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Abstract

Background: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype in women worldwide. The various
alterations in the expression of different microRNAs (miRNAs) have been reported as crucial in the development of metastasis in
breast tumors.
Objectives: This study investigated the effect of sodium butyrate (NaB) on cell survival, cell metastasis and expression of miR-101,
ZEB1, ZEB2 and E- cadherin in MDA-MB-468 cells as a TNBC cell line.
Methods: Cell viability was evaluated using the (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay), and the
metastasis potential of MDA-MB-468 cells was investigated using the scratch and transwell assay. The expression of genes involved
in the metastasis process was measured using real-time polymerase chain reaction (PCR).
Results: The MTT assay showed that NaB attenuated MDA-MB-468 cell survival dose-dependently with an IC50 value of 3.1 mM after
72 h treatment. The scratch and transwell assays also showed the anti-metastatic potential of NaB. The expression of miR-101,
E-cadherin, ZEB1, and ZEB2 was significantly difference in MDA-MB-468 cells treated with 3.1 mM NaB after 72 hours (P < 0.05).
E-cadherin and miR-101 were up-regulated, while the expression of ZEB1 and ZEB2 was significantly down-regulated compared to the
untreated cells. This suggests that NaB increased cell attachment and prevented metastasis. In addition, NaB (IC50 value) restored
the expression of miR-101, as a tumor suppressor, in MDA-MB-468 cells confirming its anti-cancer potency.
Conclusions: Sodium butyrate can be used as a drug to suppress invasion and cell migration in TNBC cells. However, further studies
are needed to demonstrate the putative anti-metastatic mechanism of NaB in preclinical and clinical settings.
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1. Background

Breast cancer is a highly heterogeneous disease.
Triple-negative breast cancer (TNBC) is a breast cancer
subtype that does not express estrogen (ER) and
progesterone (PR) receptors and lacks human epidermal
growth factor receptor 2 (HER2) expression. Clinical
studies have shown that TNBC is the most invasive type
of breast cancer, with low disease-free survival (DFS) and
overall survival (OS) rates. In addition, TNBC patients are
more have a higher incidence of brain, lung, and liver
metastasis (1-3).

In Iran, the prevalence of TNBC is 14%. Most clinical
features of TNBC in Iran, such as larger tumors, diagnosis
in more advanced stages, and lower overall survival (OS)

and DFS rates, are similar to those found in other parts of
the world (4).

Meta stasis is a multi-stage process and is one of the
most feared aspects of cancer mortality. In the first two
stages, tumor cells detach from the basement membrane
and extracellular matrix (5, 6). Recent studies have
shown that metastasis is closely related to the process of
epithelia-mesenchymal transition (EMT) (7). E-cadherin
plays an important role in epithelial cell adhesion (8). The
most common transcription factors that alter epithelial
marker levels and interfere with the EMT process are ZEB1,
ZEB2, Snail1, Snail2, TWIST1, and TWIST2.

One of the prominent features of TNBC is the elevated
expression of vimentin, caveolins and cadherin, along
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with p53 abnormalities, which are correlated with
increased metastasis (9).

MicroRNAs (miRNAs) can regulate gene expression at
the transcriptional or post-transcriptional level. During
cancer progression, miRNAs can act as oncogenes or
tumor suppressors (10). One particular tumor suppressor
miRNAs involved in cancer is miR-101 (11). In vivo and in
vitro studies have shown that miR-101 can play a vital role
in the pathogenesis of breast cancer (12).

Epigenetic changes are processes that regulate
gene expression through post-translational changes.
Acetylation is one of the key epigenetic changes. Histone
deacetylase inhibitors (HDACi) are pharmaceutical agents
designed to target HDAC, which is capable of targeting the
epigenome of cancer cells. Increased HDACi activity has
been reported during the progression of tumor cells (13,
14).

