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Abstract

Background: Liver cancer accounts for more than 700,000 deaths each year making it the third leading cause of cancer-related
deaths worldwide. Late diagnosis of the disease is the reason behind most deaths. Driver mutations are genetic alterations in tumor
cells, which are responsible for the development of liver cancer; therefore, the identification of genetic biomarkers is necessary for
the prediction and early diagnosis of liver cancer.
Objectives: The main objective of this study is to identify pathogenic alleles that may act as potential biomarkers for the prediction
of liver cancer. It also identifies the role of novel genes in liver cancer that are not known to cause the disease.
Methods: The mutation data of non-coding variants were downloaded from the catalogue of somatic mutations in cancer (COSMIC)
databases. Different bioinformatics tools were, then, used to retrieve mutations in liver cancer. The genetic alterations in hepato-
cellular carcinoma (HCC) were analyzed.
Results: The present study successfully identified pathogenic alleles (consistent mutations) along with a set of novel genes that
might be involved in the development of liver cancer. It identified non-coding mutations near human genes and transcription
factor binding sites of HepG2 cells. This study also identified mutations near the genes that are involved in the Ras/MAFK signaling
pathway of the Hepatitis B virus.
Conclusions: The pathogenic alleles identified in this study may provide targeted therapy for the treatment of liver cancer. The
identification of novel genes may help to understand the progression of liver cancer at the molecular level. The identified driver
mutations may act as potential biomarkers and therapeutic targets for early prediction and treatment of liver cancer.

Keywords: Liver Cancer, Driver Mutations, Consistent Mutations, Transcription Factors, HepG2 Cells, Biomarkers

1. Background

The struggle against cancer continues to pose a global
challenge across the world. Even though the standards
of health care and rehabilitation and cancer survival rates
have improved, liver cancer is the seventh most common
cancer and the third leading cause of cancer-related death
(1). It has an annual incidence of more than 800,000 cases
and accounts for approximately 700,000 deaths each year
(2). Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer, which accounts for more than
80% of all liver cancers (3). The burden and global age dis-
tribution of HCC vary greatly by gender, etiology, and ge-
ographic region because of differences in risk factor expo-
sure (4). Viral Hepatitis is the predominant cause of HCC
worldwide. Approximately, more than 75% of all cases of
HCC are due to Hepatitis B and C Virus infections (5). The
regions that have a higher burden of viral hepatitis have a
higher load of HCC (6). Therefore, the significant increase
in incidence and death rates of HCC is highly attributed to

the increase in infections from HBV and HCV. Other factors
that highly increase the risk of liver cancer development
include the use of tobacco (smoking), heavy consumption
of Alcohol, and obesity (overweight) (7).

The human genome is composed of coding and non-
coding regions. It has been found that only a small frac-
tion (about 1%) of human DNA is protein-coding while the
remaining large portion (about 99%) is non-coding DNA i.e.
it does not code for protein (8). The non-coding regions of
DNA contain regulatory elements. In cancers, there are ge-
netic alterations (also known as mutations) in regulatory
elements, which cause dysregulation of tumor suppressor
genes called oncogenes (genes that protect the body from
cancers). Somatic mutations that occur at a higher rate are
called ‘driver mutations. Driver mutations can be present
in genes that are involved in the maintenance of genome
and chromosomal stability (9).

