancer prevention in
PubMed, Google scholar, and Science Direct databases in 2020 were considered using a combination of keywords “bacteria”, “car-
cinogenesis”, “cancer” and “prevention”.
Results: Bacteria-cancer interactions can be studied in 2 areas of bacteria and carcinogenesis and the other bacteria and cancer
treatment or prevention. In this review, bacterial carcinogenicity has been mentioned with 3 main mechanisms: bacterial toxin,
bacterial metabolites, and chronic inflammation caused by bacteria. Bacterial-mediated tumor therapy (BMTT) is briefly discussed
in 8 mechanisms including tumor-targeting bacterial therapy, gene therapy and vectors, bacterial products, arginine metabolism,
magnetotactic bacteria, combination bacteriolytic therapy (COBALT), immunomodulation of bacteria in cancer, and immune sur-
vival.
Conclusions: The importance of bacteria in terms of diversity in their interaction with humans, as well as their components that
can affect homeostasis and the immune system, has made them a powerful factor in describing the human condition in health and
disease. These important elements can be used in the prevention and treatment of many complex diseases with different origins
like cancer. The present study can provide an overview of the role of bacteria in cancer development or prevention and potential
approaches for bacteria in cancer therapy.
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1. Context

Cancer is the second leading cause of death globally
and was responsible for 9.6 million deaths in 2018. Ap-
proximately 1 in 8 men and 1 in 10 women suffer from
cancer (1). Carcinogenesis is an evolutionary process that
arises from several cellular events such as genetics aberra-
tions, dysregulation of signaling pathways, and epigenet-
ics which leads to clonal selection and expansion of the
tumor cells (2). However, the underlying mechanisms of
cancer pathogenesis remain largely unknown. Although
many patients benefit from various cancer therapies such
as radical surgery, radiotherapy, and chemotherapy, half
of them experienced tumor regression and resistance to
conventional chemotherapies (3). Therefore, there is a nec-
essary need for developing a new strategy to overcome

this phenomenon. New approaches such as photodynamic
therapy, gene therapy, telomerase therapy, hyperthermia
therapy, immunotherapy, complementary and alternative
therapy, diet therapy, insulin potentiating therapy, and
bacterial treatment have been developed for cancer treat-
ment (4). Since bacteria, as internal and external factors,
have a major role in health and human diseases they play
a very effective role in the prevention and development
of cancer. A large body of evidence has unraveled the di-
chotomous manner of bacteria in tumorigenesis. On the
one hand, the development of some cancers is strongly
attributed to bacterial infection and over 15% of malig-
nancies in the world can be linked to this agent. For in-
stance, Helicobacter pylori infection is the main risk factor
for gastric cancer development (5). Bacteria cause cancer
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by different mechanisms including the production of bac-
terial components, such as toxins and metabolites, as well
as bacterial-induced chronic inflammation. On the other
hand, some bacteria have been used for the prevention
and treatment of cancers through different mechanisms
including tumor-targeting bacterial therapy, gene therapy,
bacterial products, arginine metabolism, magnetotactic
bacteria, combination bacteriolytic therapy (COBALT), and
immunomodulation of bacteria. Hereby, we reviewed the
role of bacterial mechanisms in cancer development or
prevention and evaluated potential approaches for bacte-
rial cancer therapy.

2. Evidence Acquisition

A total of 80 articles in English and Persian language
were considered in this study and the latest information
on the role of bacteria in carcinogenesis and cancer pre-
vention were obtain through searching in Google scholar
databases, Science Direct, and PubMed until 2020, using
a combination of the keywords “bacteria”, “carcinogene-
sis”, “cancer” and “prevention”. Articles were divided into
2 groups: carcinogenic and cancer prevention, then subti-
tles were determined based on an overview of related arti-
cles.

3. Results

3.1. Bacteria and Carcinogenesis

It has been shown that bacterial and viral-
inflammatory microenvironments mediate the tumorige-
nesis process. Interaction between some microorganisms
and immune systems results in chronic inflammation
which leads to cancer establishment consequently (6). In
the case of the mentioned points above, previous studies
demonstrated that there is a significant relationship
between H. pylori infection and gastric cancer. Moreover,
chronic inflammation caused by Escherichia coli, Fusobac-
terium nucleatum, and Bacteroides fragilis has a main role
in the pathogenesis of colon cancer. The bacteria can
also drive cancer through their toxins, metabolites, and
chronic microenvironment inflammation (7). Chronic
stimulation of reactive oxygen species (ROS), interleukin-8
(IL-8), cyclooxygenase-2 (COX-2), and nitric oxide (NO)
along with environmental factors are shown to signifi-
cantly contribute to this process (6). Data are summarized
in Table 1.