Histone deacetylase inhibitors are divided into five
categories: Hydroxamates, circular peptides, aliphatic
acids, benzamides, and sirtuin inhibitors (15). Sodium
butyrate (NaB) is a type of natural short-chain fatty acid
that can inhibit cell growth, induce apoptosis, and DNA
fragmentation in cancer cells. Sodium butyrate lacks
cytotoxic effects on normal cells, and for these reasons, it
can be used as a potential anti-cancer drug (16, 17).

2. Objectives

This study aimed to investigate the anticancer effects
of NaB on MDA-MB-468 cells, and a TNBC cell line by
assessing cell viability, cell metastasis and the changes
in miR-101, ZEB1, ZEB2, and E-cadherin expression as EMT
markers.

3. Methods

3.1. Cell Culture

In this experimental study, the TNBC cell line
(MDA-MB-468) was purchased from the National Center
for Genetic and National Reserves of Iran. The cells
were cultivated in the DMEM/F12 culture medium
supplemented with 10% fetal bovine serum (FBS), and
1% penicillin/streptomycin in a 5% CO2 incubator at 37°C.

3.2. MTT Assay

To perform the MTT assay, the MDA-MB-468 cells were
first cultivated at a density 104 cells per well in a 96-well
plate. They were then treated with different doses of
NaB (1, 2.5, 3.5, 5, and 10 mM) for 24, 48, and 72 hours.
The dose selection was performed according to a related
previous study (18). The untreated cells were considered

as the control group. After the desired time, 5 µL of MTT
solution (5 mg/mL) was added and incubated for 4 hours.
Then, 50 µL of DMSO was added, and the absorbance was
read at 570 nm wavelengths. Cell survival was calculated
by comparing the mean absorbance of the treated and
untreated cells.

3.3. Scratch Assay

In this method, cells (2 × 105) were grown in 6 well
plates. After the cells reached 80% cell density, a line was
drawn using a scratcher in a specified line on the bottom
of the plate. The cells were treated with NaB (IC50 value)
and placed in a 37°C incubator for 72 hours. Cell migration
was evaluated under an inverted microscope.

3.4. Transwell Assay

At first, 2.5× 104 cells were added to the upper chamber
of a transwell plate along with 2% FBS and 1 mL of complete
media added to the NaB in the upper chamber. Meanwhile,
media with 20% FBS was added to the lower chamber. After
24 hours, the treatment group received 200 µL of 3.1 mM
NaB in the upper chamber. The cells were then placed
in an incubator, and the upper and lower surfaces of the
membrane were washed with PBS. Both surfaces of the
membrane were then exposed to 5% glutaraldehyde for
10 minutes. Finally, the membranes were stained with
1% violet crystal, and only the cells that had migrated to
the lower part of the membrane were observed under an
inverted microscope.

3.5. Real-time Polymerase Chain Reaction

The cells were first treated with 3.1 mM of NaB for
72 hours. Then, RNA was manually isolated by TRIrisol
Kit according to the protocol with DNAase I treatment.
To quantitatively investigate of the extracted RNA, the
absorption rate of the extracted RNAs was measured at
wavelengths of 260 to 280 nm. For qualitative evaluation,
1% agarose gel should be used. Real-time polymerase chain
reaction (qRT-PCR) was used to quantitatively evaluate the
expression of genes (ZEB1, ZEB2, E-cadherin) and miR-101.
The BIOFACT kit was used to synthesize cDNA. Random
Hexamer primers were used to synthesize the cDNA of
genes (ZEB1, ZEB2, and E-cadherin) and specific primers
for miR-101, that span exon junctions for a gene (Table
1). Real-time PCR reactions were performed using the
Cyber Green method on a QIAGEN device. To evaluate
the expression of EMT markers, GAPDH was used as a
housekeeping gene and SNORD47 was used as a control
for miR-101. The ∆∆Ct equation was used to calculate the
value of 2-∆∆Ct.

∆Ct control = [Ctintended gene (control) - Ctcontrol gene

(control)].

2 Int J Cancer Manag. 2023; 16(1):e139329.



Layegh Ahani S et al.

∆Ct test = [Ctintended gene (test) - Ctcontrol gene (test)].
∆∆Ct = ∆Ct (control) - ∆Ct (test).
The expression ratio = 2-∆∆Ct.

