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Abstract

Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (sur-
gical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on inno-
vative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration
and vector delivery to tumor cells.
Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine,
Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases
were analyzed.
Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined
chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and
chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tu-
mors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly
patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab
is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal
administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-
glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance.
Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improve-
ment, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive re-
sults with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill
glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation
of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.

Keywords: EPHA3 Antibody, Glioblastoma Multiforme (GBM), Nose-to-brain Delivery, Temozolomide, Brachytherapy, Gamma Knife
Radiosurgery, External-beam Radiotherapy, Lomustine, Suberoylanilide hydroxamic acid (SAHA), Olaparib

1. Context

1.1. Fatal Neoplasms: The Ghosts of Unknown Etiology

Glioblastomas are currently the most common aggres-
sive brain tumors with a poorly predicted prognosis. Their
nature is still not clear. There are various hypotheses and
one of them is that viruses cause glioblastoma. In any
case, the reliable cause of the glioblastoma occurrence is
not known to mankind, but methods for treating glioblas-
tomas have already been discovered. Depending on the
treatment method, different survival rates are achieved af-

ter the initial diagnosis of glioblastoma. At the moment,
the average maximum survival duration reaches 18 to 19
months. But, the unique capabilities of individuals and
auxiliary conditions, for example, the concomitant pres-
ence of cytomegalovirus antigens during the entire period
of homeostatic proliferation of T-lymphocytes after radi-
ation therapy, temozolomide, and corticosteroids (which
cause lymphopenia) can increase survival up to 7 years and
more (1, 2).

In this article, we will review various new radiologi-
cal and chemotherapeutic treatment methods for glioblas-
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toma (including vector drug delivery).

2. Evidence Acquisition

To study new methods of chemotherapy and radio-
therapy in the treatment of glioblastoma multiforme, ar-
ticles from the Elsevier, NCBI MedLine, Scopus, Google
Scholar, Embase, Web of Science, The Cochrane Library,
EMBASE, Global Health, CyberLeninka, and RSCI databases
were analyzed. While searching articles, the following
keywords were used: “Glioblastoma multiforme”, “EPHA3
antibody”, “Nose-to-brain delivery”, “Gamma knife radio-
surgery", “Temozolomide”, “Lomustine”, “External-beam
radiotherapy”, “Suberoylanilide hydroxamic acid (SAHA)”,
“Olaparib”, and “Brachytherapy”.

The assessment process of the English and Russian
sources was carried out in several stages; the titles, ab-
stracts, and full-text articles were viewed. Moreover, if
needed, an additional search for the sources indicated in
the selected articles was performed.

Articles that included original studies that provided
preliminary results of studies or duplicated the results of
previous studies were excluded. The main focus of this ar-
ticle was on the glioblastoma multiforme treatment used
worldwide from 2005 to 2020.

3. Results

3.1. In What Way Can Radiotherapeutic Features Fight Glioblas-
toma?

Radiotherapy of glioblastoma is based on the subject-
ing tumor cell to ionizing radiation. Ionizing radiation can
affect the DNA of glioblastoma cells directly (damaging the
structure of hereditary material directly by radiation) or
indirectly (radiolysis of water in the cytoplasm is accom-
panied by releasing reactive oxygen species, which dam-
age the DNA). Ionizing radiation has a much stronger in-
fluence on actively dividing cells during mitosis due to the
compactification of their DNA and the inactivity of repair
enzymes during division.

The standard pattern of radiotherapy for glioblastoma
has become outdated.

External beam radiotherapy (EBRT) was used as an in-
dependent methodic of treating glioblastoma until 2005.
In 2005, R. Stupp et al. (3) published an article providing
the data that EBRT is more effective in combination with
temozolomide (TMZ) compared with radiotherapy alone
(overall survival rates increased from 12.1 till 14.6 months).
Today, the standard of glioblastoma treatment includes

surgical resection of the tumor and fractionated EBRT com-
bined with chemotherapy (TMZ) sometime after the oper-
ation (4). Based on this, the main prognostic factors for
radiotherapy are the patient’s age, the Karnofsky perfor-
mance status, totally absorbed radiation dose, and hyper-
methylation of MGMT (O(6)-methylguanine DNA methyl-
transferase) (for adjuvant TMZ therapy) (5).

The standard course of EBRT includes a total absorbed
dose of 60 Gy, divided into 30 fractions of 1 fraction per day,
5 days a week for 6 weeks. Reducing the total dose does not
show significant results and an increase in overall survival
time. Increased doses are connected with high risks of ad-
verse effects (6).

