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Abstract

Context: Metastasis is a main cause of death in patients with cancer, whereby tumor cells withdraw from the primary site of the
tumor mass and produce secondary tumor mass in new sites. Primary tumor cells depart collectively and individually to invade
closed and distant sites.
Evidence Acquisition: This review considers TME-derived factors that actuate signaling pathways to induce epithelial-
mesenchymal transition (EMT). National Center for Biotechnology Information (NCBI) was the main resource. Google Scholar and
Scopus were other databases for finding articles. Keywords that were inserted into the search box of databases to identify related
articles were ‘metastasis’, ‘invasion’, ‘epithelial-mesenchymal transition’, ‘EMT’, ‘tumor microenvironment’, ‘TME’, ‘TME cells’, and
‘signaling pathway in EMT’. Titles and abstracts of the articles were studied to choose the right articles. Finally, 107 articles were
selected to study in detail and use as references.
Results: EMT is a type of metastasis that deprives epithelial single-cells of their characteristic features and acquires mesenchymal
features facilitating the departure from the primary tumor mass. During EMT, cell-adhesion and apical-basal polarity rapture and
cells obtain movement capability. The tumor microenvironment (TME) leads EMT through secretion factors and signaling pathways.
As a result of activating these pathways, transcription factors that abolish epithelial gene expressions and augment mesenchymal
gene expression are induced.
Conclusions: In this review, recent research published in TME and EMT fields were highlighted and critically appraised. Effect of
factors-derived TME cells on EMT were manifested that propose favorite targets for a therapeutic goal to inhibit metastasis. However,
data about the effect of the combination of TME cells on metastasis have a small part in the literature.
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1. Context

Metastasis is the leading cause of death among cancer
patients that is responsible for up to 90% of cancer deaths
(1). Basically, Overall survival (OS) of patients with early
stages is higher than the advanced stages that metastatic
sites are a vital factor on the OS. In advanced breast cancer,
the 3-year survival rate of patients with bone metastasis is
50.5%, whereas in patients with brain metastasis, it is 27.7%
(2). Metastasis is a complex process that enables primary
tumor cells to spread systemically and develop secondary
tumor mass in different sites of the body (3). This cascade
process consists of local invasion, intravasation, circula-
tion, extravasation, micrometastasis, and macrometasta-
sis. However, cancer cells for local invasion have two types
of migrations, namely collective and single-cell migration.
In collective migration, a cluster of tumor masses that
bind with each other migrate to sites near the tumor mass.

Single-cell migration occurs through amoeboid and mes-
enchymal (or EMT) movement. Cells leave tumor mass and
migrate local sites solitary in both migration types (4).

In such a way, derived factors of the microenvironment
push tumor cells to induce EMT (5). In addition, TME-
derived factors and their effects on EMT have an insightful
part in the literature. Intrinsic and extrinsic factors that
have affected EMT were the focus of D’Angelo et al. (6). Like-
wise, Erin et al. (7) stress drug resistances and EMT that are
modulated by TME-derived factors. Besides, gene expres-
sion (8) and epigenetic modification (9) of EMT are other
subjects for reviewing in the articles. Some review arti-
cles considered EMT mechanisms (10) involved-signaling
pathways (11) and metabolic pathways that take part in EMT
(12). Recent research has focused on TME cells and their de-
rived factors that induce EMT through signaling pathways
to manifest different steps of a path that is started with TME
cells and finished with EMT. Herein, we firstly clarify the
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EMT process and the molecular sequence that changes the
behavior of the tumor cells. Microenvironment cells and
their products that induce EMT based on signaling path-
ways are discussed in the following section. The last sec-
tion discusses the inducers and signaling pathways that
are involved in EMT.

2. Evidence Acquisition

National Center for Biotechnology Information (NCBI)
was the main resource in the current study. The review
was conducted, using keywords such as ‘metastasis’, ‘in-
vasion’, ‘epithelial-mesenchymal transition’, ‘EMT’, ‘tumor
microenvironment’, ‘TME’, ‘TME cells’, and ‘signaling path-
way in EMT’ thorough search in PubMed, ScienceDirect.
Google Scholar and Scopus were other databases for find-
ing articles. Titles and abstracts of the articles were studied
to choose the appropriate articles. Furthermore, the latest
articles and books were reviewed.