3.6. Statistical Analysis

Statistical analysis was performed using GraphPad
Prism 8.1 software. P value of less than 0.05 (P < 0.05)
was considered statistically significant. One-way ANOVA
and t-test were used to perform a one-way analysis of
variance and compare differences between the control and
treatment groups.

4. Results

4.1. Evaluation Cell Survival by MTT Method

The MTT assay showed a negative correlation between
cell survival and NaB concentration after 72 hours of
treatment NaB concentration of 3.1 mM induced 50% cell
death in MDA-MB-468 cells after 72 hours, indicating an
IC50 value of 3.1 mM (P < 0.05). In addition, NaB induced
more cell death at concentrations of 5 to 10 mM (P < 0.001)
(Figure 1).
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Figure 1. Cell survival was evaluated by MTT assay. The effect of sodium butyrate
(NaB) on the viability of MDA-MB-468 cells in different doses of 1-10 mM under 24, 48,
and 72 hours treatment using two-way ANOVA analysis. The data showed as mean ±
standard deviation. ns, not significant. *: P < 0.05; ***: P < 0.001.

4.2. Scratch Test

As shown in Figure 2, the control group had a
significant level of cell migration after 72 hours, while the
IC50 treatment group had a significant decrease in cell
migration.

4.3. Transwell Assay

As exhibited in Figure 3, after 72 hours, cell migration
decreased in the treated cells with a concentration of 3.1
mM of NaB, compared to the control group. This verifies
the suppressor effect of NaB on the migration of MDA-MB
468 cells.

4.4. Quantitative andQualitative Assessment of RNA Extraction

The optical absorption rates of the extracted RNAs
are shown in Table 2. For qualitative evaluation of the
extracted RNAs, the samples were loaded on 1% agarose
electrophoresis gel, as shown in Figure 4A.

4.5. Gene Expression Analysis by qRT-PCR

According to Figure 4B and C, the expression of ZEB1
and ZEB2 in the NaB- treated group (3.1 mM) significantly
decreased (P < 0.05). In contrast, the expression of
E-cadherin and miR-101 in the IC50-treated group was
significantly upregulated compared to the untreated cells.
Figure 5 shows melting curves of RT-PCR reaction products
of examined genes, which indicate the absence of a
non-specific product and a primer dimer, confirming the
specificity of the reaction.

5. Discussion

In recent literature, TNBC has been proposed as the
most aggressive group of breast cancer. Cell invasion
is involved in the progression of breast cancer cell
metastasis, and EMT-associated factors are a prominent
feature of TNBC (5, 6, 19).

Based on the findings, the appropriate concentration
for IC50, was determined to be 3.1 mM after 72 hours
of treatment in MDA-MB-468 cells (P < 0.05). This
concentration was used to evaluate the anti-metastatic
effect of NaB on TNBC cells.

To evaluate the anti-metastasis effect of NaB, the
scratch assay was used to evaluate cell migration of
MDA-MB-468 cells. The results showed a decrease in cell
migration in cells treated with 3.1 mM concentration of
NaB compared to the control group. To confirm this assay,
the transwell assay was used which further supported the
anti-metastatic effect of NaB on MDA-MB-468 cells.

In addition, the effect of NaB on the expression
of miR-101 a tumor suppressor, E-cadherin, and the
transcription factors of ZEB1 and ZEB2 in the MDA-MB-468
cell line was investigated. Transcription factors such
as ZEB1 and ZEB2 are involved in the EMT process by
increasing cell migration (8). Based on real-time PCR,
the expression of miR-101, E-cadherin, ZEB1, and ZEB2 was
significantly altered in the group treated with the IC50
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Table 1. Primers Used in Real-time Polymerase Chain Reaction