3.2. Hypofractionated EBRT: New Hope for elderly or Weakened
Patients?

Hypofractioning is an EBRT regimen that consists of us-
ing small amounts of large (more than 2 Gy) fractions of ra-
diation. Due to the long-time intervals between fractions,
adverse effects are rarely observed, that is why it is the most
effective therapy for elderly or weakened patients.

According to literature evidence (7, 8), the usage of
hypofractionated radiotherapy (HFRT) as an independent
methodic of treatment is not effective, but another thing
is its combination with adjuvant TMZ therapy. HFRT with
intensity modulation provides many advantages to form
radiation beams and change their intensity following the
size and shape of the tumor. According to many data (7, 8),
the average overall survival rates of elderly patients who
administered this therapy are 9 to 20 months, while stan-
dard therapy provides 6 to 8 months.

These results are encouraging. But there is a need for
further researches to find the most fractionating regimen.

3.3. Brachytherapy; a “Heavy Artillery” Against Tumor Growth
and Recurrence

Brachytherapy (BT) of glioblastoma is performing by
introducing capsules (a.k.a. “grains”) with titanium shell,
containing radioactive isotopes I-125 or Ir-192, which pro-
duce radiation with different intensity into the tumor’s
bed. The decay of I-125 by electronic capture leads to its
transformation into Te-125, which emits gamma-rays in-
ducing therapeutic effects of capsules. Ir-192 decays simul-
taneously with releasing beta- and gamma-rays and trans-
forming into Pt-192.

Due to the high intensity of radiation, iridium is used
in high-dose-rate brachytherapy (HDR-BT). It is necessary
to remove its grains from the body after some time. I-125
is also used in low-dose-rate brachytherapy (LDR-BT). Such
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grains, if necessary, can be left in the patient’s body for a
whole life without adverse effects.

The combination of surgical resection of the tumor
and LDR-BT, followed by adjuvant HFRT 4 weeks later, was
proposed by Chen et al. (9), led to high risks of adverse
effects but demonstrated high values of patient’s survival
(overall survival, 28.5 months, progression-free survival
13.2 months).

Waters et al. (10) and Welsh et al. (11) studied the
use of the standard treatment with the addition of HDR-
BT between surgery and EBRT. There was an increase in
both progression-free survival and overall survival rates by
3 months compared to the standard treatment.

According to Kickingereder et al. (12) and Chatzikon-
stantinou et al. (13), the use of brachytherapy for inopera-
ble patients can significantly increase their overall survival
rate compared to supportive treatment.

The advantage of brachytherapy is its local effect and
reduced distance from the radiation source to the glioblas-
toma due to the delivery of radioactive “grains” directly to
the tumor bed. It provides a possibility to significantly de-
crease the frequency of tumor recurrence at adequate radi-
ation doses (with standard therapy, recurrence appears in
> 80% of cases, with brachytherapy from 18% to 80%) (14).

According to Schwartz et al. (15) and Chatzikonstanti-
nou et al. (16), LDR-BT for patients with small-size recur-
rent glioblastoma can increase their time-to-treatment-fail
up to 6 months, overall survival rates up to 9 months and
survival rates from initial diagnosis up to 29 months, and
HDR-BT as a component of complex treatment up to 4.5, 9,
and 20 months, respectively.

3.4. Radiosurgery; a Modern and Effective Method for Patients
with Recurrent Glioblastoma

Radiosurgery with high accuracy influences the tumor
bed with large doses of ionizing radiation in one or more
(up to 5) fractions.

It is effective for recurrent glioblastoma treatment.
Some authors (7, 17) report that radiosurgery is more use-
ful during the tumor progression rather than initial stages
and increases patients’ survival rates, which is relevant for
inoperable patients.

According to scientists of the University of Pittsburgh
(18), the average survival rate of such patients after radio-
surgery is approximately 9 months, and from an initial di-
agnosis of 18 months. Execution of chemotherapy for pa-
tients before tumor recurrence and after radiosurgery in-
crease in radiation dose and tumor resection after radio-
surgery provides the increase in survival.

Unfortunately, radiosurgery focuses radiation only on
the tumor site, which is visible on MR-images with gadolin-
ium contrast. Due to its high invasiveness, glioblastoma
cells can spread beyond the tumor bed without an appear-
ance on the MR-images, and it can lead to tumor recur-
rence. It makes radiosurgery inadvisable to use at the ini-
tial stages of treatment due to the inability of decreasing
the risk of tumor recurrence (7).