The analysis of non-coding regions is quite difficult.
The challenges associated with the study of non-coding
regions are unique and distinct from the challenges of
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the coding region. The driver mutations in non-coding
regions play a significant role in the progression of can-
cer. Different approaches have been developed to iden-
tify candidate cancer driver genes but still, it is difficult
to distinguish, which epigenetic and genetic changes are
developing cancers. Many researchers investigated the
role of regulatory mutations in non-coding regions and
attempted to identify driver mutations in regulatory re-
gions. In a study, recurrent non-coding mutations were
identified within the TAL1 enhancer region in acute lym-
phoblastic leukemia. It suggested that there is an impact
of mutations in the TAL1 enhancer region on the regula-
tory factors of disease (10). A similar study by Puente et
al. discovered recurrent non-coding mutations in the en-
hancer region, which is close to the PAX5 gene in chronic
lymphocytic leukemia (CLL) patients (11). Another impor-
tant class of non-coding mutations includes mutations in
functional RNA molecules (long non-coding RNA [lncRNA]
and micro RNA [miRNA]). The lncRNA of MALAT1 was found
to be mutated in breast cancer (12). The role of muta-
tions in binding sites and non-coding DNA was identified
by Katainen et al. In their study, frequent mutations were
observed in CTCF/cohesion-binding sites in cancers. These
results revealed that mutations at CTCF binding sites are
significantly important in cancers (13). Some studies have
identified recurrent somatic mutations in TERT promoter
regions across various cancer patients. One study iden-
tified mutations in the TERT promoter region at known
and novel sites, which suggested a significant role of reg-
ulatory mutations in diseases like cancers (14). The can-
cer types, in which mutations in TERT promoter regions
were found to affect patient survival, include bladder can-
cer (15), gliomas (16), and renal cell carcinoma (17). Re-
cently, a study by Schulze et al. identified TERT promoter
mutations in alcohol-related hepatocellular carcinoma pa-
tients. In this study, these mutations were thought to be re-
sponsible for tumor progression (18). Some recurrent mu-
tations in the promoter region of NFKBIE have also been
identified in desmoplastic melanoma (19).

2. Objectives

The main objective of the present study is to identify
novel genes that are not known to cause liver cancer. It
also aims at identifying pathogenic alleles that may act
as potential biomarkers for the prediction of liver cancer.
It focuses on mutations that are reported in non-coding
regions of human DNA. Bioinformatics tools are used to
study genetic alterations associated with liver cancer at
the molecular level. Liver cancer is mostly asymptomatic
at early stages and symptoms usually begin to appear at
later stages when a cure becomes difficult. Most patients

fail to receive successful treatment because of late diagno-
sis of disease. So, for patients with no or few symptoms,
there is a need for biomarkers that can detect liver cancer
at early stages when treatment is possible. These biomark-
ers will also help reduce the risk of the development of
liver cancer. The results of this study may help identify
driver mutations and genes involved in liver cancer pro-
gression. The biomarkers (pathogenic alleles) identified in
this study can be used in further studies for verification.

3. Methods

The data file (Cosmic non-coding variants) of genome
version GRCh38 was downloaded from the catalogue of so-
matic mutations in cancer (COSMIC) database. The file con-
tains complete data on non-coding mutations in different
types of cancer. The first step was to filter out all the non-
coding mutations that were reported in liver cancer. The
complete methodology of this study is illustrated in Figure
1.

3.1. Identification of Consistent Mutations at HepG2 Transcrip-
tion Factors Binding Sites

The consistent non-coding mutations were found, us-
ing customized Python code. The next step was to deter-
mine whether these recurrent non-coding mutations are
at transcription factor binding sites (TFBS) or not. The data
files of transcription factor binding sites for HepG2 cells
were downloaded from UCSC ENCODE. The size of tran-
scription factor binding sites that are obtained from ChIP-
Seq experiments is large; therefore, to obtain significant re-
sults, this size was reduced to 100 base pairs. The TFBS files
with actual and reduced sizes were, then, overlapped with
consistent non-coding mutations individually to identify
which transcription factor (TF) binds at consistent non-
coding mutations. These mutations were, then, searched
in the VISTA Enhancer Browser to determine whether they
are part of identified human gene enhancer or not. The
list of 1912 elements with enhancer activity for humans was
downloaded from the Enhancer Vista browser. All down-
loaded files were of genome version GRCh37/hg19. These
files were converted to genome version GRCh38/hg38, us-
ing UCSC Genome Assembly.

3.2. Significance of Reported Non-coding Mutations

The significance of all reported non-coding mutations
was determined by calculating their scores and empiri-
cal P-value on the basis of consistency and the number of
transcription factors that were binding. For scoring, equal
points i.e., 5 were assigned to both. The highest consistency
was found to be 410 and the minimum consistency was
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Figure 1. Schematic diagram of the methodology followed for analysis of non-coding mutations. The arrows represent the final results. The lines represent files used for the
corresponding operations. TF, transcription factors.