3. Results

3.1. EMT Process

Elizabeth Hay was the first researcher, who described
the conversion of epithelial cells to mesenchymal cells
during development and termed the process “epithelial-
mesenchymal transformation” and the reverse process
as “mesenchymal-epithelial transformation” (13). Green-
burg and Hay (14) proposed that epithelial to mesenchy-
mal transformation occurred in embryonic and adult ep-
ithelial cells. Meanwhile, the term ‘transformation’ was
changed to ‘transition’ to distinguish from neoplastic
transformation (15). Epithelial-mesenchymal transition
(EMT) is a biological process, during which epithelial cells
attenuate their epithelial features and acquire mesenchy-
mal features. EMT appears in development, wound heal-
ing, and metastasis. During EMT, the cytoskeleton archi-
tecture is remodeled; so, cells lose their apical-basal po-
larity and cell-cell adhesion, which are primarily epithe-
lial features. Then, they become individualized and gain
mesenchymal features such as motility and invasion (16).
Apart from that, tumor cells during EMT have not com-
pletely shifted from epithelial state to mesenchymal state.
Indeed, EMT is an elastic and continuum process that en-
ables cells to synchronously co-express epithelial and mes-
enchymal features. Therefore, EMT refers to a spectrum of
epithelial and mesenchymal phenotypes that correspond
to intermediate or partial EMTs (10). EMT can be classified
into 3 main types depending on the process they are in-
volved. Type 1 occurs in embryogenesis and organ develop-
ment, in which epithelial cells that underwent EMT have
the potential to earn their epithelial features and generate
mesenchymal-epithelial transition (MET). Secondary, type

2 seems in wound healing, tissue regeneration, and organ
fibrosis that inflammatory signals are a trigger for starting
this EMT. Finally, type 3 of EMT transpires in cancer progres-
sion and metastasis that creates neoplastic cells to migrate
and invade in closed and distant tissues (17, 18). Broadly, the
critical steps of the EMT process are loss of tight cell-cell ad-
hesion complex, changing cell polarity, and enabling mi-
gration and invasion (19). Initially, cells that undergoing
EMT rupture their interaction with the basement mem-
brane (BM) and in the next step lose both cell-cell adhe-
sions and epithelial sheet integrity. In the following, cells
rearrangement cell-BM interactions and reorganize differ-
ent metabolisms that are coped with mesenchymal pheno-
types. Whence, epithelial cells that were interconnected to
other cells with a columnar shape lose their cell-cell adhe-
sion and earn a spindle-like shape that can travel through
extracellular matrix (ECM) (20).

3.2. Genes, Epigenetics, and Proteins Switches in EMT

During EMT, multiple cellular mechanisms change
in different phases of gene expressions, epigenetic, and
pathways (Table 1) that lead tumor cells to earn new fea-
tures that promote tumor progression and metastasis (10).
At the epigenetic level, the miR-200 family inhibits EMT
through the degradation of mRNA factors that are pro-
moted EMT. However, expression of miR-200 family down-
regulates in different cancers that is a proper condition for
up-regulation of mesenchymal markers (12). Different mi-
croRNAs like miR-9 and miR-10b down-regulate epithelial
markers and lead motility and metastasis in tumor cells
(12). At the protein and gene levels, the expression of genes
that encode epithelial and mesenchymal proteins changed
during EMT (21). Gene expression of epithelial markers,
such as E-cadherin, ZO1, laminin1, occludins, desmoplakin,
and cytokeratins are down-regulated, but the expression
of mesenchymal markers like N-cadherin, β-catenin, vi-
mentin, and fibronectin are up-regulated (22). BMI-1, a pro-
tein that silences genes through the regulation of chro-
matin structure (23), up-regulates in tumor cells (24). BMI-1
up-regulation leads to the promotion of invasion through
down-regulating of E-cadherin in nasopharyngeal carcino-
mas cells based on the suppression of PTEN expression and
activation of PI3K/AKT/Snail signaling pathway that is for-
warded cells to EMT (25).

