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Abstract

Context: Breast cancer (BC) is the most common cancer in women worldwide. Hereditary susceptibility created by mutations in
autosomal dominant genes is responsible for 5 to 10% of all BC cases in women. Recent studies have identified genes associated with
increased risk for aggressive BC, providing the basis for better risk management.

Evidence Acquisition: The latest information in National Center for Biotechnology Information (NCBI), Google Scholar, ScienceDi-
rect, and Scopus were the main databases for finding articles. A combination of keywords of ‘metastasis’, ‘invasion’, ‘aggressive
breast cancer’, ‘prognostic factor’, ‘mutation’, and ‘cancer treatment’ was searched in the databases to identify related articles. Ti-
tles and abstracts of the articles were studied to choose the right articles.

Results: Mutations in breast cancer type 1 susceptibility protein (BRCA1) and breast cancer type 2 susceptibility protein (BRCA2)
genes are two central players related to the high risk of BC. Mutation in tumor protein p53 (TP53) is another important mutation that
leads to triple-negative BC. Although the majority of BC types are not associated with high-throughput mutant genes such as BRCALI,
BRCA2, and TP53, they are associated with low-throughput genes, including DNA repair protein Rad50 (RAD50), Nijmegen breakage
syndrome gene (NBS1), checkpoint kinase 2 (CHEK2), BRCAl-interacting protein 1 (BRIP1), E-cadherin gene (CDH1) and PALB2, UCHL],
aldehydedehydrogenaselA3 (ALDHIA3), androgen receptor (AR), 5-bisphosphate 3-kinase (PIK3CA), phosphatidylinositol-4, and lu-
minal gene expression that are generally mutated in the global population. High tumor mutational burden (TMB) was associated
with improved progression-free survival.

Conclusions: The lymph node status, early tumor size, ER, PR, human epidermal growth factor receptor-2 (HER2), and Ki-67 are
conventional prognostic factors for BC. However, these factors cannot exactly predict the aggressive behavior of BC. Hence, in this
review, we discussed new prognostic factors of aggressive BCs that are useful for the treatment of patients with BC.
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1. Context setting is not high, thereby leading to the ineffective
application of systemic treatment. BC has various presen-
tations with extensive diverseness in its morphological
features, clinical subsequences, prevalence tendency, and
subtypes. Age is the most significant risk factor of BC,
followed by a positive family history of BC. Hereditary
susceptibility created by mutations in BRCA1/2 genes is
responsible for 5 to 10% of all BCs among women (6).
The genetic alterations in BC can be classified into two
separate categories. The first category is gain-of-function
mutations in proto-oncogenes. These mutations stimulate
cell growth and division. The second category of genetic
alterations is loss-of-function mutations in tumor sup-
pressor genes that lead to the lack of ability to repair DNA