It is interesting to combine radiosurgery with beva-
cizumab therapy (a medicament of monoclonal antibod-
ies to vascular endothelial growth factor). Oxygen diffuses
from the capillaries at a distance of 100 - 150 microns; so, far
tumor cells necrotize because of excessive hypoxia. Beva-
cizumab increases this effect, which leads to the inhibition
of tumor cell proliferation. Radiosurgery complements
its action, causing the death of still-living cells. Many re-
searchers (18-21) note a sharp increase in recurrent glioblas-
toma patients’ survival rates with reduced risks of adverse
effects with such therapies.

Despite the advantages of radiosurgery, it is not widely
used in practice today because of complicated equipment,
lack of specialists, high energy costs for the procedure, and
other factors.

3.5. Adverse Effects, or a Little About the Sad

Not only tumor cells, but also rapidly dividing red bone
marrow cells are highly sensitive to radiotherapy. So, most
of the adverse effects are observed from the circulatory sys-
tem: leukopenia, lymphopenia, neutropenia, and throm-
bocytopenia. If glioblastoma of the brain stem is irradi-
ated, there can be observed nausea and constipation (22).

If radiation doses are inadequately high, dangerous
disorders of the nervous system might be observed: mem-
ory impairment, radionecrosis, brain hemorrhages (they
are extremely rarely observed), etc. (14).

The importance of side by side application of radio-
therapy with chemotherapy has already been discussed
and now we will focus on the latter one.

3.6. There Is no Room for Solo Players: The Combination of
TMZ with Innovative Chemotherapy as One of the Most Effective
Methods for the Treatment of Glioblastoma Multiforme

TMZ is a compound from the triazene class (chemi-
cal formula: RN = N-NR1R2), an alkylating chemothera-
peutic antitumor drug approved for the treatment of pa-
tients with glioblastoma multiforme (21). After oral ad-
ministration, it is rather quickly and completely absorbed,
the percentage of drug binding to plasma proteins is in-
significant; therefore, the simultaneous administration of
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other drugs ensures their minimal interaction with TMZ
(22). TMZ is a lipophilic molecule that can penetrate the
blood-brain barrier (BBB) and, hence, has antitumor activ-
ity in the central nervous system (23). Compared to other
chemotherapeutic drugs, the toxicity of TMZ is low; how-
ever, the use of this drug can lead to significant side effects
(such as thrombocytopenia, neutropenia, lymphopenia,
and significant myelosuppression when combined with
radiotherapy) (24).

The most common position of DNA methylation
caused by the active metabolite of TMZ 5-(3-methyltriazen-
1-yl) imidazole-4-carboxamide (MTIC) is N7 of guanine
followed by methylation at position N3 of adenine and
position O6 of guanine (O6-MeG). In normal cells, direct
repair of O6-MeG with the MGMT effectively removes
methyl adduct and restores guanine (25). DNA damage
caused by TMZ can be eliminated with MGMT; therefore,
a decrease in MGMT activity can enhance the effect of the
drug (26). It was shown that alkylation products are not
detected in cells with a weak DNA repair mechanism and,
hence, they are resistant to TMZ, even if MGMT is absent
in them (27). Thus, TMZ is most cytotoxic in cells with
low levels of MGMT and normal DNA repair mechanisms
(Figure 1).

Poly (ADP-ribose) polymerase (PARP) can restore
methylated guanine at position N7. It is known that
methylation at this region of the nucleotide does not have
a significant cytotoxic effect; however, PARP inactivation
contributes to the treatment of cancer, which justifies the
synergistic effect of TMZ with PARP inhibitors (28, 29).

If the MGMT promoter in glioblastomas is methylated,
MGMT is not capable of transcription and usually, such
tumors can be treated with TMZ, unlike tumors with un-
methylated MGMT (28, 29). Specific mutations in tumors
are the main factors of resistance and growth (30). Unlike
genetic mutations, epigenetic changes such as promoter
methylation or histone acetylation status are reversible
and can be targeted with drugs (31).

It was shown that combined chemotherapy with lo-
mustine (this drug promotes the formation of interchain
bonds in the DNA molecule and leads to carbamoyla-
tion of amino acids, which ultimately leads to a change
in transcriptional, translational, and post-transcriptional
processes) and TMZ increased overall survival in the group
of patients with methylated MGMT glioblastoma (32).

