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Abstract

Background: The analysis methods for breast cancer (BC) data have also advanced alongside medical advancements in the

treatment of the disease.

Objectives: This study tried to investigate the factors affecting the survival rate of BC patients using the cured model based on

Kumaraswamy's defective distribution.

Methods: A retrospective study collected data on 2 574 BC patients between September 2013 and September 2020, including

demographic, clinicopathological, and biological characteristics. The best model for predicting cure was chosen based on AIC.

Results: The selected cure model revealed that age (P = 0.046), tumor histologic grade (P = 0.0.38), tumor size (P = 0.0.41), HER2

status (P = 0.001), KI67 levels (P = 0.027), P53 status (P = 0.029), and hormone therapy (P = 0.039) were significant variables. The

estimated cured rate of this data was 0.82.

Conclusions: Considering that the advanced cured model has the highest accuracy in identifying the factors affecting the

survival rate of BC patients and more risk factors have become significant in this model, it is recommended to pay special

attention to patients aged over 60 with poorly differentiated historical grade, T3 tumor size, HER2 positive status, KI67 levels

below 20%, negative P53 status, and no hormone therapy received in the process of disease prognosis.
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1. Background

Cancer has always been one of the issues facing
human health all over the world to the extent that

researchers and therapists have always sought to find

better treatment methods to deal with this disease (1).

Increasing the life expectancy of cancer patients has

always been one of the main goals of treatment. The
progress of science in the fields of pharmaceuticals and

medical research, as well as finding better methods in

the fields of surgery, radiotherapy, and chemotherapy,

has led to an increase in the survival of cancer patients

(2-4). In the progress of medical science in the field of
cancer treatment, breast cancer (BC) is one of the

pioneers, and early diagnosis and treatment methods

have been able to significantly increase the survival of

patients (5). Worldwide, BC is responsible for 15.0% of all

cancer-related deaths in women, with an estimated 627

000 deaths in 2018 (6). In 2016, the 5-year survival rate of

invasive BC patients was 77%, and their 15-year survival

rate was 44% (7). In America, according to the availability

of diagnostic facilities and organized data collection, 1

out of 8 women will be diagnosed with BC during their

lifetime (8). According to the report presented by the e

European Cancer Information System (ECIS) in 2018, BC

was still reported as the most common cancer among

women in Europe, with 29.2% of all cancers in women

(9). In Iran, as a less developed country, BC accounts for

23% of all women's cancers (10). Along with the vast

advances in medical sciences in the field of patient

survival studies, the science of statistics was also

developed. At first, methods such as Cox and Kaplan-
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Meier analysis, and later parametric and non-parametric

methods, and then a variety of more complex survival

data analysis methods were used to help researchers
analyze these data (11). Although all of these methods

are still applicable, due to the changing nature of
survival data, especially in cancers with high recovery

rates, better methods are needed for more accurate data

analysis. As mentioned, the survival rate of BC patients
has increased. In survival terminology, this data is called

cured data (12). In the cured data, the survival rate is not
decreasing, unlike its previous common state, but

remains relatively flat from a certain time (13).

After identifying the cured data, newer statistical

methods were proposed for more accurate analysis. The

non-parametric and parametric mixture models were

quickly advanced. Chen et al. (14) and others (15, 16)

proposed Bayesian and frequentist extensions of these

models. However, these models have limitations as they

heavily rely on assumptions of parametric distributions

or positive stable distributions, which may lead to less

robust results when these assumptions are violated (17,

18). Additionally, the calculation of the hazard function

in the suggested semi-parametric models poses

challenges (16).

An alternative to mixture models, which is based on

defective distribution, was proposed. These
distributions do not normalize to one for certain

parameter values and can fit survival-cured data

without explicitly including the cure rate parameter

(19). Initially, defective models were introduced, using

well-known defective distributions such as Gompertz,
inverse-Gaussian, and exponentiated-Weibull. Later,

more flexible risk functions were achieved by

developing defective models based on the

Kumaraswamy and Marshall-Olkin families of defective

distributions (19). Utilizing more accurate analysis

methods can assist researchers in identifying more

effective risk factors in survival rates and improving

disease control planning (20, 21). Compared to mixture

models, defective models require one less parameter to

be estimated, resulting in fewer iterations and no failure

in the maximum likelihood estimation (MLE) method.