3.1.1. Bacterial Toxins

There are numerous bacterial toxins and antibiotics as
virulence factors that eradicate and inhibit the prolifera-
tion of other microorganisms (17). Among virulence fac-
tors, bacterial protein toxins, including those connected to
the development of cancer, have been the targets of a large
number of studies. Bacterial toxins have great impacts on
cellular and molecular procedures which are probably re-
lated to carcinogenesis such as proliferation, death, devel-
opment, and differentiation of cells. Some of the promi-
nent examples including DNA-damage toxin [colibactin,
cytolethal distending toxin (CDT), cycle inhibiting factor
(CIF), and cytotoxic necrotizing factor (CNF)], cell signaling
disrupting toxin [cytotoxin-associated gene-A (CagA), vac-
uolating cytotoxin A (VacA), B. fragilis toxin, and avirulence
protein A and Fad] (Table 2).

It has been demonstrated that some E. coli strains
produce peptide-type genotoxin colibactin which have
a meaningful contribution to cancer development by
double-strand DNA breakage (18, 19). Overpresenting of E.
coli harboring the colibatin-producing genes was recently
illustrated that in the colorectal tumors samples (20). In
one more example, it has been indicated that cdtB, a cy-
tolethal distending toxin subunit of Salmonella enterica
serovar Typhi can derive varieties of actions such as cell cy-
cle arrest, inhibit immune cells, and chronic inflammation
which has been previously elaborated in gallbladder can-
cer development and progression (21).

DNA-damage toxins act through destructive DNA and
cause double-stranded DNA breaks. To date, digestive bac-
teria have this function and their toxins have contributed
to cancer progression (22).

Moreover, bacterial toxins can modulate cellular pro-
cedures by alterations in signaling pathways. The cag
pathogenicity island (CagA) and vacuolating cytotoxin
(VacA) of H. pylori have an impact on proliferation and
programmed cell death through regulating mitogen-
activated-protein kinase (MAPK) and epidermal growth
factor receptor (EGFR) pathways (26).

3.1.2. Bacterial Metabolites

Bacterial metabolites such as nitrosamines, bile acid
degradation products, and acetaldehyde can be associ-
ated with different cancers. Previous studies revealed
that the production of toxic metabolites was influenced
by a high protein and low carbohydrate diet. This diet
decreases the production of anti-cancer metabolites and
therefore increases the risk of tumorigenesis. These onco-
genic metabolites can cause tumors through mutations in
DNA and increase the production of oxygen free radicals
(27). Some important bacterial metabolites are mentioned
below.
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Table 1. The Bacteria Associated with Tumorigenesis

Cancers Bacteria Refrences

Lung cancer Chlamydia pneumoniae; Staphylococcus aureus; Streptococcus; Escherichia
coli; Haemophilus influenzae; Candida albicans; Legionella pneymophila;
Bacillus; Listeria; Mycobacterium tuberculosis.

(8)

Pancreatic cancer Helicobacter pylori; Porphyromonas gingivalis. (9)

Breast cancer Bacillus (10)

Ovarian cancer Chlamydia trachomatis; Mycoplasma genitalium. (11)

Gallbladder carcinoma Salmonella enterica; Helicobacter hepaticus; Helicobacter bilis; Escherichia
colityphi.

(12)

Gastric cancer mucosa-associated lymphoid tissue lymphoma
(MALToma)

Helicobacter pylori (13)

Colon cancer Streptococcus bovis; Fusobacterium nucleatum; Citrobacter rodentium;
Escherichia coli; Bacteroides fragilis.

(13)

Cervical cancer Chlamydia trachomatis (14)

Hepatocellular carcinoma Helicobacter hepaticus (14)

Vascular tumor Bartonella (15)

Liver cancer Helicobacter hepaticus (15)

Prostate Cancer Neisseria gonorrhoeae (16)

Abbreviation: MALToma, mucosa-associated lymphoid tissue lymphoma.