TMZ in combination with histone deacetylase (HDAC)
inhibitors (for example, suberoylanilide hydroxamic acid,
which is a specific inhibitor of HDAC 1, 2, 3, and 6, is cur-
rently approved for the treatment of cutaneous T-cell lym-

phoma) and chloroquine (chemosensitizing agent) have
been tested for various types of cancer, and clinical tri-
als have been conducted to treat glioblastoma. Chloro-
quine blocks the late stages of the protective cancer cells’
reaction-autophagy and promotes apoptosis of the tumor
(33, 34). Histone deacetylase inhibitors promote histone
acetylation, which leads to changes in chromatin dynam-
ics; moreover, they favor transcription factor acetylation,
which affects gene expression (35). It has been shown that
HDAC inhibitors suppress the cell population resistant to
treatment with alkylating drugs and eliminate resistance
to these drugs (36).

Preclinical trials of olaparib (an inhibitor of poly
[ADP-ribose] polymerases, PARP) have shown that
PARP inhibitors can be considered as a promising
class of radiosensitizers (provide a more effective re-
sponse to radiotherapy) (37, 38). The combination of
TMZ/olaparib/radiotherapy can be used in the treatment
of partially resected or non-resected glioblastomas and
can help to improve survival rates, with virtually no effect
on healthy tissues and neurocognitive functions (39).

Thus, the combined use of TMZ with different sub-
stances can be helpful in the treatment for glioblastoma;
however, additional clinical research to confirm the effec-
tiveness on big groups of patients has to be done. Cur-
rently, vector drug delivery is gaining momentum and is
a true perspective method of glioblastoma treatment. The
most recent technologies of this method are discussed in
the following section.

3.7. Nanotechnologies and Vector Drug Delivery

Significant progress has been made in recent years in
surgery, radiotherapy, and chemotherapy; however, even
the most active chemotherapeutic treatment can only
slightly improve overall survival.

3.8. What Surprises Does Temozolomide Bring with Vector De-
livery?

TMZ is considered the most effective drug for treating
glioblastomas; it is most often administered orally or in-
travenously (40). However, there are several problems as-
sociated with its use:

1) Short plasma half-life;

2) The high toxicity associated with the limitation of
the drug dose usage (hematological toxicity, acute car-
diomyopathy, ulceration of the oral cavity, and myelosup-
pression) (41);

3) The use of TMZ in combination with radiation ther-
apy led only to moderate improvements (42).
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Figure 1. TMZ and its anti-glioblastoma activity in sensitive and resistant cells

3.9. The Successful trio of TMZ/Nanoparticles/Polylactide-co-
Glycolide

However, science does not stand still, and some studies
are currently being carried out aimed to overcome these
obstacles in the treatment of glioblastomas; for instance,
the compositions of microspheres, various implants, and
combinations of TMZ with several system components for
targeted drug delivery to tumor cells are being actively
studied (43).

The most commonly used and promising for the treat-
ment of glioblastoma are considered nanoparticle-based
vector delivery systems (44-46).

As a rule, polylactide-co-glycolide (PLGA), is (A)
biodegradable, (B) biocompatible, and (C) universal.

Nevertheless, an obstacle arises with TMZ: its poor sol-
ubility in aqueous and organic solvents, which leads to sig-
nificant difficulties in encapsulation of TMZ in PLGA-based
nanoparticles (P-NPs) (47). However, a way out of this situa-
tion was found by Wang (48): it was proposed to add to TMZ
molecule 4 - 10 carbon chain; so, TMZ esters were success-
fully synthesized with activity comparable to unmodified
TMZ.

However, in addition to the difficulties associated with
the chemical and physical properties of the drug, there

are several problems associated with its delivery to tumor
cells:

1) The penetration of the drug through the BBB,

2) Vector delivery of the drug to the lesion site of the
brain (49).

It has been a long trip: technology for the delivery of
chemotherapy to glioblastoma cells through the nose to
brain pathway.

In this article, we focus on the technology of drug de-
livery to glioblastoma cells through the nose to brain path-
way.