Additionally, precise estimation of presumed

population proportions is not reflected in standard

asymptotic inference (16). Another advantage of

defective models is that the cure rate does not need to

be known in advance; if the parameter space remains

unchanged, it indicates the absence of a cure rate in the

data (22, 23). Since Marchall Olkin and Kumaraswamy

are families of distributions, various basic distributions

like Gompertz, Weibull, and inverse-Gaussian can be

easily incorporated into this family of distributions (20).

2. Objectives

The purpose of this study is to investigate the factors

affecting the survival of BC patients, using cured models

based on Kumaraswamy's defective distribution.

3. Methods

In the form of a retrospective longitudinal study, the
information of 2 574 BC patients who visited Shohada

Tajrish Hospital for treatment between September 2013

and September 2020 was collected. This information

was recorded and collected at the Cancer Research

Center affiliated with Shahid Beheshti University of

Medical Sciences. All the patients who were selected for

the study were those whose BC was confirmed by the

pathologist and the pathology test. There were only 15

male patients among the patients who were excluded

from the study. Patients whose information had many

defects were excluded from the study (286 patients).

Patients who died for reasons other than BC were also

excluded from the study (159 patients). Finally, the data

of 2 574 patients were included in the study for analysis.

The dependent variable in this study was the time

between diagnosis and death from BC among patients

(in years). In terms of survival analysis terminology,

death due to BC was considered the desired event. Also,

only right censoring was investigated in this study for

the patients who did not die during the study (83%). We

tried to measure the clinicopathological and biological

characteristics of BC that may be effective in the survival

rate of patients using the cured model. Age at the

diagnosis time, cancer stage, tumor size, tumor

histologic grade, metastatic lymph node status, number

of metastatic lymph nodes, lymphovascular invasion

(LVI), HER2, KI67, P53, estrogen/progesterone receptor,

chemotherapy treatment (CT), radiotherapy treatment

(RT), hormone therapy (HT), and type of surgery as

possible risk factors were included in the model.

In accordance with Rocha et al.'s article, we initially

introduced the defective Kumaraswamy family of

distribution and concluded that the Gompertz and

inverse Gaussian distributions within this family

provide the best fit for cured data, we utilized these two

distributions in the Kumaraswamy family distributions

(20). AIC, BIC, and CAIC are commonly used criteria to

assess goodness-of-fit. Since AIC, BIC, and CAIC have

distinct characteristics and assumptions for model

selection, we employed all three criteria to determine

the most suitable model for the data (24, 25).

Additionally, we also applied a mixture model to

compare further, ultimately selecting the model with

the lowest ACI, BIC, and CAIC as the preferred model for
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interpreting coefficients. Consequently, we reported the

risk factors influencing patient survival rate based on a

significance level of 0.05.

4. Results

To check the nature of the data, the Kaplan-Meier

survival chart was drawn. In Figure 1, it can be seen that

the survival rate did not decrease after the 8th year and

is a straight line, which shows the cure nature of the

data.

Given the large sample size (n = 2 574) of this study,
both Bayesian and frequentist methods yield similar

estimates. Furthermore, in studies with lengthy follow-

up periods like this one (8 years), a substantial number
of censored cases do not significantly impact estimates

and can often be considered as cure rates. However, in
studies with shorter follow-up times, distinguishing

between censored cases and cured rates can lead to

differences in estimates.

Three cured models, namely the mixture model,

defective Kumaraswamy-Gompertz model, and defective

Kumaraswamy-Inverse Gaussian model, were fitted to

the data to analyze the impact of risk factors. The

goodness-of-fit results are presented in Table 1.

Maximum likelihood estimations (MLE) were obtained

using numerical convergence and Newton-Raphson

methods implemented in R software. The programs

used for analysis can be provided upon request.