3.3. Involved Transcription Factors in EMT

The orchestra changing in EMT mediates by transcrip-
tion factors (TFs) (Table 1) that suppress epithelial mark-
ers and induce mesenchymal markers (8). Three master
TFs, SNAIL, TWIST, and ZEB, with other TFs such, FOX, SOX,
PRX, and HMGA2 lead cells forward consensus differentia-
tions that make tumor cells capable of motility and metas-
tasis (8). SNAIL1 (known as a snail) and SNAIL2 (known as
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Table 1. Markers Are Changing in EMT

Markers Up-regulation Down-regulation References

Adhesion-Involved markers N-cadherin, α5 integrin, vimentin, αSMA E-cadherin, ZO-1, cytokeratin, occludin,
desmoplakin, crumbs3, PALS1, PATJ, Plakophilin

(8, 12, 22, 26)

ECM proteins Collagen, fibronectin, laminin 5 Laminin 1

Transcription Factors Snail, Slug, ZEB1, ZEB2, Twist1, FOXC2, FOXD3,
SOX9

Grhl2, Ovol1/2

MicroRNA miR-9, miR-10b, miR 155, miR 491 5p, miR-661 miR-1, miR-29b, miR-30a, miR-34, miR-200
family

a slug) activation down-regulates the expression of genes
involved in tight junctions (occludin and claudin 1), api-
cal polarity (CRB3), and other cell adhesions like CDH1 (en-
codes E-cadherin), but up-regulates the expression of N-
cadherin, fibronectin, vimentin, and MMPs through differ-
ent signaling pathways (27). Thereby, cellular changes that
modulate by ZEB1 (known as δEF1) and ZEB2 (known as SIP1)
are like snail and slug (27). Expression of E-cadherin, β-
catenin, and γ-catenin mask by TWIST1, but the expression
of vimentin is increment (28).

3.4. Tumor Microenvironment

Tumor mass consists of heterogeneous tumor cells and
a variety of non-tumoral cells that provide a condition for
the growth and progression of tumor mass (29). The com-
position of non-tumoral cells and secreted factors with the
ECM is known as tumor microenvironment (TME) (30) that
is a dynamic environment with important roles in differ-
ent stages of cancer evolution (31). TME cells and derived
factors have a variety among cancer types that lead pro-
cesses in tumor cells to cope with new sites and construct
tumor mass (31). Chiefly, the cellular residue of TME con-
sists of stromal cells that include endothelial cells, peri-
cytes, fibroblasts (32), and immune cells (33). Secreted fac-
tors of TME include cytokines, chemokines, and growth fac-
tors that represent network interactions between tumor
cells and non-tumoral cells in TME (34). Besides, derived
factors and induced signals of the TME are involved in dif-
ferent aspects of cancer such as tumor growth, progres-
sion, EMT, metastasis, and multidrug resistance (7). Addi-
tionally, factors that are derived from TME cells activate sig-
naling pathways to begin the cascades for depriving ep-
ithelial markers and attenuating mesenchymal markers
for drug resistance and metastasis in epithelial cells (7).

3.5. TME Cells

Microenvironment cells secret factors (Table 2) that in-
duce EMT and metastasis in tumor cells (35). TME cells
emit factors to trigger signaling pathways that activate
TFs for inducing EMT, migration, and invasion (36). Infil-
trating immune cells are a critical part of TME that con-
sist of tumor-associated macrophages (TAMs), myeloid-