1. Since the second highest consistency was 15, the muta-
tion with consistency 410 was considered to be an outlier,
and ranking was done from mutation with consistency 15.
The maximum and minimum numbers of TF binding were
39 and 1. The following formula was used for scoring non-
coding mutations

Consistency

Maximumconsistency
× Consistency score

+
No.of TF binding

Maximumno .of TF binding

× TF binding score

Where,
Maximum consistency = 15, Consistency score = 5, Max-

imum no. of TF binding = 39, TF binding score =5.
The statistical significance of the acquired results was

determined by randomization. It was done to eliminate
biases from the results. For this purpose, 10,000 ran-
dom samples were selected from the complete file of non-
coding variants. This file also had mutations with no TF

binding in HepG2 cells. In this analysis, the cut-off value
i.e., alpha for significance was set to be 0.05. The lower the
P-value, the more significant the mutations are.

3.3. Association of Genes with Non-coding Mutations

The genes that were closer to a great number of non-
coding mutations were identified. It was also analyzed
whether these mutations were in the upstream region,
downstream region, or within the coding region of these
genes. The closest distance of mutation from the Transcrip-
tion Start Site (TSS) of the corresponding gene was also
found.

3.4. Mapping Non-coding Mutations to CTCF Binding Sites

CTCF is a transcription factor that acts as an activator,
repressor, or insulator protein. It controls gene expres-
sion either by insulation of enhancers or by activating or
repressing promoters as it can bind a wide range of se-
quences. This diversified role of CTCF led researchers to
map its binding sites in different species (20). Therefore;

Int J Cancer Manag. 2023; 16(1):e131281. 3



Sethi AA and Shar NA

mapping of non-coding mutations was done with HepG2
cells CTCF-binding sites. Before mapping, the clusters of
non-coding mutations were made. For each cluster, the
maximum distance between mutations was set to 100. It
means the mutations that were within 100 base pairs were
combined in one cluster. The overlapping clusters were
also combined.

3.5. Graphical Analysis of Significant Non-coding Mutations
and Clusters

The graphical profiles of important non-coding muta-
tions and clusters were obtained from the UCSC Genome
browser (https://genome.ucsc.edu). It provides annota-
tions for the specific regions of a genome. This browser is
highly customized and displays relevant information only.
The regions showing variations in results were selected for
analysis. Only a few HepG2 cells TF (CTCF, FOXA1, SP1, and
SIN3A) were displayed from the regulation feature due to
the limited window. The conservation track was also se-
lected, which provided regions that were most likely con-
served in different species.

3.6. Analysis of Ras/MAPK Signaling Pathway

The mitogen-activated protein kinase (MAPK) pathway
plays a significant role in the survival and growth of cells.
It regulates the expression of genes (21). It also regulates
the replication of the hepatitis B virus. The replication of
HBV is suppressed when this pathway is activated (22). Any
abnormality in the Ras/MAPK signaling pathway may lead
to resistance to apoptosis causing increased and uncon-
trolled cell proliferation. Different studies have shown its
involvement in some cancers (23). Ras/MAPK is also acti-
vated in 50% to 100% of cases of primary liver cancer (HCC)
(24). Therefore, it is considered a potential target for treat-
ing HCC. In this study, mutations reported near genes in-
volved in the MAPK signaling pathway were identified.

4. Results

The Following Section Summarizes the Results Ob-
tained from this Study.