Genes Primers Sequence (5′ -3′) %GC Annealing TM (°C)

miR-101
Forward CGCCGATCGATCGATCGATTCTG 56

65
Reverse CGATCATTTTTTTTTTTTTTTGAC 20

ZEB1
Forward GTTTCTGGAGAGGTCAGAGTTG 50

64
Reverse AGAAGTGCAGGAGCTGAGAG 55

ZEB2
Forward GAAATAAGGGAGGGTGGAGTGG 54

64
Reverse TCTGGATCGTGGCTTCTGG 57

E- cadherin
Forward GGGGTCTGTCATGGAAGGTG 60

65
Reverse GGATCTTGGCTGAGGATGGTG 57

GAPDH
Forward GTGGTCTCCTCTGACTTCAAC 52

64
Reverse GGAAATGAGCTTGACAAAGTGG 45

SNORD47
Forward ATCACTGTAAAACCGTTCCA 40

55
Reverse GAGCAGGGTCCGAGGT 68

Figure 2. Scratch assay after 72 hours treatment with IC50 concentration of sodium butyrate (NaB) (× 100): A, scratch creation time (time = zero)

Table 2. Quantitative Analysis of RNA Extracted by Nano-Drop

Samples Concentration (ng/µL) Light Absorption 260 to 280 nm

Control group (without treatment) 1184 1.984

Treatment with 3.1 mM NaB 2228 1.918

concentration of NaB (P < 0.05). According to various
studies, miR-101 is down-regulated in various cancers
such as gastric cancer (20), bladder cancer (21), cervical
cancer (22) and ER-positive breast cancer (23). It plays an
essential role in many cancer-related processes such as
cell proliferation, invasion, and metastasis (24-26). The
down-regulation of in miR-101 has been reported in a
variety of breast cancer subtypes, and the low expression
of miR-101 is not limited to a specific breast cancer group.
Under exposure to the IC50 concentration of NaB, the

expression of E-cadherin and miR-101 increased, while ZEB1
and ZEB2 decreased significantly compared to the control
(P < 0.05).

In 2015, Jang et al., evaluated the level of ZEB1 factor
and CD146 as an EMT inducer in TNBC cells. They pointed
out that an increase in the ZEB1 level could enhance the
EMT process in TNBC breast cancer metaplastic carcinoma.
Therefore, ZEB1 could have clinical significance and be
considered as a prognostic TNBC biomarker in the future.
Also, related to the expression of miR-655 in TNBC, it
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Figure 3. Transwell assay after 72 hours of cell treatment with IC50 concentration of sodium butyrate (NaB) (× 200): A, the untreated cells; B, cells treated with 3.1 mM of NaB.
In part of A, several cells that have lost their ability to migrate have been marked by an arrow.
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has been found that the up-regulation of miR-655 in
cancer is associated with an attenuation in the expression
of vimentin and Prrx1 which are EMT inducerer. These
changes inhibited cell invasion, the conversion of the
mesenchymal to epithelial phenotype, and reduced the
EMT process in TNBC breast cancer (27).

Based on previous studies, NaB is able to induce
anticancer effect by attenuating cell proliferation and
inducing apoptosis in various cancers. It has also
been emphasized that NaB has anticancer activities
by increasing the expression of different miRNAs such as
miR125-a (28) and miR-31(29) in breast cancer and miR203
(30) and miR-200c (31) in colorectal cancer.

In line with the present findings, it has been reported
that NaB has a suppressive effect on different cancer cell
lines (32). According to Elnozahi et al.’s study, NaB has
an anti-invasive effect in the MDA-MB-231 cells, which is
related to reducing NF-kB expression and increasing the
Rb protein. NF-kB can increase cell migration by activating
the direct transcription activator of metalloprotease-9
(MMP-9), which has the ability to destroy cell matrix. Also,
Rb, as a direct activator of E-cadherin, plays an essential
role in reducing invasion and cell migration (33, 34).

5.1. Conclusions

Sodium butyrate is an efficient drug against
MDA-MB-468 metastatic cells. It exerts its anti-metastatic
effect mainly through up-regulation of miR-101, increment
of ZEB1 and ZEB2 and attenuation of E-cadherin.
However, due to limited studies, the effect of NaB on
metastasis-related cellular pathways should be further
investigated in preclinical and clinical trials.
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