Table 2. Different Bacterial Strategies that Might Drive Carcinogenesis

Strategy Examples Reference

Toxicity (toxins) DNA- damage toxin: Colibactin, CDT, Cif, CNF; Cell signaling disrupting toxin: CagA, VacA; B. fragilis toxin; Avirulence protein A; FadA. (23, 24)

Metabolites Nitrosamines; Bile acid degradations; Acetaldehyde (24)

Inflammation Cytokines /ROS/RNOS (25)

Abbreviations: CDT, cytolethal distending toxin; Cif, cycle inhibiting factor; CNF, cytotoxic necrotizing factor; CagA, cytotoxin-associated gene-A; VacA, vacuolating cyto-
toxin A; FadA, fusobacterium adhesin A; ROS, reactive oxygen species; RNOS, reactive nitrogen oxide species.

3.1.2.1. Nitrosamines

In some bacteria, nitrates are converted to nitrites and
N-nitrosamines by reductase enzymes. N-nitrosamines are
mainly accounted as a remarkable mutagen (28). It has
been shown that bacterial N-nitrosamines compounds are
associated with bladder cancer in animal models. Fur-
thermore, patients with chronic urinary tract infections
showed a higher level of nitrosamines in comparison to
controls (29).

It has been demonstrated that dimethyl nitrosamine,
a powerful carcinogen, was significantly excreted in the
urine in Proteus mirabilis and E. coli infection and associ-
ated with bladder cancer (30).

Interestingly, H. pylori hypochlorhydria has been pos-
tulated to provide a proper condition for other bacteria to
produce nitrosamines. Nitrosamines produced by bacte-
ria and rising nitrite levels might enhance the susceptibil-
ity of chronic atrophic gastritis, gastric, and colon cancer
(24).

3.1.2.2. Bile Acid Degradation Products

Gastrointestinal and biliary tract bacteria can degrade
bile acids to secondary products (31). Deoxycholate and
lithocholate are the main parts of bile acid degradation
products which cause mutation in the cells (32). Secondary
bile acid products also elevate the levels of ROS by con-
verting arachidonic acid into prostaglandins through host
cell membrane enzymes and mitochondria damages. Ad-
ditionally, bile acids increase nitrogen species through the
induction of nitric oxide synthases. ROS and RNOS can in-
crease DNA breakage and mutagenesis (33). It is impor-
tant to know that these secondary bile acid products alone
do not have the potential for carcinogenesis and need co-
carcinogens like nitrosamine (34).

It has been illustrated that mixed bacterial and
Salmonella infections are associated with gallbladder can-
cer which is mainly attributed to bacterial degradation
of bile and chronic inflammation that make a mutation
in oncogenes such as P53 and K-ras (12). Deoxycholate
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has been shown that promote growth and proliferation
of colon cancer cells by inhibiting protein kinase C in
the cells (35). It has been shown that a high-fat diet can
stimulate the secretion of bile acids which can increase
secondary bile acid products (36).

3.1.2.3. Acetaldehyde

Acetaldehyde is a mutagenic, toxic, and carcinogenic
metabolite that is produced by the oxidation of ethanol
from bacteria that live in the digestive tract. It interferes
with DNA repair and influences tumor development (37).

It has been shown that acetaldehyde production, par-
ticularly by non-pathogenic Neisseria in oral microflora,
can contribute to oral cavity carcinoma (38).

Acetaldehyde also causes breakage in chromosome
and sister-chromatid exchanges leading to mutations in
human lymphocytes. Previous studies showed that the
production of acetaldehyde following chronic ethanol
consumption increases esophageal epithelial cell genera-
tion and chances of tumor development. Furthermore,
acetaldehyde causes hyperplastic and hyper-proliferative
changes in the gastrointestinal tract that increase the risk
of cancer (39).

3.1.3. Chronic Inflammation

Chronic inflammation is one of the most crucial can-
cer hallmarks which was explained for the first time by Vir-
chow in 1863. He suggested the inflammatory reactions in
schistosome-related bladder cancers stimulate cell prolif-
eration and growth (40). Previous studies demonstrated
that viruses and bacterial inflammation have been associ-
ated with higher cancer risks (41). Inflammation can drive
the initiation and progression of cancer and it has been
estimated that approximately one-sixth of human cancers
occur as a consequence of pathogen inflammation (25). In-
flammation stimulates cell renovation and proliferation
and might result in DNA aberration that initiates and pro-
motes carcinogenesis (40).