derived suppressor cells (MDSCs), dendritic cells (DCs), nat-
ural killer (NK) cells, mast cells, granulocytes, and differ-
ent types of lymphocytes (37). Macrophages are one of
the stromal immune cells that induce EMT and invasion
in tumor cells (38). Likewise, TAMs have higher accumula-
tions in metastatic colorectal cancer than non-metastatic
colorectal cancer that their depletion decrease metastatic
behavior of colorectal cancer cells to the lung. Besides,
TAMs provoke EMT in colorectal tumor cells through in-
creasing phosphorylation of SMAD2/3 that are mediated
by TGF-β (39). Although, TAMs through the secretion of
cytokines like IL-6, induce EMT in intrahepatic cholangio-
carcinoma (ICC). The secreted ILs-6 inhibits E-cadherin and
ZO-1 and augment vimentin, α-SMA, and N-cadherin based
on the activation of the Akt pathway (40). Furthermore,
macrophage-fused cells with breast cancer cells suppress
apoptosis and promote proliferation and invasion. Also,
the fused cells evoke mesenchymal markers and restrain
epithelial markers by stimulation of the Wnt/β-catenin
pathway (41). Otherwise, neutrophils are part of immune
cells in TME that mediate EMT by secretion of inflamma-
tory factors. Neutrophils that are stimulated by gastric
cancer cells secrete inflammatory factors IL-6, 8, and TNF-
α to elicit vimentin, slug, and subduing E-cadherin. As
well, neutrophils that present in TME of gastric cancers
lead EMT through phosphorylation of ERK. Yet, ERK in-
hibitor, U0126, reverse induced EMT by neutrophils that are
shown ERK pathways lead EMT in gastric cells (42). Fur-
thermore, neutrophils induce EMT in oral squamous cell
carcinoma through TGFβ and IL-17A (43). On the other
hand, mast cells are involved in EMT. The interaction be-
tween mast cells and non-small cell lung cancer (NSCLC)
cells activates mast cells that induce EMT by IL-8 to trig-
ger the Wnt/β-catenin signaling pathway (44). Besides,
mast cell-derived extracellular vesicles (EVs) augment the
expression of TWIST1, VIM, and SMAD2, which lead to EMT
in lung cancer cells (45). Into the bargain, activated mast
cells secrete IL-8 to trigger Akt signaling pathway that up-
regulated slug expression for inducing EMT and stemness
in thyroid cancer cells (46). One of the TME cells is fi-
broblasts that is present in connective tissues and involves
ECM deposition, epithelial differentiation, and inflamma-
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tion. Fibroblasts within tumor stroma modify and became
activated, which are called carcinoma-associated fibrob-
lasts (CAFs) (47). CAFs activate twist1 to induce EMT me-
diated by STAT3 and ERK1/2 signaling pathways in gastric
cancer cell lines (48). Besides, CAFs in TME of gastric can-
cer cells increase the invasion of tumor cells by IL-6. CAFs-
derived IL-6 promotes EMT-dependent metastasis based on
the activation of the JAK2-STAT3 pathway. Phosphorylation
of JAK2 and STAT3 activates ZEB2, which causes suppres-
sion of E-cadherin and augmentation of N-cadherin (49).
In bladder cancer, IL-6 that emits by CAFs down-regulates
epithelial markers and up-regulates mesenchymal mark-
ers; so, invasion and migration of bladder cancer cells in-
crease through co-culturing with CAFs (50). Besides, ex-
pression level of markers like as N-cadherin, vimentin, fi-
bronectin, and a-SMA are increased in hepatocellular car-
cinoma (HCC) after CAF treatment. CAFs through IL-6 acti-
vated STAT3 to induce EMT in HCC cells (51). Furthermore,
CAFs induces EMT in breast cancer cells (52). CAFs increase
metastasis of endometrial cancer cells and induce EMT by
secretion of EGF, TGF-β, HGF, and FGF-2 (53). In lung can-
cers, CAFs down-regulate miR-33b expression levels and el-
evate the expression of snail1, twist1, and ZEB1 to induce
EMT (54). CAFs activate JAK2/STAT3 and hedgehog signal-
ing pathways in lung cancer cells to induce EMT through
IL-6 (55) and direct interaction (56), respectively. More-
over, TGF-β that is generated by CAFs triggers TGF-β signal-
ing pathway to restrain epithelial features and to augment
mesenchymal features in NSCLC (57). Platelets promote
EMT in colon cancer and breast cancer cell lines MC38GFP
and Ep5, respectively, by secretion TGF-β1 in vitro. Also, Pf4-
cre+; TGFβ1fl/+ mice that are TGFβ1-deficient platelets show
lower metastasis in compared wild-type mice. Besides,
platelet-derived TGF-β that promotes EMT through TGFβ
Signaling synergize up-regulation of mesenchymal mark-
ers and down-regulation of epithelial markers based on
the activation of NF-κB signaling pathway (58). Otherwise,
endothelial cells emit HGF into TME of breast cancer that
evokes vimentin and N-cadherin and restrains E-cadherin
in basal-like breast cancers (59).