According to the results and the AIC, BIC, and CAIC

criteria in Table 1, it is clear that the cured model using

the defective Kumaraswamy family of distributions

based on the Gompertz distribution had the best fit for

the data. The estimated cure rate (  = 0.82) reported in

this model is also closer to the Kaplan-Meier curve. So,

we describe the details of defective Kumaraswamy

Gompertz distribution.

If we consider the Gomperts distribution for a > 0, b

> 0, and t > 0 as follows:

And place it in the following formulas:

The probability density functions, survival, and

hazard functions for the Kumaraswamy-Gompertz

family for u > 0, b > 0, r > 0, and t > 0 are as follows:

If we set a < 0, we reach the family of defective

Kumaraswamy-Gomperts distribution, in which the

cure ratio is calculated as follows:

So p0 is the cure ratio for the defective

Kumaraswamy-Gomperts distribution.

The covariates of interest can be obtained by

parametrizing b as:

The hazard ratio (HR) for x1 versus x2 can also be

obtained with:

Based on the Hessian matrix of the estimates (which

can be calculated by the Newton-Raphson method),

confidence intervals for the estimates can be calculated

with the obtained standard deviation.

Based on the results of the defective Kumaraswamy

Gompertz model for the cured data presented in Table 2,

the variables of age (P-value = 0.046), tumor histologic

grade (P = 0.038), tumor size (P = 0.041), HER2 (P =

0.001), KI67 (decrease) (P = 0.027), P53 (P = 0.029), and

hormone therapy (P = 0.039) were significant.

According to the results, it can be seen that the risk of

death for people who are over 60 years old when the

disease is diagnosed is 65% higher than for people who

are under 40 years old, and the death hazard for HER2-

positive patients is 43% higher than others. The risk of

death for patients whose histological grade is poorly

differentiated is 3.74 times that of patients whose grade

is well-differentiated, for patients with T3 tumor size is
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Figure 1. Kaplan-Meier estimate for the survival curve of breast cancer data

Table 1. AIC, BIC, and CAIC Values for the Fitted Distributions and for the Standard Mixture Model

Model AIC BIC CAIC

Mixture 0.73 596.71 590.36 593.61

Defective Kumaraswamy Gompertz 0.82 562.08 571.32 563.27

Defective Kumaraswamy Inverse Gaussian 0.78 583.62 587.45 584.71

Abbreviations: p ̂, estimate of cure fraction or cure rate; AIC, Akaike information criterion; BIC, Bayesian information criterion; CAIC, consistent AIC.

2.66 times that of patients whose tumor size is T1, and

for patients with KI67 < 20% is 3.23 times that of others.

The death hazard for patients with P53 negative is 2.107

times that of others, and for patients who did not

receive hormone therapy, it is 2.83 times that of others.

5. Discussion

In this study and according to the selected model,

age, tumor size, historical grade, HER2 and P53 status,
KI67, and hormone therapy are the factors that affect the

death hazard of patients. According to the HR size,

tumor historical grade and KI67 status have a greater

effect on the death hazard of BC patients. The value of

the cured parameter in this study was estimated at 0.82,

which indicates a high rate of recovery in patients. The

results obtained in the current model were more

accurate than other models, and the confidence

intervals for the available parameters were smaller and

more accurate than other survival models.

The use of defective distributions in the modeling of

cured data does not have a long life, and despite the
simplicity of interpretation and accuracy of these

models, there are not many studies on the use of these

models on cured data. Although methods such as

P
ˆ
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Table 2. Clinicopathological and Biological Characteristics of BC Patients Using Cured Models Based on Defective Kumaraswamy Gompertz Distribution

Variables and Categories No. (%) Hazard Ratio 95% CI for HR P-Value

Age at diagnosis (y)

