
Int J Cancer Manag. 2021 December; 14(12):e110419.

Published online 2022 January 8.

doi: 10.5812/ijcm.110419.

Research Article

Effect of 5’-fluoro-2’-deoxycytidine, 5-azacytidine, and

5-aza-2’–deoxycytidine on DNA Methyltransferase 1, CIP/KIP Family,

and INK4a/ARF in Colon Cancer HCT-116 Cell Line

Masumeh Sanaei 1 and Fraidoon Kavoosi 1, *

1Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran

*Corresponding author: Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. Email: kavoosifraidoon@gmail.com

Received 2020 October 19; Revised 2021 December 05; Accepted 2021 December 06.

Abstract

Background: Cyclin-dependent kinase inhibitors (CKIs) are the negative regulator of cell cycle progression, which inhibits cyclin-
cdk complexes, resulting in cell cycle arrest. Recently, we evaluated the effect of 5-Aza-CdR on DNMT1 gene expression in the WCH-17
hepatocellular carcinoma (HCC) cell line.
Objectives: The current study was designed to analyze the effects of 5-aza-2’–deoxycytidine (5-Aza-CdR, decitabine), 5-azacytidine (5-
AzaC, vidaza), and 5’-fluoro-2’-deoxycytidine (FdCyd) on INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 gene expression, apoptosis
induction, and cell growth inhibition in colon cancer HCT-116 cell line.
Methods: The colon cancer HCT-116 cell line was treated with 5-azaC, 5-Aza-CdR, and FdCyd at 24 and 48h. To determine colon cancer
HCT-116 cell viability, cell apoptosis, and the relative expression level of the INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 genes,
MTT assay, flow cytometry, and qRT-PCR were done, respectively.
Results: 5-azaC, 5-Aza-CdR, and FdCyd significantly inhibited colon cancer HCT-116 cell growth and induced apoptosis. Besides, they
significantly increased CIP/KIP (p21CIP1, p27KIP1, and p57KIP2) and INK4 (p14ARF, p15INK4b, and p16INK4a) and decreased DNMT1 gene
expression. Besides, minimal and maximal apoptosis were seen in the groups treated with FdCyd and 5-Aza-CdR, respectively. The
IC50 for CAF for FdCyd was 1.72 ± 0.23 and 1.63 ± 0.21µM at 24 and 48h, respectively. The IC50 for CAF for 5-AzaC was 2.18 ± 0.33
and 1.98 ± 0.29 µM at 24 and 48h, respectively. The IC50 for CAF for 5-Aza-CdR was 4.08 ± 0.61 and 3.18 ± 0.50 µM at 24 and 48h,
respectively.
Conclusions: The 5-azac, 5-Aza-CdR, and FdCyd can reactivate the INK4a/ARF and CIP/KIP families through inhibition of DNMT1 ac-
tivity.
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1. Background

The mammalian cell cycle is a highly ordered process

and is divided into discrete phases including G1 the phase

(gap 1), DNA synthesis phase (S phase), G2 phase, and mi-

tosis phase (M phase). In this cycle, genetic information is

transmitted from one cell to the next. The cycle is derived

by the cyclin-dependent kinases (Cdks) and their regula-

tory subunit, cyclin, together, which propel the cell cycle

through the various phases of the cell cycle (1). The transi-

tion between each phase is controlled by the kinase activity

composed of cyclins and their partner, Cdk. Cyclins have

fluctuated levels during the cell cycle. In contrast, the level

of Cdk proteins typically remains unchanged throughout

the cycle (2).

Cyclin-dependent kinase inhibitors (CKIs) are the neg-

ative regulator of cell cycle progression, which inhibit

cyclin-cdk complexes, resulting in cell cycle arrest (3). Two

families of CKIs have been identified: CIP/KIP and INK4

families. The first family members comprise p21CIP1 (p21),

p27KIP1 (p27), and p57KIP2 (p57) (4). The INK4a/ARF in-

cludes 3 important tumor suppressor genes (TSGs): p14ARF

(p14), p15INK4b (p15), and p16INK4a (p16) (5). The post-

translational modifications of cell cycle include phos-

phorylation, histone acetylation, DNA methylation, ADP-

ribosylation, and ubiquitination (6).

