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Abstract

Background: Brain tumors are all primary central nervous system (CNS) tumors with unclear etiologies and viral infections, espe-
cially human herpesviruses, which have emerged as a hot topic for comprehensive research.
Objectives: The present study aimed at assessing the molecular epidemiology of varicella-zoster virus (VZV) and its association with
microRNA 122 (miR-122) expression in CNS tumor samples.
Methods: Fresh frozen tissue samples were collected from 60 CNS tumor patients and 45 healthy controls. A nested PCR assay was
performed to detect the VZV-DNA. Subsequently, the expression level of miR-122 was evaluated in the CNS tumor tissue samples of
patients and the brain tissue samples were obtained from healthy controls, using a real-time PCR assay.
Results: Of 60 patients with CNS tumors, 29 were men and 31 were women. VZV-DNA was detected in 13.3% of the CNS tumor tissue
specimens. There was no statistically significant association between the presence of VZV-DNA and different types of CNS tumors (P >
0.05). Furthermore, the expression level of miR-122 was significantly downregulated in the CNS tumor tissue samples obtained from
the patients compared with those of the healthy controls (P < 0.05). Additionally, the expression level of miR-122 was significantly
lower in the VZV-positive tumor samples as compared with those of the VZV-negative tumor samples and the healthy controls.
Conclusions: Although VZV plays no direct role in the development of CNS tumors, the virus may affect the biology of CNS tumors by
decreasing the expression levels of miR-122, which consequently leads to an increased risk of malignancy. However, the experimental
data are not conclusive enough; so, further investigations are needed.
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1. Background

Malignancies of the central nervous system (CNS) are
the second most common type of tumor and the most fre-
quent type of solid tumor in childhood (1-3), which are as-
sociated with a high mortality rate (4). They are frequent in
adults with a mean age of 47 years old (3, 5) and are usually
caused by abnormal, uncontrolled growth of the spinal
cord and brain cells, which are known as astrocytoma,

meningioma, glioblastoma, ependymoma, medulloblas-
toma, oligodendroglioma, choroid plexus papilloma, and
pineocytoma (6, 7). Although several genetic and envi-
ronmental risk factors (e.g. radiation exposure, viral in-
fections, and neuro-carcinogens) probably play important
roles in the development of CNS tumors, the exact etiolo-
gies of these tumors are not well understood (8-11).

The role of viral infection in tumorigenesis of the CNS
has long been under debate. However, it has been re-
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ported that some avian retroviruses can induce gliomas
under in vivo conditions (12). Among human oncoviruses,
herpesviruses (e.g. HCMV, HHV-6, and EBV) and poly-
omaviruses (e.g. SV40, JCV) have been investigated more
extensively in human CNS tumors (11), which are suspected
to be associated with CNS disorders. varicella-zoster virus
(VZV), or human herpesvirus 3 (HHV3), is a member of the
herpesvirus family that is neurotropic. Primary infection
with VZV first leads to varicella (chickenpox) and, then, es-
tablishes a latent infection in the dorsal root of the gan-
glion. Subsequently, reactivation of the primary infection
can cause zoster (shingles) as well as some complications
related to the CNS (13). Only a few studies have been carried
out to illustrate the role of VZV on brain tumors; therefore,
there are still many gaps that need to be addressed. Fur-
thermore, contradictory reports have been published on
the frequency of VZV in brain tumors (14). Although few
studies have focused on the role of VZV in CNS tumors, this
hypothesis requires further investigation.

It is known that miRNAs (miR) play several critical roles
in the regulation of various cellular processes, such as cell
growth, differentiation, cell signaling, and apoptosis (15-
17). In addition, they may act as oncomiR (a tumor in-
ducer) or tumor suppressors in cancer cells. MiR-122, as a
tumor suppressor, targets the IGF1R in breast cancer cells
(18); however, it could be considered an oncomiR in renal
cell carcinoma (RCC) (19). The expression levels and func-
tion of miR-122 in CNS tumors have not been well defined
up to now. Several studies have shown that there are dis-
tinct expression patterns of the host miRNAs in both viral-
infected and uninfected cells, wherein they can be used as
novel diagnostic biomarkers (20, 21). Besides, these viruses
may contribute to tumor progression by altering miRNA
expression (22, 23). In this regard, a few studies have been
conducted on VZV genome detection in brain tumors; so,
the miRNA pattern in the VZV-infected CNS-tumor remains
unevaluated.

2. Objectives

The current study aimed at evaluating the VZV infec-
tion rate in CNS tumors, as well as the expression levels of
miR-122 in brain tumors.