Breast cancer (BC) is a significant reason for cancer-
related death among women; approximately 40000
deaths occur per year in the United States (1). About 1in
12 women in developed countries is diagnosed with BC
during her life. Despite advancements in the primary
diagnosis and therapy of BC such as smart drug deliv-
ery by nanoparticles (2-4), immunotherapy, and gene
therapy, mortality is about 100% for that 20% of patients
with metastases (5). Currently, early tumor size and the
presence of lymph node metastasis (LNM) are the most
significant prognostic markers of BC. However, the preci-
sion of these typical indicators that are used in the clinical
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after damage, uncontrollable cell growth, and lack of cell
cycle checkpoints (7). Women inheriting loss-of-function
mutations have an up to 85% risk of aggressive BC to the
age of 70 years. Mutations in BRCA1/2 genes are two central
players related to the high risk of BC. Germ-line mutations
in these two genes are responsible for 16% of all hereditary
BC cases. The breast cancer type 1 susceptibility protein
(BRCA1) and 2 genes are tumor suppressor genes that
are involved in DNA recombination and transcriptional
regulation (8). Another significant mutation can occur in
tumor protein p53 (TP53), leading to a triple negative BC
(TNBC). TNBC is the most aggressive form of BC, whose
management is considered a medical challenge (9). TP53,
phosphatase and tensin homologue (PTEN), Nijmegen
breakage syndrome gene (NBS1), ataxia-telangiectasia
mutated (ATM), and serum thymidine kinase 1 (STK1) are
involved in hereditary BC syndromes like Li-Fraumeni
(TP53), Cowden syndrome (PTEN), Nijmegan Breakage
Syndrome (NBS1), Louis-Bar Syndrome (ATM), and Peutz
Jeghers (STK1/LKB1). The majority of BC cases are not
associated with high-throughput mutant genes such as
BRCAL, breast cancer type 2 susceptibility protein (BRCA2),
and TP53 (10). Low-throughput genes, including NBS1,
checkpoint kinase 2 (CHEK2), DNA repair protein Rad50
(RAD50), E-cadherin gene (CDHI1), partner and localizer
of BRCA2 (PALB2), and BRCAl-interacting protein 1 (BRIP1)
that are often mutated in the global population mostly
contribute to BC extension (11). Recent studies have also
shown that miRNAs can regulate signaling pathways
negatively or positively, thereby affecting tumorigenesis
and various aspects of cancer progression, particularly BC
(12-14). Cancer-causing driver mutations confer selective
clonal growth advantage and oncogenic potential to cells.
The ability to invade and pass basement membranes of
the endothelium and secondary organ sites is a hallmark
of metastatic cancer cells. Distant metastasis or local
invasion, rather than an early tumor, is responsible for the
mortality of patients with cancer. Metastasis is a complex
process, involving escape from an initial tumor, infiltra-
tion into lymph-vascular space, survival in the circulatory
system, extravasation, and growth in the new site as a
secondary tumor (15). The cellular mechanisms of metas-
tasis are not well understood, but increased cell motility
is one of the reasons. Increased motion of cancer cells has
been related to a poor prognosis in human cancer and
larger metastatic potential in animal models. However,
newly reported research studies maintain the impor-
tance of targeted therapies on response to treatment in
poor prognosis patients with BC. Barroso-Sousa et al. in
2020 in a cohort study demonstrated that high tumor
mutational burden (TMB) and PTEN alterations correlate
with response to anti-PD-1/L1 therapies among patients
with metastatic triple-negative BC (mTNBC). This study
showed that high TMB was associated with improved

progression-free survival, while PTEN alterations were
related to decreased responses and progression-free and
survival among these patients (16). In other studies of
pre-treatment and post-treatment biopsies from patients
with triple-negative BC (TNBC) demonstrated androgen re-
ceptor (AR) expression, 5-bisphosphate 3-kinase (PIK3CA),
phosphatidylinositol-4, and luminal gene expression of
mutated genes in these pathologic conditions due to
various responses in patients. For example, patients with
luminal AR (LAR) subtype tumors possess clinical benefits
and better prognosis and prolonged progression-free
survival besides alteration in cell signaling-related gene
expression (17). Considering the variability in clinical de-
velopment of BC, identification of new molecular markers
of tumor behavior at the time of diagnosis is important.
Few markers of BC development have been confirmed to
be clinically beneficial (18). Progesterone receptor (PR)
and estrogen receptor (ER) are extremely predictive in pa-
tients with BC that will profit from endocrine treatment;
however, they are weak prognostic factors. ErbB2 [human
epidermal growth factor receptor-2 (HER2)/neu| ampli-
fication or overexpression, Urokinase-type plasminogen
activator receptor (uPAR), Ki-67, STAT3, and cathepsin D
are other tumor markers that have been considered for
prognosis in BC (19). Therefore, there is a need for new
prognostic factors that are more precise and valid. In this
review, we discuss new prognostic factors of aggressive
BC.

2. Evidence Acquisition

The latest information in National Center for Biotech-
nology Information (NCBI), Google Scholar, ScienceDirect,
and Scopus were the main databases for finding articles.
A combination of keywords of ‘metastasis’, ‘invasion’, ‘ag-
gressive breast cancer’, ‘prognostic factor’, ‘mutation’, and
‘cancer treatment’ was searched in the databases to iden-
tify related articles. Titles and abstracts of the articles were
studied to choose the rightarticles. Finally, 92 articles were
selected to study in detail and use as references.