Aberrant DNA methylation is known as an important

epigenetic change occurring in cancer. The silencing of

the INK4a/ARF (7) and CIP/KIP (8) families by methylation
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plays an important role in several cancers. The hyperme-

thylation of INK4a/ARF has been reported in breast cancer

(9), Mantle cell lymphoma (MCL) (10), colorectal cancer (11),

colon cancer (12), and gastric cancer (13). Similarly, the hy-

permethylation of the CIP/KIP family has been shown in

the lung, gastric, and colon cancer (14). In mammals, cyto-

sine methylation is achieved by 3 DNA methyltransferases

(DNMT’s) comprising DNMT1, DNMT3A, and DNMT3B (15).

Several studies have indicated the role of DNMT1 in the reg-

ulation of the expression of TSGs in colon cancer cells (16).

DNA methyltransferase inhibitors (DNMTIs) can in-

hibit DNMTs activity resulting in the re-activation of si-

lenced TSGs. These compounds are divided into two

groups including the nucleoside inhibitors and the non-

nucleoside inhibitors. First group includes 5’-fluoro-2’-

deoxycytidine (FdCyd), 5-azacytidine (5-AzaC, vidaza), and

5-aza-2’–deoxycytidine (5-Aza-CdR, decitabine). The sec-

ond group includes epigallocatechin3-gallate (EGCG), pro-

caine, and RG108 (17). The inhibitory effect of these com-

pounds has been demonstrated in lymphoid cancer, ovar-

ian cancer, cervical cancer, lung cancer (18), breast cancer

(19), and human colon cancer cells (20, 21). Recently, we

evaluated the effect of 5-Aza-CdR on DNMT1 gene expres-

sion in the WCH-17 hepatocellular carcinoma (HCC) cell

line (22).

2. Objectives

The current study was designed to analyze the effects

of 5-azac, 5-Aza-CdR, and FdCyd on the INK4a/ARF family

(p15INK4a, p14, and p15), CIP/KIP family (p21, p27, and p57),

and DNA methyltransferase 1 gene expression, cell growth

inhibition, and cell apoptosis induction in colon cancer

HCT-116 cell line.

3. Methods

Human colon cancer HCT-116 cell line was provided

from the National Cell Bank of Iran-Pasteur Institute and

maintained in DMEM supplemented with fetal bovine

serum 10% and antibiotics (0.1 mg/mL streptomycin and

100 U/mL penicillin). 5-azac, 5-Aza-CdR, and FdCyd were

purchased from Sigma (St. Louis, MO, USA) and dissolved

in DMSOto make a master stock solution (23). Further

concentration was obtained by diluting the provided so-

lution. Other compounds including materials and kits

were purchased as provided for our previous works (22,

24, 25), including FBS (fetal bovine serum), MTT, Real-time

PCR kits (qPCRMaster Mix Plus for SYBR Green I dNTP),

and total RNA extraction Kit (TRIZOL reagent). This work

is a lab trial study approved by the Ethics Committee of

Jahrom University of Medical Sciences with a code number

of IR.JUMS.REC.1398.099.

3.1. Cell Culture and Cell Viability

The HCT-116 cells were cultured in DMEM supple-

mented with 10% FBS and antibiotics (0.1 mg/ml strepto-

mycin and 100 U/mL penicillin) at 37°C in 5% CO2 for 24

h. Subsequently, the cells were seeded into 96-well plates

(4 × 105 cells per well). After 1 day, culture medium was

removed and the experimental medium containing vari-

ous doses of 5-azac (0, 0.5, 1, 2.5, 5, and 10 µM), 5-Aza-CdR

(0, 0.5, 1, 2.5, 5, and 10 µM), and FdCyd (0, 0.5, 1, 2.5, 5, and

10 µM). The concentrations were selected based on and in

the range of our previous works and other researchers’ re-

ports. The control groups were treated with the solvent

(DMSO) only at a concentration of 0.05 %. After 24 and 48 h

of treatment, the treated and untreated HCT-116 cells were

evaluated by MTT assay to obtain cell viability, the MTT so-

lution (5 mg/mL) was added to each well and allowed in-

cubation for 4 h at 37°C. To dissolve all of the crystals, the

solution was replaced by DMSO for 10 min. Subsequently,

the absorbance spectrum was determined by a microplate

reader at a wavelength of 570 nM.