4.1. Consistent Mutations at HepG2 Transcription Factor Bind-
ing Sites

The complete list of identified non-coding mutations is
present in Appendix in Supplementary File (Sheet 1: Iden-
tified significant non-coding mutations sorted based on
their scores, Sheet 2: Significant non-coding mutations
based on empirical P-value). Some non-coding mutations
that are bound by HepG2 cells TF with both actual and pre-
cise (100 base-pairs) sizes are shown in Table 1. The high-
est consistency was found to be 410. The second highest

consistency at other genomic positions was 15, which is
very less as compared to 410. It was also observed that the
number of TFs binding at a specific location greatly change
when the size of TFBS files was reduced to 100 base pairs. Ta-
ble 1 also gives information about non-coding mutations
that were found to be present within regions of Vista En-
hancer Browser elements. It indicates that the mutations
with smaller consistency were located at regions that show
enhancer activity. It was analyzed that the mutation with
consistency 4 was present within enhancer regions of the
RCAN1 bracketing gene. This location is a TF binding site
as well where 5 TF bind. Another mutation that was within
the enhancer region of NDRG4 was bound by 7 TF.

4.2. Significance of Non-coding Mutations

The non-coding mutations were ranked based on their
scores and P-values (Appendix in Supplementary File). Ta-
ble 2 shows scores and P-values of some non-coding mu-
tations. The highest score was found to be 5.385 out of 10
while the lowest score was 0.461. Some mutations in Table 2
were not highly consistent but still, they had high scores as
they were bound by great numbers of TF while some muta-
tions were consistent but only a few TF were binding there.
Few mutations had similar scores but their consistency
and number of TF’s binding were different. Many muta-
tions in Table 2 are statistically significant as well (having
a P-value less than 0.05). However, the P-value of a few mu-
tations was above 0.05. It means those mutations are not
significant.

4.3. Association of Genes with Non-coding Mutations

Table 3 gives information about genes that were clos-
est to non-coding mutations in greater numbers. It was
found that 75 non-coding mutations were near the ALB
gene. Some of them were in the upstream region while
some were within the coding region of the ALB gene. The
mutations were also reported in upstream and coding
regions of the SYN3 gene. However, the mutations near
MLLTP10P1,CNTNAP2,NPAS3, and LSAMP genes were in up-
stream, downstream, and coding regions. PLCB1, LINC00511,
LINC01410, and WWOX genes had non-coding mutations in
their downstream and coding regions. Some mutations oc-
curred within coding regions of genes i.e., EYS, ZFHX3, PT-
PRN2, and AC0976344.

4.4. Mapping Non-coding Mutations to CTCF Binding Sites

The results of mapping with HepG2 cells’ CTCF binding
sites are shown in Table 4. A total of 49492 clusters were
formed. It was observed that some clusters have a great
number of non-coding mutations.

Table 4 shows that cluster number 48111 has the high-
est number of non-coding mutations i.e., 17. After that, 15
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Table 1. Non-coding Mutations Identified at TF Binding Sites of HepG2 Cells a

Genomic Location Consistency No. of TF Binding
with Actual Size

No. of TF Binding
with Precise Size

Names of TF Binding with Precise Size Bracketing Gene in
Vista Enhancer

Browser

5:1295113-1295113 410 4 1 GABP -

22:40856967-
40856967

15 13 3 CJUN, ELF1, MAX -

5:1295046-1295046 11 6 5 GABP, MAX, MXI1, POL2, SIN3AK20 -

4:24232389-
24232389

10 19 4 CEBPD, HDAC2, MAZ , SRF -

21:34544112-
34544112

4 6 5 MXI1, NFIC, P300, RAD21, SMC3 RCAN1

16:58495226-
58495226

2 11 7 COREST, CTCF, HDAC2, MAFF, MAFK,
RAD21, RFX5

NDRG4

15:70099538-
70099538

2 11 6 ELF1, POL2, SIN3AK20, TAF1, TBP, YY1 MIR629-UACA

10:120851335-
120851335

1 30 17 BHLHE40, BRCA1, ELF1, FOSL2, FOXA1,
FOXA2, GABP, HDAC2, MXI1, NFIC, RAD21,

RFX5, RXRA, SIN3AK20,TAF1, TRF4, YY1

-

Abbreviation: TF, transcription factor.
a The column ‘Bracketing Gene in Enhancer Vista Browser’ provides names of genes showing enhancer activity where identified non-coding mutations were presenta.