3. Results

3.1.P53

P53, a nuclear phosphoprotein, is encoded by the TP53
gene that is located at chromosome 17p13.1 (20). In 1979,
p53 was identified as the first tumor suppressor gene. P53
can act as a negative regulator of cell growth and prevents
neoplastic development by inhibiting abnormal cell pro-
liferation. P53 has been identified as a transcription factor,
which regulates numerous target genes involved in cell cy-
cle arrest and induction of apoptosis (21, 22). Mutation in
p53 results in loss of these functions. Alterations in the p53
gene are found in a variety of human tumors, including
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BC. Mutation in this gene is considered a primary event in
the progression of BC. The frequency of p53 mutations is
about20 to30% in BC.Allelicimbalance on the shortarm of
chromosome 17 eliminates the tumor suppressor function
of p53 in more than half of BCs (23). Mutant p53 protein
gains novel tumor-promoting activities by transactivation
of target genes related to apoptosis, cell proliferation, tis-
sue invasiveness, and tumorigenesis.

Accordingly, since p53 mutations are prevalent in pa-
tients with BC, it is thought which mutations of p53 could
be related to more aggressive cancers or those with a high
risk of distant metastasis and, therefore, might be a prog-
nostic factor in forecasting future recurrence (24). The
relationship between overexpression of p53 protein and
disease-free survival has been investigated in several stud-
ies. In some types of carcinomas, UCHLI1 forms a complex
with p53/MDM2/ARF and induces apoptosis through aber-
rant methylation of the CpG islands in the ubiquitination
process in tumor progression (25).

Among novel therapeutic target molecules, UCHLI is
considered a candidate oncoprotein for prolonging BC
metastasis. UCHLI-enriched exosomes are significantly in-
creased in sera of patients with triple-negative BC, the ag-
gressive type of BC. Mechanistically, UCHL1 induces TGF-
[ signaling-induced metastasis and TGF-{3 type 1 receptor
and SMAD2 through ubiquitination and increases extrava-
sation and migration in BC correlated with the paracrine
role for UCHLI in the progression of the tumor. These
responses of cells are potentially suppressed by specific
UCHLI inhibitors and 6RK73. Furthermore, animal model
experiments on zebrafish and BC xenograft models indi-
cated the metastatic-inducing role for UCHL1(26).

3.2. Matrix Metalloproteinases (MMPs)

Tumor cell local invasion into surrounding matrix and
metastasis to distant organs require accurate coordination
of adhesion to extracellular matrix (ECM) and controlled
degradation of its protein components. Both processes are
significant properties of malignant breast tumors. To in-
vade, neoplastic cellsrequire to infiltrate through the base-
ment membrane and remove ECM borders. In this con-
text, protease enzymes play a major role since they can hy-
drolyze protein components of ECM, thereby supporting
cancer cell invasion (27). Among several proteinases that
are involved in tissue lysis, members of the family of MMPs
are important. MMP2 (Gelatinase A, 72 kDa), MMP9 (Gelati-
nase B, 92 kDa), and zinc-dependent endopeptidases of the
MMP family play a critical role in the degradation of base-
ment membrane collagen IV, the first crucial obstacle that
is breached through cancer cells when they become inva-
sive. MMP2 and MMP?9 are released from cells as a zymogen
and cleaved to the active form (28). Secretion of these two
enzymes can be induced by a variety of factors, including
growth factors, inflammatory cytokines, hormones, and
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oncogene products. The activity of MMP2 and MMP9 is
controlled by interaction with tissue inhibitors of metal-
loproteinases (TIMPs), including tissue inhibitor of metal-
loproteinases 2 (TIMP2) and tissue inhibitor of metallopro-
teinases 1 (TIMP1), respectively. MMP2/9 is involved in the
initiation of tumor growth and metastasis, particularly in
BC. MMP2 is expressed in many primary stages of BC and
is believed to play a key role in the first steps that result in
tumor formation (27). MMP9 is also expressed in BC and ap-
pears to be related to the growth of the tumor and metasta-
sis (29). MMPs in BC correlated with shortened recurrence-
free survival, poor prognosis, and invasiveness of the dis-
ease. Also, these proteases are identified as prognostic fac-
tors in patients with aggressive BC (30).