3.2. Cell Apoptosis Assay

To determine cell apoptosis, the HCT-116 cells were cul-

tured at a density of 4 × 105 cells/well and incubated

overnight and, then, the cells were treated with 5-azac, 5-

Aza-CdR, and FdCyd, based on IC50 values indicated in Ta-

ble 1 for different periods (24 and 48 h). Subsequently,

the treated and untreated HCT-116 cells were harvested and

prepared for flow cytometry by trypsinization, washing

twice with cold PBS, and then stained with annexin-V-(FITC)

and propidium iodide (PI). The apoptotic cells were deter-

mined by FACScan flow cytometry.

3.3. Real-time Quantitative Reverse Transcription Polymerase

Chain Reaction (qRT-PCR)

To determine the relative expression level of the

INK4a/ARF family (p15INK4a, p14, and p15), CIP/KIP family

(p21, p27, and p57), and DNA methyltransferase 1 gene, qRT-

PCR was done. The HCT-116 cells were treated with 5-azaC,

5-Aza-CdR, and FdCyd, based on IC50 values indicated in Ta-

ble 1 for different periods (24 and 48 h). Total RNA from the

HCT-116 cells was extracted, using the RNeasy kit according
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Table 1. IC50 Values and Apoptosis. The Cells Were Treated with Compounds, to Determine IC50 Values and Apoptosis

Cell Line Duration/Hour IC50 Value/µM LogIC50 R Squared Apoptosis (%) P-Value a

FdCyd 24 1.72 0.2357 0.7815 7.64 < 0.0003

FdCyd 48 1.63 0.2121 0.9729 11.15 < 0.0001

5-AzaC 24 2.18 0.3391 0.8771 9.45 < 0.0001

5-AzaC 48 1.98 0.2981 0.8066 50.1 < 0.0001

5-Aza-CdR 24 4.08 0.6116 0.7221 13.16 < 0.0001

5-Aza-CdR 48 3.18 0.5034 0.7001 83.66 < 0.0001

aThe P-value indicates the difference between the control group (untreated cell line) with each experimental group treated with the compound.

to the protocol and treated by RNase-free DNase to elimi-

nate the genomic DNA before cDNA synthesis (26). Real-

time PCR reactions were performed, using the Stepone-

plus. Thermal cycling conditions were initial denaturation

at 95°C for 10 minutes, followed by 40 cycles of denatura-

tion at 95°C for 20 seconds, annealing at 58°C for 15 sec-

onds, and extension at 72°C for 15 seconds. Thermal cycling

conditions for DNMT1 was initial denaturation at 95°C for

10 minutes, followed by 40 cycles of denaturation at 95°C

for 15 seconds, annealing at 60°C for 20 seconds, and exten-

sion at 72°C for 20 seconds.

The data were analyzed, using the comparative Ct

(∆∆ct) method. A melting curve was used to determine

the melting temperature of specific amplification prod-

ucts and primer dimmers. GAPDH was used as a reference

gene for internal control. The primer sequences of the

genes used in the current article are shown in Table 2 (27-

32). The relative RT-PCR determines the expression level in

comparison with a reference sample. It is based on the ex-

pression levels of a target gene versus a housekeeping gene

(Pfaffl 2004) (33).

3.4. Statistical Analysis

Data from three independent experiments were an-

alyzed with one-way analysis of variance (ANOVA) using

Graphpad Prism Software version 8.0. A significant differ-

ence is expressed as P < 0.05.

4. Results

4.1. Cell Viability

The viability of colon cancer HCT-116 cells treated with

5-azac, 5-Aza-CdR, and FdCyd was measured by MTT assay.