3. Methods

3.1. Patients and Settings

The present case-control study was conducted from
January 2017 to October 2019. A total of 60 CNS tumor sam-
ples were obtained from the included patients, who under-
went surgery at the neurosurgery departments of hospi-
tals affiliated with Iran University of Medical Sciences. The

aim and procedures were verbally explained to all the par-
ticipants, and the patients’ guardians signed the consent
form freely concerning the Helsinki Declaration. In total,
45 normal CNS tissue samples as controls were obtained
from a peripheral region of the surgically removed tumors
from individuals matched with the case group in terms of
sex and age. Patients previously treated (by chemotherapy)
were excluded from the study. All the patients received dex-
amethasone at a dose of 8 mg/m2, which was prescribed
to reduce pressure and swelling in normal tissues around
the tumor before the surgery. Additionally, none of the
patients were HIV-positive, and almost all of them had a
WBC cell count of more than 4500 cells per µL (Table 1).
Thereafter, the tumor-node-metastasis (TNM) system was
used for staging CNS tumors as decided by the Department
of Pathology at the same hospital. For collection, tissues
are immediately preserved in RNA Later solution (Ambion,
Inc., Austin, TX) and, then, stored at -80°C until the extrac-
tion of total RNA and DNA.

3.2. Nucleic Acid Extraction

The extraction of DNA was performed, using the QI-
Aamp DNA Mini Kit (QIAGEN GmbH, Hilden, Germany)
according to the manufacturer’s protocol. To evaluate
miRNA, total cellular RNA was extracted from the speci-
mens, using the Trizol approach (miRNeasy Mini Kit, QIA-
GEN GmbH, Hilden, Germany) following the kit’s instruc-
tions. Afterward, the achieved RNAs were converted to
cDNA, using the miScript II RT Kit (Qiagen). The concentra-
tions of the extracted nucleic acids were assessed, using a
spectrophotometer, NanoDrop ND-1000® (Thermo Fisher
Scientific Inc., Waltham, MA, USA) after the extraction pro-
cedure.

3.3. Polymerase Chain Reaction

For the identification of VZV-DNA, we designed primers
for ORF 63 to detect all the known genotypes of VZV (Ta-
ble 2). The PCR (polymerase chain reaction) assay was per-
formed in two consecutive PCR reactions, each one con-
taining 2.5 µL of the extracted DNA, 12.5 µL (1X) of 2x Am-
plicon MasterMix, and 1 µL (0.5 µM) of each primer in a 25
µL final volume. The PCR program was performed, using
T100™ Thermal Cycler (Life Science Research Bio-Rad) un-
der the following conditions: an initial denaturation step
for 5 min at 95°C followed by 45 cycles (in the first PCR
round) and 35 cycles (in the second PCR round) for 35 s at
95°C, for the 20 s at 58°C, and 35 s at 72°C, respectively.

3.4. Quantitative Real-time Polymerase Chain Reaction (qRT-
PCR)

Quantification of miR-122 was conducted, using
the miScript SYBR Green PCR Kit (Qiagen) according
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Table 1. Demographic and Clinical Characteristics of the Participants

Histopathology Total (N = 60), No. (%) Location of Tumor
Gender

Mean Age (Range)
Mean WBCa Counts Per

Microliter (Range)
Male Female

Astrocytoma 27 (45) Brain 16 11 40.7 (25 - 56) 7951.4 (4500 - 10950)

Glioblastoma
multiform

19 (31.7) Brain 7 12 61.1 (83 - 49) 8967.5 (6190 - 14150)

Oligoastrocytoma 4 (6.6) Brain 1 2 52.9 (20 - 74) 7138.5 (3400 - 9100)

Schwannoma 3 (5) Meninge 1 2 50.3 (18 - 67) 9396.6 (6800 - 11900)

Meningioma 2 (3.3) Brain 1 - 54.7 (46 - 65) 8748.3 (7650 - 10450)

Pituitary adenoma 2 (3.3) Brain 1 1 39.0 (35 - 44) 10436.6 (6210 - 15490)

Epidermoid tumor 1 (1.7) Brain - 1 49.7 (37 - 60) 9260.0 (5400 - 16700)

Hemangioblastoma 1 (1.7) Brain - 1 51.0 (48 - 54) 7685.0 (6620 - 8750)

Pineoblastoma 1 (1.7) Brain 1 - 13.5 (11 - 16) 7700.0 (6100 - 9300)