3.6. Secreted Factors of TME Cells with Their Pathways to Lead
EMT

The cascade of events that happened during EMT de-
pends on inducers and signaling pathways (Figure 1) that
are secreted by TME cells and activate snail, slug, ZEB1, ZEB2,
TWIST to augment mesenchymal markers and restrain ep-
ithelial markers (61).

3.7. Transforming Growth Factor Beta
Transforming growth factor beta (TGF-β) is one of

the growth factors that induces EMT (62) and affects tu-
mor growth, cell survival, and tumor invasion (63). TGF-
β through different pathways, such as MAPK, PIK3C, and

SMAD down-regulates epithelial features and up-regulates
mesenchymal features (64). The TGF-β/SMAD pathway is
one of the known pathways that leads to EMT in differ-
ent cancer types. According to the SMAD pathway, TGF-
β binds to its heterodimeric type I and type II receptors
to trigger activation of type II receptors that phosphory-
late seine/threonine rich site (GS region) of type I. Follow-
ing, activated type I phosphorylates serine residue in the
C-terminal domain of R-SMAD (Smad2, 3) proteins. During
the next step, R-SMAD constructs a complex with SMAD4
and translocates it into the nucleus. In the last step,
the complex of R-SMAD and SMAD4 induces expression of
snail, slug, and ZEB1/2 that suppress epithelial gene expres-
sions (E-cadherin, ZO1) and promote mesenchymal gene
expressions (vimentin, fibronectin) (63).

TGF-β through phosphorylation of Smad2 subdue EMT
in breast cancer cells (65). Inhibition of TGF-β1 by tranilast
that suppressed phosphorylation of Smad4 diminished
mesenchymal marker and augment epithelial marker in
lung cancer cells (66).

3.8. Epidermal Growth Factor

Epidermal growth factor (EGF) invokes EMT (67), tu-
mor growth, cell survival, and cell motility in different
cancer types (68). When EGFs bind to its homo or het-
erodimer tyrosine kinase receptors (EGFR), residues on re-
ceptors through trans-autophosphorylation became phos-
phorylated and adaptor proteins (Grb2, SHC) attach to the
phosphorylated receptors (69) to activate signaling path-
ways such as PIK3C/Akt, MAPK/Erk, and STAT3 (70). In the
STAT3 pathway, signal transducer and activators of tran-
scription (STAT) proteins bind to phosphorylated tyrosine
residues on receptors and became phosphorylated. Phos-
phorylated STAT3s dimerize and translocate into the nu-
cleus (71) to induce the expression of genes such as twist,
ZEB1, and snail (72). Thence, N-cadherin and vimentin up-
regulate and E-cadherin down-regulate by STAT3 activation
(73). In addition, EGFs increase the expression of Snail
and mesenchymal markers through the phosphorylation
of Smad2/3 in breast cancers (74).

3.9. Fibroblast Growth Factors

Fibroblast growth factors (FGFs), the same as TGF-β and
EGF, induce EMT through sort of signaling pathways. FGFs
as well as other EGF member families, hepatocyte growth
factor (HGF), and platelet-derived growth factor (PDGF)
lead tumor cells toward EMT through PIK3C, Ras/Raf/MAPK,
and Src/STAT pathways (75). Ras/Raf/MAPK is one of the im-
portant pathways to induce EMT that is activated by FGF.
Firstly, FGFs bind to its tyrosine kinase receptor and induce
receptor dimerization. Next, trans-autophosphorylation
happens and some tyrosine residues became phosphory-
lated on the receptors (76). In the third step, activated
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Table 2. Effect of TME Cells to Induce EMT

Cells Factors Pathways References

TAMs TGF-β; L-6 SMAD; Akt (39, 40)

Neutrophils IL-6 ERK (42)

Mast Cells IL-8 Wnt/β-catenin (44)

CAFs IL-6; TGF-β1; sonic hedgehog JAK2-STAT3; SMAD; hedgehog (49, 55, 60)

Platelets TGF-β1 NF-κB (58)

Endothelial Cells HGF (59)

Abbreviations: CAFs, cancer-associated fibroblasts; TAMs, tumor-associated macrophages.