3.3. Enhancer of Zeste Homolog 2 (EZH2)

EZH2, a polycomb group protein, is a methyltrans-
ferase and catalytic subunit of the Tissue inhibitor of met-
alloproteinases 2 (PRC2) enzyme complex. The PRC2 is
involved in tumorigenesis and gene silencing by histone
H3 lysine-27 methylation (31). Histone methylation by
EZH2 results in chromatin changes, which mark DNA se-
quences for methylation through DNA methyltransferases.
Also, core histone modifications lead to the formation
of a constant, repressive chromatin structure, and silenc-
ing of developmental regulators, tumor suppressors, and
differentiation-specific genes. EZH2 overexpression is as-
sociated with BC aggressiveness, poor prognosis, and de-
creased metastasis-free survival in patients with BC (32).
Collett et al. found strong associations between overex-
pression of EZH2 and properties of aggressive BC, such as
tumor cell proliferation, metastatic spread at diagnosis,
locally advanced disease, and reduced patients’ survival.
These findings, thus, suggest the utility of EZH2 as a novel
prognostic factor for BC (33).

3.4. Fascin

Manipulation of the actin cytoskeletal network results
in increasing cell movement that is one of the most im-
portant cellular mechanisms, which control metastasis.
Fascin, an actin cross-linking protein, is a member of the
cytoskeletal protein family that localizes to microspikes,
lamellipodia, and filopodia and has a key role in the adhe-
sion and motility of cells. Fascin is expressed in normal spe-
cialized cells such as dendritic and neuronal cells during
embryonic development, but its expression is weak in nor-
mal epithelial cells (34). However, overexpression of fascin
hasbeen detected in different types of human epithelial tu-
mors such as breast carcinomas. Fascin promotes metas-
tasis through facilitating membrane protrusions such as
filopodia during the invasion of cancer cells and regulat-
ing metastasis-related genes (35), particularly upregula-
tion of Nuclear factor kB (NF-xB) activity and downregula-
tion of the breast cancer metastasis suppressor 1(BRMS1) as
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well as induction of uPA, MMP2, and MMP9 expression (36).
There is evidence suggesting that growth factors and cy-
tokines such as epidermal growth factor (EGF), interleukin
6 (IL-6), and transforming growth factor 5 (TGF$) induce
overexpression of fascin in cancer cells (35).

A study in patients with BC indicated that expression
of fascin correlated inversely with PR and ER expression.
These observations suggest a feasible association between
augmented cell movement, hormone receptor negativity,
and overexpression of fascin in aggressive BC (37).

Trials of BC have shown that the expression of fascin
may be controlled by overexpression of HER2. Grothey et
al. have shown that overexpression of HER2 in cancerous
cells of the breast is related to graphic increases in mRNA
and protein levels of fascin. The induction of fascin in re-
sponse to HER2 may play a role in the induction of more
aggressive and metastatic properties in BC cells. Gener-
ally, the expression of fascin in BC correlates with shorter
disease-free survival and aggressive clinical behavior and
can be considered a new prognostic factor for primary
identification of aggressive carcinomas (38).

3.5. Hypoxia-Inducible Factor 1 (HIF1)

Hypoxia, which is a loss of oxygen in tissues, is demon-
strated in most solid tumors. Intratumoral hypoxia is cre-
ated by cancer cells unlimited growth, lack of functional
blood vessels, and deterioration of microcirculation. Hy-
poxia is associated with a potential for metastasis, poor
prognosis, and enhanced malignancy in some types of car-
cinomas such as breast carcinomas. Hypoxic tumor mi-
croenvironments induce genetic and adaptive changes in
tumor cells. These cells can adapt to the hypoxic condi-
tions by the action of transcription factor HIF1 (39). HIF1
plays a major role in early tumor development and vascu-
larization. HIF1 is a heterodimeric protein composed of
HIF-1cv and HIF-13 subunits. Both of these subunits belong
to the basic helix-loop-helix (bHLH) periodic acid Schiff
superfamily. HIF-1/3 is constitutively expressed, whereas
HIF-1« is continuously degraded through the ubiquitin-
proteasome pathway under normoxia and its expression
levels increase during hypoxia (40).