Table 2. The Primer Sequences Used in the Study with Given Cycling Conditions

Primer Sequence (3’ → 5’) Location TM Genomic (°C) Target Product Size

First round Orf63, 645 bp

H3F1 GGCGGGCTTTTCACAGAA 110334 60

H3R1 CTGCGTCTGGGTGGGTTG 110978 61

Second round Orf63, 437 bp

H3F2 CCATTGCCATTTTACCCAAG 110482 58

H3R2 TCTGGTGCGACCCATTAGAT 110918 59

to the manufacturer’s protocol. All reactions were
performed in triplicate. The miRNA named SnRNA
RNU6B was used for normalization in relative quan-
tification analysis. The primer sequences used for the
amplification of U6 snRNA were forward primer: 5´-
CCGATAAAATTGGAACGATACAGAG- 3´ and reverse primer:
5´-TCGATTTGTGCGTGTCATCC- 3´.

Moreover, the expression levels of miR-122 were nor-
malized to the level of U6 snRNA, as an internal control, us-
ing the efficiency-corrected calculation models of the Pfaff
method (24).

Ratio =
(Etarget) ∆Cttarget (control − sample)

(Eref) ∆CtRef (control − sample)

The reaction mixture contained 2 µL of cDNA (0.2 - 0.5
µM), 2 µL (0.5 µM concentration) of each primer, 7.5 µL of
2 × QuantiTect SYBR Green PCR Master Mix, and nuclease-
free water up to 15 µL. The optimal real-time PCR was in-
vestigated under the following conditions: In the first step,
an initial denaturation was performed for 10 min at 95°C,
which was followed by a further 40 cycles for 15s at 95°C,
for the 30 s at 60°C, and 1 min at 72°C. The results were con-
firmed, using melt curve analysis that was set in the anneal-
ing/extension step. Heating was set between 50°C and 95°C

at a 2°C per second rate, and continuous fluorescence mea-
surement was, then, applied.

3.5. Statistical Analysis

SPSS version 16 (SPSS Inc., Chicago, IL, USA) was used
for statistical analysis. Also, multidimensional qPCR anal-
ysis was performed, using GenEx and Graphpad software.
The relationship among categorical variables was calcu-
lated by running the v2 test (the Mont-Carlo method was
used for the exact P-value calculation). The Kolmogorov-
Smirnov test was used to assess the normal distribution
of variables. Also, the independent-samples t-test/Mann-
Whitney U test and the Kruskal-Wallis test were used to
analyze continuous variables. In addition, Dunn’s multi-
ple comparison test and Tukey’s multiple comparison test
were used to estimate the correlation among quantitative
variables. A P-value of < 0.05 was considered statistically
significant.

4. Results

4.1. Characteristics of the Participants

In the present age-and sex-matched case-control study,
we examined 45 healthy controls and 60 CNS tumor cases
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obtained from 29 males (mean age ± SD 48.3 ± 14.5 years
old) and 31 females (mean age ± SD 47.5 ± 18.0 years old).
The patients’ total mean age was 46.5 ± 13.1 years old, rang-
ing from 11 to 83 years old, and the mean WBC count of
the subjects was 8320.8 ± 2701.5 cells per µL (range, 3400
- 16700 WBC per µL). According to the histologic criteria,
the primary CNS tumor samples were enrolled and, then,
classified as follows: 27 (45 %) were Astrocytoma, 19 (31.7 %)
glioblastoma multiform, 4 (6.7 %) Oligoastrocytoma, 3 (5
%) Schwannoma, 2 (3.33 %) Meningioma, and 2 (3.33 %) Pi-
tuitary adenoma. As shown in Table 1, in the current study,
less common tumors were epidermoid tumor (no = 1) (1.7
%), hemangioblastoma (no = 1) (1.7 %), and pineoblastoma
(no = 1) (1.7 %).

4.2. Determination of VZV DNA

In the present study, CNS specimens were tested for
the presence of VZV ORF-63. The PCR results showed that
VZV DNA existed in 13.3% of the CNS tumor specimens with
a mean age of 48.8 ± 18.6 years old, ranging from 20 to
83 years. The VZV-infected samples included Astrocytoma
(5/8) and Glioblastoma multiform (3/8). There was no sta-
tistically significant association between gender and VZV
positivity, as investigated by the Fisher exact test (P > 0.05).

The mean age value of the VZV-positive and VZV-
negative cases was 48.8 ± 18.6 years old (ranging from 20
to 83 years) and 45.0 ± 17.3 years old (ranging from 11 to 74
years), respectively (P = 0.56). No statistically significant as-
sociation was found between the presence of VZV and var-
ious types of CNS malignancies after running the v2 test,
using the Monte Carlo method (P = 0.452) (Table 3).