Figure 1. Secreted factors and signaling pathways are involved EMT [modified (61)]

receptors phosphorylate FRS2α that is an anchorage for
adaptor protein, Grb2, and recruiting other proteins, SOS,
that remove GDP from Ras proteins (77). In the next step,
Ras activates through binding of GTP. Following, Ras acti-
vates a kinase called Raf that phosphorylates serine residue
of a mitogen-activated protein kinase (MAPK) known as

MEK (MAPK/ERK kinase), which is a serine/threonine ki-
nase. In the final step, activated MAPK phosphorylates ty-
rosine and threonine residues on the regulatory site of an-
other MAPK called extracellular signal-regulated kinase1/2
(ERK 1/2) that translocate into the nucleus and activates
transcriptions factors to induce expression of genes in-
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volved in EMT (78, 79). So, mRNAs and proteins of vimentin,
α-smooth muscle actin (SMA), N-cadherin, and fibroblast-
specific protein 1 (FSP1) increase in different tumor cells af-
ter FGFs treatment. On the other hand, FGFs decreased the
expression of epithelial markers E-cadherin and cytoker-
atin (80, 81). The combination of FGF and TGF-β1 or FGF
alone leads lung cancer cells toward EMT (82).

3.10. Hepatocyte Growth Factor

Hepatocyte growth factor (HGF) is one of the extra-
cellular factors that is used in different signaling path-
ways to induce EMT. HGF invokes EMT according to acti-
vate STAT3 (83), Ras/MAPK (84), and PIK3C/Akt signaling
pathways (85). Like other tyrosine kinase receptors, trans-
autophosphorylation befall upon HGF bind to its recep-
tor (c-MET). Next, phosphorylated c-MET became a dock
for the SH domain of phosphatidylinositol 3 kinase (PI3K),
which is a lipase kinase. In addition, PI3K activation inter-
cedes with adaptor proteins and Ras. In PIK3C/Akt path-
way, activated PI3K proteins phosphorylate phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to generate phosphatidyli-
nositol 3,4,5-trisphosphate (PIP3). Then, PIP3 mediates the
first step activation of Akt, a serine/threonine kinase, via 3-
phosphoinositide-dependent protein kinase-1 (PDK1) that
phosphorylates threonine residues on Akt. Full activa-
tion of Akt gain through mammalian target of rapamycin
complex-2 (mTORC2) that phosphorylates serine residues
on Akt. Then, full activated Akt phosphorylates effector
proteins mTORC1, TSC1/2, and RHEB are triggered for activa-
tion of cascades that are involved in cell survival, growth,
EMT, and metastasis (83, 85, 86). In this manner, HGF based
on snail and slug up-regulation leads to cellular chang-
ing to suppress E-cadherin and promote N-cadherin, fi-
bronectin, and vimentin. In that, motility and invasion
of tumor cells are promoted in response to HGF secretion
(87). Suppression of HGF decreases invasion and migration
of oral squamous cell carcinoma (OSCC). Curcumin abol-
ishes phospho-c-Met level that caused down-regulation of
HGF signaling. Therefore, curcumin through HGF signal-
ing inhibition suppresses EMT (88).

3.11. Platelet-derived Growth Factor

Platelet-derived growth factor (PDGF) is one of the
growth factors that leads to tumorigenesis. Besides,
PDGF invokes EMT in colorectal cancer cells that suppres-
sion of E-cadherin and promotion of vimentin spawn
Notch1/Twist1 pathway (89). Loss of E-cadherin and ZO-1
and induction of vimentin are a result of PDGF overexpres-
sion in prostate cancer cells. PDGF leads prostate cancer
cells toward EMT through NF-κB and mTOR pathways that
each pathway targets different genes that are involved in
EMT and invasion (90).

3.12. Insulin-like Growth Factor

Insulin-like growth factor (IGF) like other mentioned
growth factors yields EMT. IGF-1 mediates EMT in multiple
myeloma based on PI3K/Akt signaling pathway (91). Be-
sides, Akt/ERK pathways activated by IGF down-regulate E-
cadherin and up-regulate vimentin and ZEB1 in gastric can-
cer cells (92).