Table 2. Significance of Non-coding Mutations on the Basis of Their Scores and P-values a

Genomic Locations Consistency No. of TF Binding with
Precise Size

Scores (Out of 10) P-Value (< 0.05)

22:40856967-40856967 15 3 5.385 0.00175

20:17859269-17859269 1 39 5.333 0.5

6:157323527-157323527 3 32 5.102 0.00275

12:20815732-20815732 14 1 4.795 0.00695

20:49768490-49768490 1 34 4.692 0.5

18:58452573-58452573 13 1 4.461 0.00695

17:4278699-4278699 8 13 4.333 0.0001

2: 33013316-233013316 3 26 4.333 0.00275

14:24232389-24232389 10 4 3.846 0.001

14:39145540-39145540 7 8 3.358 0.0003

14:52873949-52873949 9 1 3.128 0.00695

17:75393912-75393912 7 4 2.846 0.00185

14:24425986-24425986 8 1 2.795 0.00695

5:72320307-72320307 2 10 1.948 0.0342

5:82351990-82351990 2 4 1.179 0.03505

8:84648494-84648494 1 1 0.461 0.5069

Abbreviation: TF, transcription factor.
a The scoring formula and calculations of P-values were based on the consistency of a particular mutation and the number of transcription factors (TF) binding there
with precise size (100 base-pairs).
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Figure 2. Graphical profiles of significant mutations (A) Represents mutation 20:17859269-17859269, (B) Represents mutation 12:20815732-20815732. The red bars and blue bars
in clinical variants represent copy number and gain. The green bar in ‘ClinVar Short Variant represents a benign clinical variant.

and 11 mutations are present in cluster numbers 17609 and
7433, respectively. Other important clusters (2565, 29170,
and 32451) have 7, 6, and 6 mutations. In the majority of
the clusters, the CTCF binding site did not lie between mu-
tation and TSS of the gene. In two clusters, CTCF was found
to be binding between all reported non-coding mutations
and TSS of the gene.

4.5. Graphical Analysis of Significant Non-coding Mutations
and Clusters

The selected genomic regions are graphically ex-
pressed in Figures 2 and 3. Figure 2 represents individual
non-coding mutations, whereas Figure 3 represents clus-
ters having a great number of non-coding mutations.

All parts of Figures 2 and 3 indicate the presence of clin-
ical variants at the given genomic regions. The red and
blue bars indicate copy number variation. The bars are red

for variants that experience loss of genetic material. The
blue bars on the other hand represent the gain of genetic
material. It means these regions are clinically significant
as well. The genes expressed near these locations are also
displayed. In Figure 3, some regions are also found to be
conserved among different species. These conserved re-
gions are generated from pair-wise alignments. The clus-
ter shown in Figure 3B has CTCF binding, which is similar
to the result shown in Table 4.

4.6. Analysis of Ras/MAPK Signaling Pathway
The non-coding mutations near genes that take part

in the Ras/MAPK signaling pathway are shown in Figure 4.
Figure is taken from the KEGG pathway database. Figure 4
shows mutations that are reported near most of the genes.
The highest numbers of mutations were reported close to
the PKC gene. Other genes with greater non-coding muta-
tions near them include STAT3 and Grb2. There are a few

6 Int J Cancer Manag. 2023; 16(1):e131281.
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Figure 3. Graphical profiles of significant clusters (A) Represents cluster 11:62841559-62841872, (B) Represents cluster 1:152018685-152018775. The Gencode v29 track displays
basic genes present close to the given cluster. The Conservation tracks ‘Cons 100 Verts’ track and ‘Multiz Alignment of 100 vertebrates’ display regions that are conserved in
multiple species in condensed form.

genes, where the closest mutations were not reported i.e.,
Raf, MEK, CBP, and ELK1.