As indicated in Figure 1, 5-azac, 5-Aza-CdR, and FdCyd in-

duced significant cell growth inhibition. The half-maximal

inhibitory concentration (IC50) values are demonstrated

in Table 1. As indicated in Table 1, The IC50 for CAF for Fd-

Cyd was 1.72 ± 0.23 and 1.63 ± 0.21 µM at 24 and 48h, re-

spectively. The IC50 for CAF for 5-AzaC was 2.18 ± 0.33 and

1.98±0.29µM at 24 and 48h, respectively. The IC50 for CAF

for 5-Aza-CdR was 4.08 ± 0.61 and 3.18 ± 0.50 µM at 24 and

48h, respectively.

4.2. Cell Apoptosis

To determine cell apoptosis, the HCT-116 cells were

treated with FdCyd (1.72 ± 0.23 and 1.63 ± 0.21µM), 5-AzaC

(2.18 ± 0.33 and 1.98 ± 0.29 µM), and 5-Aza-CdR (4.08 ±
0.61 and 3.18 ± 0.50 µM) for 24 and 48 h and stained using

annexin-V-(FITC) and PI as mentioned in the method sec-

tion. As depicted in Figure 2, all of the compounds signifi-

cantly induced apoptosis (Figure 3). Besides, minimal and

maximal apoptosis were seen in the groups treated with

FdCyd and 5-Aza-CdR, respectively. The percentage of HCT-

116 apoptotic cells is shown in Table 1.

4.3. Gene Expression

The effect of 5-azac, 5-Aza-CdR, and FdCyd on INK4a/ARF

family (p15INK4a, p14, and p15), CIP/KIP family (p21, p27, and

p57), and DNA methyltransferase 1 gene expression was as-

sessed by qRT-PCR. To determine the relative gene expres-

sion, the HCT-116 cells were treated with FdCyd (1.72 ± 0.23

and 1.63 ± 0.21 µM), 5-AzaC (2.18 ± 0.33 and 1.98 ± 0.29

µM), and 5-Aza-CdR (4.08 ± 0.61 and 3.18 ± 0.50 µM) for

24 and 48h, respectively. The result indicated that treat-

ment with 5-azac, 5-Aza-CdR, and FdCyd (24 and 48h) up-

regulated INK4a/ARF (p15INK4a, p14, and p15) and CIP/KIP

(p21, p27, and p57) families, and down-regulated DNMT1

gene expression significantly (Figure 4).

5. Discussion

Cellular gene transcription is directly under the in-

fluence of the genomic structure and organization. DNA

Int J Cancer Manag. 2021; 14(12):e110419. 3
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Figure 1. In vitro effects of 5-azaC, 5-Aza-CdR, and FdCyd on HCT-116 cell line viability determined by MTT Assay at 24 and 48 h. Asterisks demonstrate significant differences
between HCT-116 treated and untreated control groups. It should be noted that **and **** indicate P < 0.0013 and P < 0.0001, respectively.
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Table 2. The Primer Sequences of INK4a/ARF, CIP/KIP, and DNMT1 Genes a

Primer Primer Sequences (5’ to 3’) Product Length/bp Reference

P14
Forward: TACTGAGGAGCCAGCGTCTA

146 (27)
Reverse: TGCACGGGTCGGGTGAGAGT

P15
Forward: AAGCTGAGCCCAGGTCTCCTA

93 (28)
Reverse: CCACCGTTGGCCGTAAACT

P15
Forward: CTTCCTGGACACGCTGGT

162 (29)
Reverse: GCATGGTTACTGCCTCTGGT

P21
Forward: CGATGGAACTTCGACTTTGTCA

220 (30)
Reverse: GCACAAGGGTACAAGACAGTG

P 27
Forward: GGTTAGCGGAGCAATGCG

127 (30)
Reverse: TCCACAGAACCGGCATTTG

P 57
Forward: GCGGCGATCAAGAAGCTGT

52 (31)
Reverse: GCTTGGCGAAGAAATCGGAGA

DNMT1
Forward: GCACAAACTGACCTGCTTCA

213 (32)
Reverse: GCCTTTTCACCTCCATCAAA

GAPDH
Forward: TGTGGGCATCAATGGATTTGG

116 (31)
Reverse: ACACCATGTATTCCGGGTCAAT

aThe relative expression level of the INK4a/ARF family (p15INK4a, p14, and p15), CIP/KIP family (p21, p27, and p57), and DNA methyltransferase 1 gene were determined
through qRT-PCR.