3.13. Inflammatory Cytokine Interleukin-6

Inflammatory cytokine interleukin-6 (IL-6) is associ-
ated with EMT. Down-regulation of epithelial markers and
up-regulation of mesenchymal markers by IL-6 is docu-
mented in prostate cancers (93), colon cancers (94), thy-
roid cancers (95), and biliary cancers (96). IL-6 induces vi-
mentin and restrain E-cadherin through STAT3 activation
in cervical and breast cancers (97, 98). In ovarian can-
cers, IL-6 through JAK2/STAT3 induces EMT. In JAK2/STAT3
pathways, the binding of IL-6 to its receptors activates
Janus kinase-2 (JAK2) that are attached to the receptor. Af-
ter that, tyrosine residues on receptor phosphorylate by
JAK2. Then, phosphorylated receptors recruit STAT3 pro-
teins through their SH2 domains. Next, JAK phosphory-
lates STATs translocate into the nucleus after dimerization
to induce EMT (99). Furthermore, other inflammatory fac-
tors, tumor necrosis factor-alpha (TNF-α), IL-1, and IL-8, im-
plicate on stimulation of mesenchymal markers and de-
prive epithelial markers in cancer types (100).

3.14. Wnt

Wnt/β-catenin signaling is an EMT signaling pathway
that is activated by intercellular factors. After Wnt binding
to its receptors, Frizzled (FZD), some proteins became ac-
tivated that lead to the accumulation of β-catenin in the
cytoplasm. Then, elevated β-catenin leaves cytoplasm and
translocate into the nucleus to form a complex for acti-
vation of targeted genes such as twist and slug (11). In
breast cancer, Wnt signaling inhibits glycogen synthase ki-
nase 3β (GSK3β) to increase the level of slug in the nucleus.
Up-regulation of slug decreases expression of E-cadherin
and increases expression of vimentin (101). Furthermore,
inhibition of Wnt/β-catenin signaling in ovarian cancer
cells attenuates the mRNA level of vimentin and augment
E-cadherin. In addition, migration and proliferation of
ovarian cancer cells are decreased by inhibition of Wnt/β-
catenin signaling (102).

3.15. Sonic Hedgehog

Hedgehog (Hh) signaling pathway that activates by
sonic hedgehog (Shh) has the potential to push cells to-
ward tumorigenesis (103). The Hh pathway promotes mes-
enchymal markers and restrains epithelial markers based
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on the up-regulation of snail (104) and twist (105). In pan-
creatic cancer, the Hh pathway abolishes E-cadherin ex-
pression and increases N-cadherin and snail expression
(106). Shh receptor is composed of tumor suppressor pro-
tein patched (Ptc) and smoothened (Smo). In the off Hh
signaling pathway, Ptc binds to Smo and inhibits its activa-
tion. Therefore, GSK3βs phosphorylate glioma-associated
oncogene homologs (Glis) to repress its protein level.
When Shh binds to its receptor, Ptc became internalized
for degradation. Therefore, Smo is released and activated
by adding phosphate groups. Accumulation of Smo acti-
vates Gli that translocate to the nucleus for up-regulation
and down-regulation expression of targeted genes (107).

4. Conclusions

Besides therapeutic progression, metastasis is still the
main problem of cancer. Different parts of the metasta-
sis mechanism have been known, but there are valuable
parts that are unmapped during studies. One of the main
problems is that different cells and factors have effects on
metastasis. TME cells induce metastasis through secre-
tion factors to activate signaling pathways that activate
TFs for increasing expression levels of mesenchymal mark-
ers and diminishing expression levels of epithelial mark-
ers. Different cytokines trigger multiple signaling path-
ways in cancer types to induce EMT and push tumor cells
toward metastasis. Discovering and the manifestation of
the cells and their effects are a challenge. In addition, tu-
mor heterogeneity and diversity in TME cells are a blocker
for known better metastasis and gain to cancer treatments.
Co-culturing different TME cells with tumor cells to iden-
tify their effect on metastasis has been elucidated in differ-
ent aspects of the mechanisms. Design a model with mul-
tiple TME cells that are connected to primary tumor mass
is an option to make progress for manifestation the metas-
tasis. However, the combination of different TME cells to
evoke metastasis has a small part in the literature. In ad-
dition, the therapeutic potential of TME cells in metastasis
needs more attention to find a solution for inhibition of
metastasis.
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