5. Discussion

The diseases like cancer can be prevented. The risk fac-
tors and causes of most cancers are known. Therefore, this
knowledge can be used to avoid the majority of cancer-
related deaths. In the case of liver cancer, viral hepatitis is
the most common risk factor. It means the risk of devel-
oping liver cancer can be reduced when there is the active
treatment of viral hepatitis. Today, only a small amount of
these patients are successfully treated because of late diag-
nosis of disease. So, it is necessary to identify biomarkers
for predicting liver cancer at its early stages. The main fo-
cus of this study is on non-coding mutations that occur in

transcription factor binding sites of HepG2 cells.

Transcription factors are proteins that bind to the cis-
regulatory elements. They regulate various cellular pro-
cesses and control gene expression levels. If the mutations
occur at binding sites of transcription factors, then, the
binding of TFs to their sites will be disrupted. As a result,
gene expression will be affected. The abnormal expression
of the gene will, then, either enhance or reduce expression
levels. Therefore, the mutations at TF binding sites can be
termed driver mutations.

From Table 1, it is observed that 4 TFs were binding at
a highly consistent location (5:1295113-1295113), but when
the size was reduced, then, only 1 TF (GABP) was bound
there. Similarly, 13 TFs were found to bind at another con-
sistent location (22:40856967-40856967), but this number
was reduced to 3 with the size reduction. It was also ana-
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lyzed that enhancer regions where non-coding mutations
were observed at TF binding sites were not highly consis-
tent. Their consistency was 2, which means nucleotides
bind randomly at TF binding sites. Therefore, these mu-
tations may be considered random mutations. In Tables 1
and 2, a few mutations were not consistent but still, they
were bound by the greater number of TFs with both ac-
tual and precise sizes and they had a high score as well.
These mutations are very significant because if they occur
in great numbers, they would surely cause disease. The sig-
nificance of mutations can be inferred from the P-value.
Some mutations were not statistically significant because
we consider those alleles that were mutated at least once in
case of consistency, whereas in the case of TF binding, the
alleles with no TF binding were also considered along with
TF bound alleles.

In a study by Li et al. (25), the authors discovered 11
novel driver genes through genome analysis of liver can-
cer. These genes include VAV3, TNRC6B, and RNF213. In
Another study by Cleary et al. (26), the authors identified
13 new driver genes including TP53, CTNNB1, IGSF3, and
ATAD3B. Hirotsu et al. in their study also identified mu-
tations in TP53 and CTNNB1 (27). It shows that some of
the genes indicated in Tables 3 and 4 are not identified as
driver genes in liver cancer, but still, great numbers of non-
coding mutations are reported near them. It implies that
they may have some importance in liver cancer develop-
ment. In Table 3, the closest distance from TSS of some
genes was very less like in the case of the MLLTP10P1 gene;
the mutation was reported at a distance of 60 base pairs
from TSS. Similarly, the closest distance of mutations from
TSS of WWOX, SYN3, and ALB genes was below 500 base
pairs.

It has been found in approximately 70% of cases that
the regulatory region of a gene lies within 100 kb (28).
The coding region of one gene can be a regulatory region
for another gene. Therefore, those mutations that are re-
ported within coding regions of some genes are significant
as well. They may be coding for TSS genes and non-coding
for any gene present in the upstream/downstream region.
In Table 4, the clusters, where CTCF binding sites were not
present between mutation and TSS, might be considered
regulatory regions of corresponding genes. So, the muta-
tions reported in these regulatory regions are highly sig-
nificant as they may have potential to the drive disease.
However, the clusters, where CTCF was binding between
TSS and mutations, cannot be regarded as regulatory re-
gions for the particular genes.

Figure 2 shows that the mutation at location
20:17859269-17859269 has no gene expression, whereas the
SLCO1B3 gene is expressed at location 12:20815732-20815732.
In Figure 3, the regions that are found to be conserved

among different species can be mutated in those species
as well. There are more conserved regions in Figure 3A
compared to 3B. The bars with the TF of HepG2 cells are dis-
played only when the corresponding TF binds there. The
darkness of bars for TF of HepG2 cells represent locations
that are enriched with specific TF. CTCF binding in cluster
1:152018685-152018775 shows that the mutations reported
in that region are not in regulatory regions of specific
genes. Figures 2 and 3 validated the acquired results. It
indicates that the regions selected for graphical analysis
have great importance and can be considered epigenetic
markers for predicting liver cancer. However, detailed
analysis is required for better understanding.