Under 40 642 (24.9) Ref - -

40 to 60 1436 (55.8) 1.23 (0.98 - 1.48) 0.059

Over 60 460 (19.9) 1.65 (1.48 - 2.05) 0.046

Unknown 36 (1.4) 1.12 (0.91 - 1.33) 0.063

Tumor histologic grade

1 (well differentiated) 228 (8.9) Ref - -

2 (moderately differentiated) 1180 (45.8) 1.740 (1.12 - 1.93) 0.085

3 (poorly differentiated) 838 (32.6) 3.746 (2.96 - 4.02) 0.038

Unknown 328 (12.7) 1.205 (1.04 - 1.38) 0.079

Stage

I 555 (21.5) Ref - -

II 939 (36.5) 1.015 (8.96 - 1.14) 0.265

III+ (III and IV) 936 (36.4) 1.203 (0.94 - 1.31) 0.132

Unknown 143 (5.6) 1.362 (1.15 - 1.40) 0.196

Metastatic lymph node status

Negative (-) 1215 (47.2) Ref - -

Positive (+) 2474 (42.7) 1.061 (0.79 - 1.21) 0.210

Unknown 259 (10.1) 1.217 (1.12 - 1.41) 0.156

Number of metastatic lymph nodes

N0 (1 - 2) 1779 (69.1) Ref - -

N1 (3 - 5) 251 (9.7) 1.03 (0.86 - 1.27) 0.380

N2+ (N2 and N3) (> 5) 280 (10.8) 1.16 (0.74 - 1.18) 0.231

Unknown 260 (10.1) 1.08 (0.84 - 1.38) 0.426

Tumor size

T1(0 - 2 cm) 653 (25.4) Ref - -

T2 (2 - 5 cm) 1038 (40.3) 0.68 (0.49 - 0.73) 0.090

T3+ (T3 and T4) (> 5 cm) 681 (26.5) 2.66 (2.01 - 2.97) 0.041

Unknown 202 (7.8) 1.31 (1.12 - 1.49) 0.067

Estrogen receptor (ER)

Negative (-) 1841 (71.5) Ref - -

Positive (+) 219 (8.5) 0.45 (0.15 - 0.62) 0.330

Unknown 514 (20) 0.39 (0.18 - 0.52) 0.417

Progesterone receptor (PR)

Negative (-) 1639 (63.7) Ref - -

Positive (+) 221 (8.6) 1.32 (1.04 - 1.38) 0.374

Unknown 714 (27.7) 0.98 (1.04 - 1.38) 0.291

Lymphovascular invasion (LVI)

Negative/probable = negative (-) 781 (30.3) Ref - -

Definite = Positive (+) 450 (17.5) 1.047 (1.01-1.098) 0.221

Unknown 1343 (52.1) 1.24 (0.91 - 1.42) 0.186

HER2

Negative (-) 1774 (69) Ref - -

Positive (+) 516 (20.0) 1.43 (1.28 - 1.72) 0.001

Unknown 284 (11) 1.02 (0.92 - 1.31) 0.074

KI67 (decrease)

> 20% 1769 (68.7) Ref - -

< 20% 805 (31.2) 3.23 (2.97 - 3.48) 0.027

P53

Positive (+) 1535 (59.6) Ref - -

Negative (-) 984 (38.2) 2.107 (1.98 - 2.53) 0.029

Unknown 55 (2.1) 1.048 (0.94 - 1.37) 0.083

Chemotherapy treatment (CT)

Yes 1441 (56) Ref - -

No 372 (14.5) 1.22 (0.81 - 1.35) 0.213

Neo-adjuvant 529 (20.6) 1.16 (0.91 - 1.39) 0.274

Unknown 232 (9) 1.34 (0.76 - 1.43) 0.209

Radiotherapy treatment (RT)

No 58 (2.3) Ref - -

Yes 2072 (80.5) 1.12 (0.82 - 1.29) 0.071

Unknown 444 (17.2) 1.16 (0.98 - 1.34) 0.084

Hormone therapy (HT)