4.3. Determination of miR-122 Expression

The expression level of miR-122 decreased significantly
in the astrocytoma and glioblastoma multiforme samples
compared with the controls (P < 0.0001) (see Table 4 for
more information). The highest and the lowest expres-
sion levels of miR-122 were observed in pituitary adenoma
and hemangioblastoma samples, respectively. Addition-
ally, the expression level of miR-122 was lower in the sam-
ples infected with VZV as compared with those of the VZV-
negative samples (Figure 1).

5. Discussion

In 2019, 23 820 new cases of CNS tumors and 17 760
deaths caused by brain tumors were reported in the US
(7). Emerging evidence has demonstrated a frequent pres-
ence of viral infection, especially human herpesviruses, in
CNS tumors in both children and adults (12, 25-30). VZV is
a neurotropic virus that can cause latent infection in the

dorsal root ganglia and cranial nerve ganglia (31). More-
over, the reactivation of VZV can lead to some neurolog-
ical disorders, such as myelitis and encephalitis (32, 33).
Therefore, the investigation of the relationship between
this virus and gliomagenesis or other CNS tumors is of par-
ticular importance.

Among the 60 tumor samples examined in the present
study, the sequences of VZV open reading frame (ORF) 63
were detected in 8 (out of 60) tissue samples (13.33%), in-
cluding astrocytoma (n = 5/27) and glioblastoma multi-
form (n = 3/19), whereas no VZV-DNA was detected in the
control samples. However, the statistical analysis demon-
strated no significant correlation between the frequency
of VZV-DNA and different tumor types. Previous studies
demonstrated a higher VZV-IgG level among the normal
population compared to glioma patients (34-36). These
findings led to the proposal of the "neuroprotective ef-
fect" hypothesis of VZV immunoglobulin in GBM (11). How-
ever, this protective effect is mostly related to the specific
immunoglobulins produced against the virus rather than
the virus itself. Thus, this is not in contrast to the re-
sults of our study (11). In a study almost similar to the
present study, Neves et al. (29) investigated the prevalence
of herpesviruses in the cerebellum (tumor-containing tis-
sue) and found the virus in two tumor samples, while it was
absent in the control group.

For the first time, Gelb and Dohner reported that VZV
is capable of transforming mammalian cells in vitro (37).
Furthermore, experimental evidence has shown that some
proteins expressed by the VZV genes, such as orf-12, orf-
66, and orf-63, can block apoptosis in VZV-infected cells
(38-40). In another study, it was observed that ORF63 is
expressed during both latent and productive infections,
which promotes the survival of neurons by suppressing
apoptosis, and also plays an important role in the patho-
genesis of the VZV (40). These studies suggest that VZV may
play a potential role in tumorigenesis.

In general, according to the studies cited, there are two
hypotheses related to the role of VZV in carcinogenesis.
Correspondingly, some studies reported a reverse relation-
ship between VZV infection and brain tumors, and some
others suggested that VZV can contribute to tumorigene-
sis through the inhibition of apoptosis.

Given the critical role of miRNAs in cellular processes,
it is not surprising that viruses alter cellular conditions in
their favor by dysregulation of miRNA expression (41-43). It
has been observed that the expression pattern of miRNAs
has been significantly downregulated in different human
cancer cells, which act either as tumor suppressors or as
oncomiR. Besides, several miRNAs are deregulated in vari-
ous human CNS tumor cells (44, 45). The results of the cur-
rent study showed a significant downregulation level of
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Table 3. Comparison of VZV Detection Rate Between Different CNS Tumor Types a

VZV orf63 Sequence
P-Value

Positive Negative Total

Number 7 (11.7) 53 (88.3) 60

Age, y 48.8 ± 18.6 (20 - 83) 45.0 ± 17.3 (11 - 47) 46.5 ± 13.1 (11 - 83) 0.56

WBC counts per microliter 9047.3 ± 3317.2 (4500 - 16700) 8182.7 ± 2432.5 (3400 - 15490) 8320.8 ± 2701.5 (3400 - 16700) 0.155

Tumor location 0.2

Meninge 2 (28.5) 5 (71.5) 7

Brain 5 (9.4) 48 (90.6) 53

Gender 1.0

Male 5 (17.2) 24 (82.8) 29

Female 3 (9.6) 28 (90.4) 31

Tumor pathology 0.452

Astrocytoma 2 (16.7) 10 (83.3) 12 (20)

Glioblastoma
multiform

1 (10) 9 (90) 10 (16.6)