Ras, Raf, MEK, and ERK are signaling molecules in the
Ras/MAPK signaling pathway. These molecules activate this
pathway, which results in gene transcription; the tran-
scribed genes code for proteins that are involved in cellular
growth and proliferation. Figure 4 indicates that no non-
coding mutation is reported near Raf and MEK molecules,
but they might have coding mutations.

5.1. Conclusion

The present study provides a comprehensive analysis
of non-coding mutations through bioinformatics tools.
The identification of recurrent/consistent somatic muta-
tions at TF binding sites in non-coding variants suggests
that they may play a significant role in driving Hepato-
cellular Carcinoma (HCC). This information will help ana-
lyze non-coding regions contributing to the development
of liver cancer. The results of this study are also essen-
tial in designing appropriate research strategies. This is
because mutations in non-coding regions are more likely
to affect the regulatory elements of genes. They may also
cause structural variations in genes resulting in gene dis-
ruptions. The identified pathogenic alleles can be consid-
ered novel biomarkers for liver cancer diagnosis and prog-
nosis. They may also act as therapeutic targets for the treat-
ment of liver cancer. However, further assessment is re-
quired for confirmation of the acquired results.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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Table 3. Genes Located Closest to the Non-coding Mutations in Great Numbers a

Genes Number of Non-coding
Mutations Closer to

Genes

Non-coding Mutations
Present in the Upstream

Region of Genes

Non-coding Mutations
Present Within the

Coding Region of Genes

Non-coding Mutations
Present in Downstream

Regions of Genes

The Closest Distance
from Transcription Start

Site (TSS)

ALB 75 12 63 0 428 (up)

EYS 43 0 43 0 0

MLLT10P1 42 26 3 13 60 (down)

ZFHX3 38 0 38 0 0

CNTNAP2 37 1 35 1 1220 (up)

LINC00511 36 0 32 4 5075 (down)

NPAS3 36 2 33 1 10540 (down)

WWOX 35 0 33 2 276 (down)

PTPRN2 34 0 34 0 0

LINC01410 32 0 24 8 673 (down)

LSAMP 32 4 26 2 4801 (up)

PLCB1 32 0 31 1 3472 (down)

SYN3 27 4 23 0 363 (up)

a The terms ‘up’ and ‘down’ represent upstream and downstream regions of genes. The closest distance from transcription start site (TSS) was written as 0 for mutations
present within coding regions of genes.

Table 4. Mapping of Clusters Having a Great Number of Non-coding Mutations with CTCF Binding Sites of HepG2 Cells a

Cluster No. Cluster Size No. of Mutations in
a Cluster

Highest Score in
Cluster

Closer Genes Closest Distance
from TSS

CTCF Binding
Between Gene TSS

and Mutation

48111 9:62802442-
62802699

17 1.987 LINC01410 0 (within) 12 No

17609 17:8173337-8173599 15 3.282 TMEM107, SNORD118 0 (within), 11
(upstream)

15 No, 15 No

7433 11:62841559-62841872 11 5.333 WDR74, RNU2-2P 50 (upstream), 27
(downstream)

9 No, 9 No

2565 1:152018685-152018775 7 1.589 AL450992.1, NBPF18P 0 (within), 0 (within) 7 Yes, 7 Yes

29170 20:
53941417-53941434

6 2.589 BCAS1, AC005220.1 0 (within), 0 (within) 6 No, 6 No

32451 3:113051365-113051399 6 1.307 AC078785.1,
AC078785.2

0 (within), 0 (within) 6 Yes, 6 Yes

Abbreviation: TSS, transcription start site.
a ‘Yes’ is written when CTCF binds between mutation and TSS gene and vice versa.

Figure 4. Analysis of Ras/MAFK signaling pathway taken from KEGG pathway. The numbers of mutations that occurred near genes are mentioned in red beside gene names.
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