3.2. Bacterial-Mediated Tumor Therapy

For almost a century, it has been shown that bacteria
can be used as a novel cancer therapy (42). However, bac-
teria mediated tumor therapy (BMTT) as a potential ther-
apy with a broad range of benefits, has some limitations
such as biosafety, toxicity, genetic instability, and compli-
cations with other therapies (43). It has been shown that
tumor-detecting bacteria can act as a biosensor for detect-
ing tumors, metastasis, and monitoring of residual dis-
eases (44). Previous evidence showed that some bacteria
can regress tumor cell growth by different mechanisms

(8). The first observation was tumor regression in expo-
sure to clostridial by Vautier in 1813 (45). Then the Ger-
man physicians, W. Busch and F. Fehleisen in 1868 and
1882, individually observed that when the patients with
cancer were infected with streptococcal bacteria and con-
tracted erysipelas, their tumor was regressed (46). After
that, William B. Coley in 1891 showed tumor regression in
patients with sarcoma exposed to Coley’s toxin (heat-killed
streptococcal organisms combined with heat-killed Serra-
tia marcescens) (47). In the early 20th century (1935), Con-
nell showed that the tumor was regressed when treated
by filtrated Clostridium histolyticum which was attributed to
the production of enzymes (48). In addition, in 1976, it was
shown that MycobacteriumBovis bacillus Calmette–Guérin
(BCG) was administrated for bladder cancer and BCG erad-
icated the tumor and inhibited the probability of relapse.
It is noteworthy to mention, controlled administration of
bacteria is important for a successful BMTT particularly via
the heat-inactivated bacteria (49). Currently, new bacterial
strains with high capability are being designed and altered
by genetic engineering to reduce the side effects and in-
crease efficiency (50). For instance, the BCG vaccine can be
used for human bladder cancer as adjuvant therapy (51).
Moreover, oral administration of E. coli can provide a non-
invasive detection method for finding liver metastasis via
producing easily detectable color signals in urine (52).

3.2.1. Tumor Targeting Bacterial Therapy

Some anaerobic bacteria were investigated for target-
ing therapy due to their ability to live in oxygen-free re-
gions. When bacteria are injected into tumor cells, they mi-
grate and penetrate deeply and assemble in necrotic areas
of tumor tissue and destroy it directly (53). Some strains of
bacteria such as Clostridia, Bifidobacteria, Mycobacterium,
Bacillus, Listeria, and Salmonellae can colonize into the hy-
poxic areas of tumor cells and can devastate tumor status
(54). There are several methods that bacteria would help
to have anti-cancer efficiency including gene therapy, bac-
terial products, arginine metabolites, magnetotactic bac-
teria, COBALT, and immunomodulation of bacteria in can-
cer.

3.2.2. Gene Therapy and Vectors

The best therapy for cancer is the precise eradication
of the tumor cells with minimal damage to the other parts
of the body. One of these effective therapies is gene ther-
apy. Gene therapy is the gene manipulation and regula-
tion of DNA to prevent and treat the disease. Gene deliv-
ery system consists of 2 biological (bacteria and viruses)
and non-biological categories (55). The inherent character-
istics of the bacteria allow them to have adequate and ef-
fective DNA delivery to cells or tissues. Following tumor
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progression, the cancerous cells create new blood vessels
that are highly unorganized and leaky. As a result, circu-
lating bacteria enter the tumor and accumulate through
it (56). The bacteria begin to produce compounds that kill
tumor cells. Additionally, bacteria can transfer some sub-
stances coupled with antitumor agents to the human body
and destroy the cancerous cells (57). Previous studies have
demonstrated that the bacteria that are conjugated with
anti-cancer agents are more therapeutic than monother-
apy (58).

Last investigations showed that co-delivery of doxoru-
bicin and recombinant plasmid pHSP70-Plk1-shRNA by bac-
terial magnetosomes can significantly inhibit osteosar-
coma cells (59). Previous studies indicated the overexpres-
sion of laudin-3 (CLDN3) and claudin-4 (CLDN4) in ovar-
ian cancer. Recently it has been shown that CLDN3/4 can
be targeted by recombinant Clostridium perfringens entero-
toxin (CPE) fused to tumor necrosis factor as a potential
therapy in ovarian cancer (60). Furthermore, it has been
demonstrated that by a recombinant E. coli expressing lis-
teriolysin O (LLO), antigens can effectively present to den-
dritic cells (DCs) for cancer immunotherapy in melanoma
cells (61).