methylation is an important epigenetic modification that

has widespread influences on gene transcription and ex-

pression (34). It is profoundly altered in human cancers.

The silencing of TSGs by this epigenetic change is known

as a key mechanism in tumorigenesis (35). The poten-

tial anticancer activity of DNMT inhibitors has been ex-

tensively evaluated in recent years. These compounds are

widely studied because DNA demethylation induces the re-

activation of TSGs that are silenced by promoter hyperme-

thylation (36).

In the present study, we demonstrated that DNA

demethylating agents 5-azac, 5-Aza-CdR, and FdCyd inhib-

ited HCT-116 cell growth and induced apoptosis in colon

cancer HCT-116 cell lines. Furthermore, we did a further

evaluation to find the molecular mechanism of the com-

pounds. Thus, we found that these agents could re-activate

INK4a/ARF family (p15INK4a, p14, and p15) and the CIP/KIP

family (p21, p27, and p57) by inhibition of DNA methyl-

transferase 1 gene expression.

Similar apoptotic pathways have been shown by other

researchers. It has been indicated that 5-Aza-CdR increases

the expression of both p15INK4a and p19INK4d in the human

lung cancer cell line (37). In vitro studies have shown such

molecular mechanisms for the member of INK4 in col-

orectal cancer (38), leukemia (39), ovarian cancer (40), gas-

tric cancer (41), and HCC (42). As mentioned above DNA

methyltransferase inhibitors play their role through the

re-activation of the CIP/KIP family. A similar pathway has

been indicated in HCC (43), gastric cancer (44), breast, and

lung cancer (45). We reported that DNA demethylating

agents 5-azac, 5-Aza-CdR, and FdCyd play their role through

inhibition of DNMT1 activity.

In addition to this function, several in vitro studies

have been demonstrated that these agents can inhibit

DNMT3a and DNMT3b in the colon cancer HCT-116 (46),

DNMT3B in human endometrial cancer (47), DNMT1, and/or

DNAT 3b mediates in lung cancer, esophageal cancer, and

malignant pleural mesothelioma cells (48), and DNMT3b

in testicular germ cell tumors (TGCT) (49).

Additionally, other members of DNA methyltrans-

ferase inhibitors can induce apoptosis with similar molec-

ular mechanisms. Our previous work indicated that ze-

bularine (a membership of HDACIs) can induce apop-

tosis through down-regulation of DNMT1, DNMT3a, and

DNMT3b and up-regulation of p21Cip1/Waf1/Sdi1, p27Kip1,

and p57Kip2 in colon cancer LS 174T cell line (50). Be-

sides, we reported that zebularine induces apoptosis by

down-regulation of DNMT1, 3a, and 3b and up-regulation

Int J Cancer Manag. 2021; 14(12):e110419. 5
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Figure 2. The apoptotic effect of 5-azac, 5-Aza-CdR, and FdCyd on HCT-116 cell line versus control groups at different periods (24 and 48h). The cells were treated with FdCyd
(1.72 and 1.63µM), 5-AzaC (2.18 and 1.98µM), and 5-Aza-CdR (4.08 and 3.18µM) for 24 and 48h, respectively. Quadrant (Q) 2 and 3, late and primary apoptosis, respectively, were
calculated in this graph. A: FdCyd treated groups (A1: Control; A2: 24h; A3: 48h); B: 5-azac treated groups (B1: Control; B2: 24h; B3: 48h); C: 5-Aza-CdR treated groups (C1: Control;
C2: 24h; C3: 48h).