Under normoxia, HIF-1« is hydroxylated through spe-
cific prolyl-hydroxylases. The hydroxylated form binds to
von Hippel-Lindau protein, thus targeting HIF-1a for degra-
dation by the proteasome (41). Under hypoxia, HIF-1« sta-
bilization occurs by inhibition of hydroxylase activity and,
consequently, its intracellular levels increase. Upon sta-
bilization, HIF-1« is translocated into the nucleus, where
it heterodimerizes with HIF-13 to form a functional HIF1
transcription complex. This complex binds to hypoxia-
responsive elements (HREs) that are present in the target
genes promoter region (42).

HIF-1a controls the expression of genes associated
with several critical biological processes, such as angio-

genesis, cell growth, glycolytic metabolism, apoptosis,
and invasion. Alterations in the expression patterns of
these downstream genes counteract hypoxia, enhance oxy-
gen delivery, and activate oxygen-independent alternative
metabolic pathways (43).

In BC, overexpression of HIF-low has been found in in-
vasive carcinomas. Moreover, direct associations between
HIF-1ae overexpression and mortality have been demon-
strated in patients with aggressive BC. Several studies have
revealed that increased expression of HIF-1« is a new prog-
nostic factor in aggressive forms of BC (44).

3.6. Human Telomerase Reverse Transcriptase (hTERT)

Telomerase is a specialized RNA-dependent DNA poly-
merase that is located in the nucleus. It is a ribonu-
cleoprotein enzyme complex, which consists of two ma-
jor subunits, including reverse transcriptase (hTERT), the
catalytic subunit, and hTR, the internal RNA component.
The hTR is expressed in both normal and cancer cells,
whereas hTERT is highly expressed in cancerous cells but
not in normal cells. The hTERT expression closely corre-
lates with telomerase activity and serves as an indicator of
telomerase activity. Telomerase synthesizes telomeric re-
peated sequence after the division of cell and maintains
telomere length and genome stability, thereby resulting
in cancer cells immortalization and cancer progression
(45). The hTERT expression is regulated at the gene tran-
scription level through several epigenetic modifications at
promoter sites, including promoter methylation and his-
tone acetylation. Without activation of telomerase, each
round of cell division leads to shortening of the telomeres.
Progressive shortening of telomeres induces telomere dys-
function and chromosome instability (46).

Telomerase is active in 80 to 90% of cancer types, in-
cluding BC and its upregulation is detected as a primary
event during development to malignancy of breast tu-
mor. Ceja-Rangel et al. found that invasive BC cells have
very short telomeres, and telomerase is highly activated
in these cells (47). Poremba et al. reported that enhanced
expression levels of telomerase core components are re-
lated to shorter overall survival (48). These findings sug-
gest that hTERT is a promising emerging prognostic factor
in aggressive BCs.

3.7. Inhibitor of Differentiation/DNA Binding (Id)

Inhibitor of differentiation/DNA binding (Id) HLH pro-
teins are predominant negative regulators of bHLH tran-
scription factors. BHLH transcription factors are essen-
tial regulators expressed by tissue-specific genes in some
mammalian and non-mammalian organisms. These fac-
tors as homo- or heterodimers bind to DNA and regulate
transcription of target genes that carry E-boxes in their
promoters (49). Although Id proteins are dimerized with
bHLH proteins, these heterodimers are unable to bind to
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DNA, since Id proteins lack a basic DNA-binding domain.
Four Id genes (Id1-Id4) have been identified to date. These
genes localize to various chromosomes and exhibit differ-
ences in their pattern of expression and function. The fun-
damental expression of Id proteins has an important role
in the stimulation of cell growth and inhibition of cell dif-
ferentiation. High expression of Id1 in aggressive BCs sug-
gests that Id1 may act as a key regulator of BC development
(50). Further, Id proteins stimulate proliferation, angio-
genesis, invasion, and metastasis in BC cells. Recently, Id1is
identified as an oncogene not only since it is upregulated
in a wide range of human tumors and relates to poor clin-
ical outcomes and reduced survival but also since it is re-
lated to cell growth, and aggressive behavior in many types
of human cancer cells. Several studies demonstrated that
overexpression of Id1 is a prognostic factor for aggressive
breast tumors (51).