Yes 1919 (74.6) Ref - -

No 439 (17.1) 2.836 (2.33 - 3.92) 0.039

Unknown 216 (8.4) 1.23 (0.94 - 1.47) 0.183

Type of surgery

BCS 1865 (72.5) Ref - -

MRM 450 (17.5) 1.12 (0.81 - 1.19) 0.113

BCS/ MRM 15 (0.6) 1.09 (0.95 - 1.23) 0.093

Subcutaneous mastectomy 19 (0.7) 1.23 (0.83 - 1.31) 0.184

Unknown 225 (8.7) 1.17 (0.63 - 1.26) 0.157

machine learning and artificial intelligence have been

used to identify the risk factors of cancer patients, it

should be noted that not considering the cured feature

in these models can reduce the accuracy (26, 27). On the

other hand, it is much easier for non-statisticians to use

existing programs of cured models. Along with the

progress of medical sciences in various fields, progress

in the field of medical data modeling is also of

particular importance, and the use of more up-to-date

and accurate models can definitely be a more suitable

guide for the management of treatment and prevention

of diseases.
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The characteristics of survival data are that people

can be followed in different time intervals, and the use

of any of the cured models depends only on the

existence of a smooth line in the Kaplan-Meier curve.

Since the cured models also pay attention to the people

who have recovered from the event, they can have more

advantages than the former survival models and give

more accurate and reliable estimates of the effect of

significant risk factors to the researcher (28). The cured

model introduced in this research, in addition to its

simplicity and easy interpretation, is a suitable model

compared to other cured models because of the fewer

parameters it has. In addition, the most important

advantage of this model is that it is not necessary to

know the cure nature of data to use this model. If the

data are not cured, contrary to the researcher's

assumption, the model still fits well, and the closeness

of the cured ratio to zero indicates to the researcher that

the data used were not cured (20).

Mixture models, as the first models presented for the

cured data, as well as two well-known distributions of

cured models of defective distributions of

Kumaraswamy, were fitted on the data. According to the

GOF criteria, the Kumaraswamy defective model based

on Gompertz distribution was selected as the best

model, and its coefficients were presented to determine

the risk factors affecting the survival rate of patients. In

other studies that used Cox analyses and simpler

survival models, different factors such as T stage, LVI, ER,

and PR were introduced to the survival rate of patients

(29, 30). A study conducted in 2000 analyzed the results

of 40 clinical trials involving BC patients, who were

followed up for an average of 10 to 20 years. The study

revealed that neither age nor the type of radiotherapy

had a notable impact on the patient’s survival rate (31).

Another study that examined 194 clinical trials on BC

patients showed that the use of newer drugs or the

better use of existing drugs can be effective in

improving the survival rate of patients. The use of

tamoxifen in patients who received hormone therapy

could significantly increase the survival rate.

Considering that in the present study, hormone therapy

was also effective on the survival rate, and considering

that most of the hormone therapy drugs in this study

were tamoxifen, it can be concluded that the model

used is highly accurate and the results are in line with

the results of 194 clinical trials (32). Although the results

of this study are inconsistent with some studies (29, 33),

the identification of factors consistent with those

introduced in large clinical trials indicates the high

accuracy of the model (31, 32). Some of the risk factors

identified in this model have been identified separately

in other studies (34), but the significance of the

variables together and considering the cure nature of

the data can give researchers more confidence in the

prognosis of this disease and with higher accuracy. The

use of the introduced model in prospective studies like

clinical trials and on other data from different centers

can probably be effective with high accuracy in

identifying other factors affecting the survival rate of

patients.

It is suggested that the survival of patients suffering

from other cancers as well as other diseases, such as

types of transplants in chronic kidney diseases, heart

diseases, etc., should be investigated with this type of

analysis to more accurately identify the factors affecting

survival.

5.1. Conclusions

Due to not needing a special assumption, having a

better fit to the data if there is a cured rate, easier to use

and interpret than other existing cured models, fitting

the cured rate if there is one, and not causing problems

in the model when the data is not cured, it is

recommended that the presented model be examined

and paid attention to by researchers in future studies.

Another advantage of using the cured model is that,

in addition to the proper estimation of the cured rate of

recovered patients, parameters affecting the survival

rate of other patients can be easily obtained.

Despite high recovery rates of BC patients in this

study (82%) and according to the cured model patients

aged over 60 years old, those with poorly differentiated

histological grade tumors (grade not specified), tumor

size T3, HER2 positive status, KI67 expression level below

20%, negative P53 status, and patients who have not

received hormone therapy have poorer survival than

others.
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