of p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2 in colon cancer LS 180

cell line (51). Meanwhile, DNMT1 inhibition is not the only

apoptotic pathway of DNMTIs. It has been reported that 5

aza 2’ deoxycytidine treatment resulted in significant FAS

gene up-regulation in the HT 29 cell line and it plays its role

through the extrinsic apoptotic pathway (52). Inconsistent

with our report, it has been reported that 5 AZA treatments

cannot induce a significant change in cell proliferation,

6 Int J Cancer Manag. 2021; 14(12):e110419.
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Figure 3. The comparative apoptotic effects of 5-azac, 5-Aza-CdR, and FdCyd on HCT-116 cell line. The cells were treated with FdCyd (1.72 and 1.63 µM), 5-AzaC (2.18 and 1.98
µM), and 5-Aza-CdR (4.08 and 3.18 µM) for 24 and 48h, respectively. Asterisks indicate significant differences between the HCT-116 treated and untreated control groups. All
compounds induced significant apoptosis in HCT-116 cell line (part A). Minimal and maximal apoptosis were seen in the groups treated with FdCyd and 5-Aza-CdR, respectively
(parts B, and C). It should be noted that *** and **** indicate P < 0.0003 and P < 0.0001, respectively.

cell cycle arrest, cell apoptosis, and mtDNA copy number in

HCT116, SW480, LS 174T, and HT 29 cell lines (53). Finally, DN-

MTIs can play their apoptotic roles through various molec-

ular mechanisms.

We indicated that inhibition of DNMT1 activity by

5-azac, 5-Aza-CdR, and FdCyd induces re-activation of

INK4a/ARF family (p15INK4a, p14, and p15) and CIP/KIP fam-

ily (p21, p27, and p57), resulting in apoptosis induction in

colon cancer HCT-116 cell line.

We did not assess the other DNMTs gene expression

such as DNMT3a and DNMT3b in this work. Thus, this eval-

uation is recommended.

5.1. Conclusions

In summary, our findings indicated that 5-azac, 5-Aza-

CdR, and FdCyd inhibited colon cancer HCT-116 cell line and

induced apoptosis in this cell line. The most likely molec-

ular mechanism underlying these compounds inhibited

HCT-116 cell growth and induced apoptosis involves down-

regulation of DNMT1 and up-regulation of CIP/KIP (p21, p27,

and p57) and INK4 (p14, p15, and p15INK4a) genes expres-

sion. This result suggests that 5-azac, 5-Aza-CdR, and FdCyd

may have wide therapeutic applications in colon cancer.

Footnotes

Authors’ Contribution: M.S., K.F.: Study concept and

design, acquisition of data; analysis and interpretation

of data; critical revision of the manuscript for important

intellectual content; statistical analysis; M.S.: Drafting of

the manuscript; administrative, technical, or material sup-

port; K.F.: Study supervision. All authors approved the final

version of the manuscript for publication.

Conflict of Interests: The authors report no conflict of

interest.

Ethical Approval: This work was approved by the Ethics

Committee of Jahrom University of Medical science with a

code number of IR.JUMS.REC.1398.099.

Funding/Support: This article was supported by the adju-

tancy of research of Jahrom University of Medical Sciences,

Iran.

Int J Cancer Manag. 2021; 14(12):e110419. 7



Sanaei M and Kavoosi F

Figure 4. The relative expression level of the INK4a/ARF family (p15INK4a, p14, and p15), CIP/KIP family (p21, p27, and p57), and DNA methyltransferase 1 gene in the colon cancer
HCT-116 cell line. The cells were treated with FdCyd (1.72 and 1.63 µM), 5-AzaC (2.18 and 1.98 µM), and 5-Aza-CdR (4.08 and 3.18 µM) for 24 and 48h, respectively. A significant
difference was seen between treated and untreated control groups. Asterisks indicate significant differences between the treated and untreated control groups. A: FdCyd
treated groups; B: 5-azac treated groups; C: 5-Aza-CdR treated groups. It should be noted that *, ***, and **** indicate P < 0.0195, P < 0.0011, and P < 0.0001, respectively.
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