3.8. Lysine Specific Demethylase 1 (LSD1)

Demethylation is a fundamental epigenetic mech-
anism in controlling gene transcription, which is re-
lated to the suppression of transcription (52). LSDI is a
nuclear amine oxidase that specifically removes mono-
or di-methyl groups from lysine 4 on histone H3 by
Flavin-adenine-dinucleotide (FAD)-dependent oxidative re-
action (53). LSD1 interacts with several transcriptional
corepressor complexes, including Histone deacetylase 1/2
(HDAC1/2), repressor element-1 silencing transcription fac-
tor (REST) corepressor 1(Co-REST), and C-terminal binding
protein (CtBP). LSD1 permits corepressor complexes to se-
lectively initiate or suppress transcription, thereby play-
ing a vital role in the regulation of gene expression (54).
The regulation of gene expression by LSD1 has been re-
vealed to be essential in several biological operations such
as organogenesis and differentiation. In addition, LSD1 is
involved in many signaling pathways that are key for cell
growth, survival, and epithelial-mesenchymal transition
(EMT) (55).

Epigenetic regulation of gene expression is implicated
in multiple tumor types, including BC. LSD1 is overex-
pressed in BC cells, whereas the importance of this overex-
pression is not clear.

Vasilatos et al. have indicated that interaction LSD1and
HDACs at chromatin level is dysregulated in BC cells, result-
ing in aberrant gene expression that can induce breast tu-
morigenesis. Also, they revealed that LSD1 inhibition pre-
vented the proliferation of BC cells. According to these
studies, LSD1 is considered a tumor-promoting enzyme in
BC (56).

Nagasawa etal. indicated that overexpression of LSD11is
a poor prognostic factor in aggressive BCs. They predicted
that the expression of LSD1 is related to poor recurrence-
free survival in patients with aggressive BC using bioinfor-
matics tools (57). In another study, Lim et al. indicated that
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LSD1 might provide a predictive marker for aggressive biol-
ogy of ER-negative BCs (54).

3.9. Protein Kinase C (PKC)

Protein kinase C (PKC) is a family of serine/threonine
kinases, which controls signal transduction pathways in-
volved in cell growth, survival, differentiation, migration,
and invasion. The PKC family consists of at least 12 isoforms
that are categorized into 3 groups according to the struc-
ture of regulatory domains, including classical («, 31, 811,
and ), novel (4, ,n, 4, and 6), and atypical (A, ¢,and ¢). Ac-
tivation of classical PKCs depends on Ca** and diacylglyc-
erol (DAG). Novel PKCs are activated by DAG, and atypical
PKCs are activated independently of both Ca®*" and DAG
(58). Various PKC isoforms are involved in tumorigenesis
invarious tissues; therefore, it is vital to determine the spe-
cial PKC isoform that is important for BC progression.

Some studies have revealed an enhanced expression of
PKC activity in malignant BCs. They demonstrated that el-
evated PKC-« expression is related to the elevated move-
ment and aggressiveness of BC cells. PKC-« overexpression
results in an increased rate of proliferation, more effec-
tive anchorage-independent growth, substantial changes
in cellular morphology characterized through loss of an
epithelioid morphology with a marked enhance in the ex-
pression of vimentin, a marked reduction in ER mRNA
transcripts and estrogen-dependent gene expression, and
increased tumorigenesis and metastasis when injected
into nude mice (59). A reverse connection between PKC-
« activity and ER expression was established in BC cells
so that ER- BC cells express higher levels of PKC-« than
the levels expressed in ER + cancer cells. PKC-0 has been
demonstrated to act as a tumor suppressor and enhances
apoptosis in breast carcinoma cells (60). Nevertheless, a
direct connection between PKC-cand BC has not been es-
tablished to date. The results of Pan et al.’s study showed
that PKC-¢ was critically involved in establishing an aggres-
sive and motile phenotype in BC (61). The results of sev-
eral studies indicate that PKC-«, PKC-0, PKC-¢, and PKCe¢/A
are unique prognostic factors in aggressive BC. Also, these
studies have indicated that overexpression of PKCs is re-
lated to the reduction of disease-free survival (62).