Oligoastrocytoma 1 (12.5) 7 (87.5) 8 (13.3)

Schwannoma 1 (12.5) 7 (87.5) 8 (13.3)

Meningioma 2 (28.6) 5 (71.4) 7 (11.6)

Pituitary adenoma 1 (14.2) 6 (85.8) 7 (11.6)

Epidermoid tumor 0 3 (100) 3 (5)

Hemangioblastoma 0 3 (100) 3 (5)

Pineoblastoma 0 2 (100) 2 (3.3)

a Values are expressed as No. (%) or mean + SD (range).
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Figure 1. A, The expression level of miR-122 was significantly downregulated in VZV-positive astrocytoma (AS) compared to VZV-negative AS (-3.07 ± 0.22 vs. -0.59 ± 0.2, P <
0.0001) and healthy group (-3.07 ± 0.36 vs. 0.31 ± 0.19, P < 0.0001). B, The expression of miR-122 was significantly downregulated in VZV-positive glioblastoma multiforme
(GBM) compared to VZV-negative GBM (-2.8 ± 0.4 vs. -0.64 ± 0.2, P = 0.0076) and healthy group (-2.8 ± 0.4 vs. 0.36 ± 0.19, P < 0.0001) (P ≤ 0.05. ** P ≤ 0.01. **** P ≤ 0.0001).
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Table 4. Comparison of Fold Change Based on qRT-PCR for miR-122 Between CNS Tu-
mor Patients and Healthy Controls (Control Group as a Reference Group) a

Tumor Type Fold-change Difference P-Value

Astrocytoma (n = 27) -1.12 ± 0.24 < 0.0001

Glioblastoma multiform (n = 19) -1.07 ± 0.25 < 0.0001

Oligoastrocytoma (n = 4) 0.03 ± 0.47 Ns

Schwannoma (n = 3) -0.68 ± 0.45 Ns

Meningioma (n = 2) -0.78 ± 0.65 Ns

Pituitary adenoma (n = 2) -1.5 ± 0.64 0.021

Epidermoid tumor (n = 1) -0.76 ± 0.9 Ns

Hemangioblastoma (n = 1) 1.33 ± 0.84 Ns

Pineoblastoma (n = 1) -1.062 ± 0.41 0.013

a Ns, not significant.

miR-122 in glioblastoma multiform, astrocytoma, pituitary
adenoma, and hemangioblastoma (Table 4). Moreover, the
expression level of miR-122 was found to be statistically sig-
nificant among different tumor samples (P < 0.02).

As mentioned earlier, the expression level of tumor
suppressors, miRNAs, has mainly increased in cancer cells,
while oncomiRs are overexpressed in cancer cells. Notably,
it has been observed that the expression pattern of miR-
122 is different in various cancers (46, 47). Furthermore,
it is reported that miR-122 acts as an oncomiR in renal cell
carcinoma (19), and also as a tumor suppressor in gastric
cancer (36), hepatocellular carcinoma (48-50), and breast
cancer (18). In the present study, we also found that miR-
122 expression was downregulated in CNS tumor tissue
compared to that in the control samples. As a result, it
may play a role as a tumor suppressor in human CNS can-
cer cells. The average fold change of relative expression
showed that the expression level of this miRNA was sig-
nificantly lower in the VZV-positive tumor samples com-
pared to those of the VZV-negative tumor and control sam-
ples. Additionally, a statistically significant difference was
found between these groups (P < 0.001). In contrast, Qi et
al. (51) evaluated the dysregulation of cellular miRNA (in-
cluding miR-122, 196, 269, 363, and 132) expression, using a
TaqMan low-density array (TLDA) assay in the sera of non-
vaccinated children with varicella-zoster infection (51). The
different expression patterns of miR-122 used in this study
and ours may be due to the different types of samples
(serum vs tissue), different methods (qPCR vs TLDA), and
different disease types (CNS tumor vs varicella-zoster infec-
tion) studied.

In conclusion, the present study showed that the preva-
lence of VZV infection in CNS tumors was 13.33%. However,
more studies should be carried out to explain the roles of
viral infections in these types of tumors. The expression

level of miR-122 has been significantly downregulated in
both tumor specimens and VZV-infected patients. Given
that VZV infection may be involved in the dysregulation of
miR-122 expression and since miR-122 is probably a tumor
suppressor miRNA in CNS tumors, VZV may contribute to
tumor progression through the downregulation of miR-
122. However, the experimental data are not enough to be
conclusive in this regard; therefore, further investigations
are needed.
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