The aim of gene therapy is to incorporate genes that
have anti-cancer properties to anaerobic bacteria (43).

3.2.3. Bacterial Products in the Treatment of Cancer

There are several natural or synthetic modified bac-
terial products that have been shown to have an anti-
cancer activity such as myxobacterium Sorangium cellulo-
sum epothilone A and epothilone B (EpoA and EpoB), EpoB,
and desoxyepothilone B in a wide range of cancers (62).
Some bacterial components such as enzymes can act as
anti-tumor agents. Previous investigations discovered the
anti-tumor activity of some secreted substances of bacte-
ria for different cancer cells. For instance, bacteriocins are
positively-charged peptides that are produced ribosoma-
lly in a variety of bacteria (63). Moreover, bacterial prod-
ucts such as lipopolysaccharide (LPS) vaccines might act
as an anti-tumor agent in particular cancers (64). For in-
stance, LPS vaccines of Pseudomonas aeruginosa increased
tumor regression and improved overall survival rate in pa-
tients with acute myeloid leukemia in comparison to non-
treated LPS patients (65). A large body of evidence has re-
vealed that LPS remarkably elevated apoptosis in colorectal
cancer cell lines compared to 5-fluorouracil (5-FU) (64, 66).
Moreover, staphylococcal superantigens-like (SSL) which is
produced by S. aureus binds to overexpressed receptors in
cancer cells. For example, SSL10 binds to CXCR4 on hu-
man cervical carcinoma cells and competes with CXCL12
(the natural ligand of CXCR4) and therefore, inhibits the
chemotactic response of HeLa cell, calcium mobilization,

and cell migration of cervical carcinoma that acts as an
anti-cancer agent preventing metastasis (67). Endotoxin of
Serratia marcescens increases tumor regression through its
hemorrhage-producing factor (68). Of note, bacteriocins
preferentially bind to the negatively-charged cell mem-
brane of cancer cells and induce its cytotoxicity. Indeed,
the cancer cell membrane has higher microvilli and fluid-
ity in comparison to normal cells which means more num-
ber binding sites for bacteriocins. Bacteriocins conduct
their cytotoxicity through induction of apoptosis and/or
changing the cell membrane permeability by depolariza-
tion of it (50).

3.2.4. Arginine Metabolism in Bacterial Pathogenesis and Can-
cer Therapy

Amino acid metabolism pathways are critical for both
bacterial and cancer cell growth, and recently they have
been considered as therapeutic targets for bacterial infec-
tions and cancer therapy (69). Effective cancer therapy is
the depletion of key amino acids that are essential for tu-
mors to survive (70). One of these amino acids is argi-
nine. Correlation between arginine metabolism and tu-
morigenesis has been known for a long time and shows
that arginine can influence tumor cell growth and prolifer-
ation (71). A huge body of studies has revealed that arginine
deprivation could be a potential therapeutic approach in
cancer therapy. Three major enzymes [arginase, arginine
deiminase (ADI), and arginine decarboxylase (ADC)] partic-
ipate in the depletion of arginine in archaea, bacteria, and
eukarya (72). Studies demonstrated that, among the argi-
nine degrading enzymes, arginine deiminase (ADI) has an
antitumor effect in a variety of cancers such as hepatocel-
lular carcinomas and melanomas (HCCs) (73). In this case,
some microorganisms such as Pseudomonas, Mycoplasma,
Halobacterium, Lactobacillus, Lactococcus, and Streptococ-
cus can catabolize arginine to citrulline and ammonia by
ADI enzyme (74). Of importance, Mycoplasma arginine
deiminase enzyme is known as a potent anti-cancer agent
that inhibits tumor growth in hepatocellular carcinoma,
leukemia, melanoma, renal cell carcinoma, and prostate
cancer (75).