3.10. Transcription Factor AP2

AP2 is a DNA-binding protein, which exerts both acti-
vating and suppressing effects on target genes. The AP2
family is constituted of 3 extremely homologous, retinoic
acid (RA)-inducible proteins, including AP2«,, AP2J3, and
AP27y (63). AP2 proteins regulate gene expression through
binding to consensus DNA sequences within target gene
promoters and have a crucial role in cell growth, differen-
tiation, and apoptosis (64). Alterations in the function of
AP2 are related to the malignant phenotype. Also, AP2 is
recently suggested as a novel tumor suppressor gene. In
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BC, low nuclear expression of AP2 is related to disease de-
velopment and enhanced metastatic potential of tumor
cells. Moreover, AP2 appears to be involved in the control of
genes such as HER2 and ER that are altered in BC; therefore,
it may play a key role in the prognosis and progression of
BC (65). Pellikainen et al. indicated that AP2 played a prog-
nostic role in BC. They also demonstrated that decreased
nuclear expression of AP2 independently can predict the
enhanced risk of recurrent disease in patients with BC(66).

3.11. Urokinase Plasminogen Activator (uPA)

Urokinase plasminogen activator (uPA) is one of the es-
sential mediators of cancer invasion and metastasis. In-
deed, uPA is a serine protease, which converts zymogen
plasminogen to active plasmin. Plasmin affects broad
types of protein substrates such as constituents of ECM.
Also, plasmin mediates the degradation of ECM by activa-
tion of certain MMPs that, in turn, increases proteolysis of
ECM (67). Plasminogen activator inhibitor 1 (PAI1), an in-
hibitor of uPA, also plays a major role in tissue remodeling
and degradation of ECM. In addition to this activity, uPA
and PAIl have other activities that allow them to play a role
ininvasion. These roles include induction of angiogenesis,
an increase of cell growth, enhancement of cell migration,
modulation of cell adhesion, inhibition of apoptosis, and
activation of special growth factors (68). Moreover, uPA
and PAIl are overexpressed in several cancer cells such as
BC. Different groups have reported that great levels of uPA
and PAIl activity in patients with BC correlate with shorter
disease-free survival and a higher risk of primary disease
recurrence. In these studies, uPA and PAIl are considered
independent and novel prognostic factors of aggressive-
ness in patients with BC (69).

3.12. Activated Leukocyte Cell Adhesion Molecule (ALCAM)

ALCAM is a glycoprotein of the immunoglobulin su-
perfamily expressed by endothelial, epithelial, neuronal,
and hematopoietic cells. This molecule is involved in cellu-
lar adhesion and promotes the growth and aggressiveness
of tumor cells. ALCAM brings tumor cells together by ho-
motypic interactions, thereby inhibiting interactions with
neighbor endothelium that can simplify metastasis (70).
King et al. found that levels of ALCAM transcripts are re-
duced in early tumors of breast carcinoma. They also in-
dicated that reduced expression of ALCAM correlated with
poor prognosis and more aggressive phenotype in patients
with BC (71). The results of several studies demonstrated
that ALCAM expression is a new prognostic factorin BC(72).

3.13. Aldehyde Dehydrogenase 1 (ALDHI)

ALDH], a detoxifying enzyme, is responsible for the oxi-
dation of intracellular aldehydes and, hence, protects stem
cells from oxidative stress. In addition, ALDH1 may affect
primary differentiation and proliferation of stem cells by

converting retinol into retinoic acid, a modulator of cell
growth (73). High activity of ALDHI is characteristic of BC
and plays a key role in mediating aggressive behavior of
this type of cancer. Therefore, the expression of this stem
cell marker is related to the poor prognosis of BC. The prog-
nostic value of ALDH1 in aggressive BC has been reported
through different groups (74). Other stem cell markers
such as signal transducer CD24 (CD24), cell surface adhe-
sion receptor (CD44), Kruppel-like factor 4 (KLF4), Kruppel-
like factor 5 (KLF5), and sex-determining region Y (SRY)-
Box2 (SOX2), as well as ALDH], have also been identified as
new prognostic factors in aggressive BC (75).