This method has several advantages (50-52):

1) If intranasal administration, direct drug delivery
from the nasal mucosa to the brain via the olfactory and
trigeminal nerve pathways is ensured;

2) Bypassing the BBB, it is possible to avoid systemic
side effects and primary metabolization of the drug, which
prevents its enzymatic/chemical degradation;

3) In comparison with intravenous administration,
this method is safer due to its faster action and greater an-
titumor activity, which allows reducing the dose and fre-
quency of drug administration; this helps to increase pa-
tient survival. However, when administrating the drug, it
is necessary to take into account the features of nasal mu-
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cociliary clearance, which significantly affect the absorp-
tion of the drug (53).

An interesting feature of this method is the use of
an auxiliary adhesive polymer applied to the nasal mu-
cosa, which increases the retention time of the drug in
the nasal cavity (53). Chitosan (an amino sugar derived
from chitin) is most often used for this, but it is insolu-
ble and does not have adhesive properties at a neutral pH
(54). But, the solution was found to overcome these obsta-
cles: N-trimethylated chitosan (TMC), obtained by reduc-
tive methylation of chitosan, has good adhesion and sol-
ubility even at neutral pH (55). In the study of du Plessis
et al., it was found that TMC has stronger adhesion to the
nasal mucosa compared to unmethylated chitosan, and
TMC also reduces mucociliary clearance.

To enhance the directed action of the drug on glioblas-
toma, a complementary interaction of the drug ligand and
the overexpressed receptor in tumor cells are used (56,
57). One of these receptors is the type A3 ephrin receptor
(ephrin type-A receptor 3; EPH receptor A3; EPHA3). This
membrane-bound receptor is overexpressed in stroma and
vasculature in gliomas, but almost not expressed normally
(58). Anti-EPHA3-recombinant non-fucosylated (fucose-
free) IgG1k (human f-allotype) is a monoclonal antibody
that can specifically interact with EPHA3 tyrosine kinase re-
ceptor (59, 60). In recent studies (50) human bronchial
epithelial cells (16HBE), C6 cells, and glioma tissue were
used to confirm specific expression of EPHA3 by glioblas-
toma cells. The presence of EPHA3 was determined by solid-
phase immunoenzyme analysis (IEA). To count the percent-
age of EPHA3 expression by these cells, the following for-
mula was used: EPHA3 (%) = C (EPHA3)/C (total) × 100%.
Levels of EPHA3 expression in glioma tissues and C6-cells
were 4.06 ± 0.2% and 2.49 ± 0.15%, respectively, why there
was almost no expression of EPHA3 in 16HBE-cells. Thus,
EPHA3 expression by glioblastoma cells was confirmed for
the first time. It was determined that in preclinical mod-
els, anti-EPHA3 antibody showed significant efficacy and
slight toxicity (61). Currently, the medicine of anti-EPHA3
antibody (KB004) has entered phase I of clinical trials (50,
59, 62). The experiment to establish cytotoxicity was per-
formed for 6 hours because of the transport of nanoparti-
cles with airflow during respiration. The results showed
no significant difference in cell viability between the ad-
ministrations of PLGA-nps filled or unfilled with TMZ butyl
ether; TMC/PLGA-NPs and anti-EPHA3-TMC/PLGA-NPs. It in-
dicates the safety of delivering temozolomide butyl ester-
loaded (TBE) nanoparticles to the brain through the nasal
mucosa and the possibility of its performing using anti-

EPHA3-TMC/PLGA-NPs as a vector. Then, studies for estima-
tion of cytotoxicity of nanoparticles with TBE were con-
ducted: C6-cell line was cultivated with different amounts
of different nanoparticles with TBE; in this connection,
the viability of tumor cells depended on the concentra-
tion of the chemotherapy drug. The following conclu-
sion was made from this experiment: anti-EPHA3-modified
nanoparticles directly interacted with C6-cells due to bind-
ing anti-EPHA3 antibody to the receptor, which increased
absorption of nanoparticles by tumor cells. For instance,
cell viability with anti-EPHA3-T/P-TBE-NPs was 25.76% at 60
mg/mL TBE, while cell viability with T/P-TBE-NPs and P-
TBE-NPs was 42.40% and 43.15%, respectively. Moreover, it
was found that cytotoxicity, associated with delivering the
drug to target cells, was negligible in the PLGA concentra-
tion range from 0.23 to 2.35 mg/mL (50). Also, T/P-NPs killed
tumor cells more effectively than uncoated nanoparticles;
it can be explained by more effective attaching of positively
charged T/P-NPs to negatively charged cells compared to
uncoated nanoparticles (63).

This evidence proves that anti-EPHA3-antibodies is suit-
able for boosting vector delivery of chemotherapy drugs
following the “nose-brain” pathway for glioblastoma treat-
ment.