3.2.5. Magnetotactic Bacteria for Cancer Therapy

Recently, nanotechnology has opened many therapeu-
tic windows in cancer treatment. Among different new
methods in this field, using magnetotactic bacteria (MTB)
is one of the significant methods. MTB is a group of Gram-
negative, motile, and aquatic bacteria that can move along
geomagnetic field lines. These bacteria synthesized in-
tracellular structures and nano-sized magnetic crystals,
named "magnetosomes" (76). Both MTB and their mag-
netosomes are being applied in cancer treatment in dif-
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ferent ways. The whole MTB and magnetosomes are be-
ing used for delivering medication. Magnetococcus marinus
strain MC-1 is also used to transport drugs with nanocar-
riers (nanoliposime) on the oxygen-free region of colorec-
tal cancer in mice. Furthermore, scientists demonstrated
the anti-tumoral activities of the complex of magneto-
some and a chemotherapy medication called doxorubicin
(DOX) in the cell lines of mouse breast cancer and hu-
man leukemia (77). Another interesting feature of magne-
tosome is the detection of tumor cells by magnetic reso-
nance imaging (MRI). For instance, Xiang Z et al. detected
breast cancer cells by magnetosome nanoparticles. The ad-
vantage of this system is that a low dosage of magneto-
some can be used due to its high affinity to target cells be-
cause of specific proteins binding to the magnetosome sur-
face (78). Another application of magnetic particles in the
treatment of cancer is hyperthermia (increasing the tem-
perature within the tumor in the range of 37 - 45 °C) which
is induced by altering the magnetic field (79). Scientists
demonstrated that using magnetosomes in the hyperther-
mia treatment of tumors reduce the size of tumor cells and
eliminate the cancerous cell completely.

3.2.6. Combination Bacteriolytic Therapy

Different bacteria are tested for combination therapy
of cancers. Among 26 various bacteria, an anaerobic bac-
teria named "Clostridium novyi-NT" (C. novyi without α-
toxin) which grows in the hypoxic region of the tumors
seems particularly useful in cancer therapy (80). The
spores of this bacteria are used in combination with sev-
eral chemotherapeutic agents, such as docetaxel, vinorel-
bine, mitomycin C, and dolastatin-10. This strategy is called
COBALT, it causes hemorrhagic necrosis of tumors which
destroys tumor cells and prolongs antitumor effects (81).

3.2.7. Immunomodulation of Bacteria in Cancer

Immunomodulation as a part of immunotherapy in-
cludes the interaction of bacteria with the host’s immune
system in different ways. Bacteria can enhance human
immunity through activation of inflammasome pathways
and producing inflammatory cytokines, which suppress
tumor growth (82). Some anaerobic bacteria initiate the
defense mechanism of the host by producing anti-tumor
effectors T cell (CD4, CD25, and CD8) responses (83). Some
gram-positive anaerobic bacteria can augment the induc-
tion of tumor-specific T cells and enhance the accumula-
tion of antigen-specific CD8 + T cells and thus destroy can-
cer cells (84).

3.2.8. Immune-Surveillance

One of the functions of the immune system is the
identification and destruction of deformed and abnormal

cells before they become a tumor cell, and also the re-
moval of it after formation (85). These functions lead to
the emergence of the "cancer immune-surveillance" hy-
pothesis by Burnet and Thomas (86). Many factors are
involved in immune-surveillance such as cytokines and
chemokines. Tumor necrosis factor (TNF) is an inflamma-
tory cytokine that induces hemorrhage necrosis in can-
cers. This cytokine has a dual role in tumor progression. On
the one hand, TNF-α can inhibit tumor progression, on the
other hand, it promotes tumor growth (87). Some bacteria
were positively correlated with TNF response, while other
bacteria reduced the TNF response. Engineered bacteria-
induced TNF-α production and improved cancer treat-
ment (88). Additionally, immune responses against liver
cancer were modulated by the gut microbiome through
bile acid–regulated NKT cells [natural killer (NK) cells are
the main innate lymphocyte subsets that mediate anti-
tumor and anti-viral responses (89)]. These gut bacteria
use bile acid as transportation and regulate the chemokine
CXCL16 level on liver sinusoidal endothelial cells (LSEC).
This regulation controls the accumulation of CXCR6+ hep-
atic NKT cells to inhibit the development of liver tumors
(90).

4. Conclusions

In sum, bacteria and cancer are linked to each other
by different mechanisms. Bacteria are one of the most
important factors contributing to the progression of can-
cer, whereas they are also widely used in the treatment of
cancer. Since bacteria are an integral part of human life,
and especially the immune system of each individual is
strongly affected by the bacteria in the living environment
and the bacteria within the body, so extensive research into
the role of bacteria in human health and disease, especially
complex diseases such as cancer, should be undertaken be-
cause there are still many questions that need to be an-
swered.
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