Daisuke Yamashita et al. in 2020 introduced a new
molecular signature for targeted therapy in BC. These
researchers showed that targeting aldehydedehydroge-
naselA3 (ALDHIA3) during migration and circulating tu-
mor cell adhesion in metastasis cascade of BC brain metas-
tases (BCBM) could be a new attractive therapeutic target
as a metastatic-guiding molecule for the management of
BC and other similar types of cancers (76).

3.14. Forkhead Box Transcription Factor C1 (FOXC1)

FOXC1plays keyroles in cellular growth, migration, dif-
ferentiation, survival, and longevity. The different studies
showed that overexpression of FOXC1 is related to an ag-
gressive phenotype in BC, as it induces EMT and increases
cell growth, migration, and invasion in these cells. They
also identified FOXC1 as a new prognostic factor in aggres-
sive forms of BC(77). Somerecent prognostic studies on the
above-mentioned factors and their relationship with clin-
ical outcomes in patients with aggressive forms of BC are
summarized in Table 1.

4. Conclusions

We discussed the prognostic value of new factors in pa-
tients with aggressive BC in this review. Conventional prog-
nostic factors in BC, including lymph node status and tu-
mor size, and molecular markers such as PR, ER, HER2, and
Ki-67 cannot accurately predict the aggressive behavior of
most BCs. Therefore, identification of such factors involved
in metastasis and invasion of BC is of great importance in
the development of therapeutic targets to combat BC.
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Table 1. Some Recent Prognostic Studies on New Factors and Their Significant Association with Clinical Outcomes in Aggressive Breast Cancers

Prognostic Factor Patients Assay DFS/OS Study

P53 217 IHC ND Guerra et al. (24)
P53 126 SSCP Reduced Shao etal. (78)
MMP2 453 IHC Shortened Talvensaari-Mattila et al. (79)
MMP9 113 Gelatin quantitative zymography Shortened Ranuncolo et al. (80)
MMP13 263 IHC Decreased Zhang et al. (81)
MMP14 120 IHC Shortened Jiang et al. (82)
MMP9 303 ELISA+IHC Reduced Wang etal. (30)
MMP1 179 IHC Worse Wang etal. (83)
EZH2 432 IHC Shortened Jangetal. (32)
Fascin 210 IHC Decreased Yoder et al. (37)
HIF1c 206 IHC Shortened Schindl et al. (84)
HIF2cv 124 IHC Reduced Wang et al. (44)
hTERT 611 IHC Reduced Poremba et al. (48)
hTERT 121 RT-PCR ND Divella et al. (85)
Id1 191 IHC Shortened Schoppmann et al. (49)
Id1 58 IHC ND Fong etal. (51)
LSD1 32 IHC Shortened Nagasawa et al. (57)
LSD1 460 IHC Shortened Derr et al. (86)
PKC-e 160 IHC Reduced Pan et al. (61)
PKC-c 107 IHC Worse Hsu etal. (62)
AP2 520 IHC Reduced Pellikainen et al. (66)
PAIl 73 ELISA Shortened Butaetal. (68)
uPA 166 IHC Shortened Duffy etal. (87)
uPA/PAIl 606 ELISA ND Lampelj etal. (69)
ALCAM 120 IHC Reduced King etal. (71)
ALCAM 157 ELISA Shortened Witzel et al. (72)
ALDH1 574 IHC Reduced Mieog etal. (73)
ALDH1 158 IHC Shortened Maetal. (74)
CD24 104 IHC Shortened Surowiak et al. (88)
KLF4 146 IHC Reduced Pandya etal. (89)
KLF5 90 RT-PCR Shortened Tongetal. (90)
SOX2 17 IHC Shortened Finicelli et al. (91)
FOXC1 253 IHC Reduced Xuetal. (77)
FOXC1 18 IHC Reduced Jensen et al. (92)

Abbreviations: IHC, immunohistochemistry; SSCP, single-strand conformation polymorphism analysis; ELISA, enzyme-linked immunosorbent; RT-PCR, real-time poly-

merase chain reaction; ND, not done.
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