Thus, anti-EPHA3-modified TBE-loaded P-NPs, coated
with TMC, proved their high effectiveness. The results of
the cytotoxicity analysis for C6-cells and subsequent ex-
periments on specific cellular absorption of nanoparti-
cles showed that the modification of anti-EPHA3 antibod-
ies can enhance the exactness of their effect when deliv-
ering the drug to glioblastoma. The distribution of fluo-
rescence in rats with glioma confirmed the utility of this
drug for treating glioblastoma. These results indicate that
anti-EPHA3-T/P-NPs could potentially be used as a system
of drug-delivering along the “nose-brain” pathway for spe-
cific vector therapy of glioblastoma.

4. Discussion

4.1. Will There be Light at the End of the Tunnel?

4.1.1. Outstanding Questions Box

1) How to evaluate the effectiveness of HFRT with beva-
cizumab against glioblastoma?

2) Are there new radioisotopes with lower penetrating
possibilities for use in brachytherapy? The grains implan-
tation of such radioisotopes would be able to suppress tu-
mor growth without damaging the underlying tissue.

6 Int J Cancer Manag. 2021; 14(1):e109054.
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3) Are there any contrasting substances that could
manifest cell masses that migrate outside the tumor and
can cause its recurrence?

4) What are the future ways of delivering drugs modi-
fying radiotherapeutic susceptibility to healthy nerve tis-
sue? This would allow increasing the dose of radiation
against tumor cells without increasing the risk of develop-
ing radionecrosis in healthy tissue?

5) What kind of additional screening tests based on
specific biomarkers will help to predict the effectiveness of
PARP inhibitors in the future?

6) How to realize genomic signatures that provide an
approximation of the functional status of the DNA repair
machinery?

7) What is the way to integrating targeted DNA se-
quencing to find mutations to provide epigenome analy-
sis?

8) Are there any other molecular targets in managing
glioblastoma?

9) What is the mechanism of transport of nanoparti-
cles through these nerve pathways and what is the effect
on them? Do nanoparticles affect eyesight and smell? Is
there too much adsorption on the surface of the neurons
of the tract?

10) What can be done to reduce the accumulation of
nanoparticles in the lungs? Should it be introduced some
kind of aerosol to reduce adhesion to the surface of lung
cells?

11) Is it possible to additionally introduce some drugs
to help remove already accumulated nanoparticles in the
lungs from the tissues but so that the accumulation in the
tumor remains?

12) Is it possible to modify nanoparticles to supplement
their activity with properties to suppress the anti-drug ac-
tivity of Til-cells? It may be worthwhile to supplement their
design with an additional surface (so there is a greater
chance of interaction and less steric obstacles) conforma-
tionally small (not to disrupt the transport and structure
of the nanoparticles) agent for suppressing the anti-drug
activity of Til-cells.

4.2. Concluding Remarks

Glioblastomas are deadly; they are progressing very
quickly and aggressively. Recent years show significant
progress, which has been made in radiotherapy and
chemotherapy and has helped to improve overall survival,
on average, for several months. New radiotherapeutic
methods that were listed above are encouraging for in-
creasing survival rates of glioblastoma patients. With

some improvement, such as drugs modifying radiothera-
peutic susceptibility and development of glioblastoma di-
agnostic methods for imaging migrating tumor cells, ra-
diotherapy may lead to the elimination of all tumor cells
leaving the healthy alive. Temozolomide and its various
combinations with other drugs are one of the most ef-
fective methods of glioblastoma and gliomas treatment.
Impressing results were shown when using anti-EPHA3-
modified TBE-loaded P-NPs, coated with TMC, that have
high absorption specificity and enough levels of cytotox-
icity to kill glioblastoma cells. But, it does not mean that
we need to stop where we are now. We need to continue
developing new, less toxic, and more effective drugs. Prob-
ably, one of the new “step forwards” may become a devel-
opment of new medicine, which reduces the specific accu-
mulation of anti-EPHA3-modified TBE-loaded P-NPs, coated
with TMC, in lungs, but simultaneously does not affect
specific absorption by tumor cells and does not pass the
blood-brain barrier and blood-brain tumor barrier. Also,
the authors find it interesting to improve nanoparticles
to suppress the anti-drug properties of TIL-cells (tumor-
infiltrating lymphocytes) (Figure 2).
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Figure 2. the summary of the most crucial points of the article.
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