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Abstract

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal types of cancer. Late diagnosis significantly

decreases patient survival rates.

Objectives: The study aimed to identify survival groups for patients with ESCC and find predictive biomarkers of time-to-death

from ESCC using state-of-the-art deep learning (DL) and machine learning algorithms.

Methods: Expression profiles of 60 ESCC patients, along with their demographic and clinical variables, were downloaded from

the GEO dataset. A DL autoencoder model was employed to extract lncRNA features. The univariate Cox proportional hazard

(Cox-PH) model was used to select significant extracted features related to patient survival. Hierarchical clustering (HC)

identified risk groups, followed by a decision trees algorithm which was used to identify lncRNA profiles. We used Python.3.7

and R.4.0.1 software.

Results: Inputs of the autoencoder were 8,900 long noncoding RNAs (lncRNAs), of which 1000 features were extracted. Out of

the features, 42 lncRNAs were significantly related to time-to-death using the Cox-PH model and used as input for clustering of

patients into high and low-risk groups (P-value of log-rank test = 0.022). These groups were then labeled for supervised HC. The

C5.0 algorithm achieved an overall accuracy of 0.929 on the test set and identified four hub lncRNAs associated with time-to-

death.

Conclusions: Novel discovered lncRNAs lnc-FAM84A-1, LINC01866, lnc-KCNE4-2 and lnc-NUDT12-4 implicated in the pathogenesis of

death from ESCC. Our findings represent a significant advancement in understanding the role of lncRNAs on ESCC prognosis.

Further research is necessary to confirm the potential and clinical application of these lncRNAs.
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1. Background

Esophageal carcinoma (EC) is the sixth most

common cause of cancer-related death and the seventh
most common cancer worldwide (1). Esophageal

squamous cell carcinoma (ESCC) is one of the main
types of EC, comprising approximately 84% of all global

cases of EC (2). Typically, ESCC is thought primarily to be

a disease of the developing world (the Asian esophageal
cancer belt, includes countries such as Iran, Turkey,

Kazakhstan, and parts of China) (3).

Despite improvements in EC's prognosis due to
advances in treatment methods such as chemotherapy,

radiation therapy, and surgery, the 5-year survival rate
remains very low (3). In Europe, the United States, and

China, only 10 - 22% of patients show survival of more

than 5 years after diagnosis (4). The low survival rate is
due to the cancer being symptomless in its early stages,

leading to late diagnosis and ineffective treatment (2).
However, if that's diagnosed at an early stage, the

survival rate can be as high as 85% (3).
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Currently, no screening guidelines are available to

identify the early stage of ESCC at the population level

(5). Consequently, identifying risk factors through new
diagnostic methods is crucial for ESCC screening,

preventive measures and reducing the overall disease
burden, as well as the development of treatment. The

role of several factors including smoking, genetic family

history, diet, alcohol, opium use and socioeconomic
status in developing ESCC has been well-established (6).

Current clinical biomarkers are not suitable for

prognosis and diagnosis of ESCC due to their low

sensitivity and specificity (7). Recent studies have

indicated that DNAs and RNAs including protein-coding

RNA and non-coding RNA and proteins could be used as

potential cancer biomarkers (8). Long noncoding RNAs

(lncRNAs) are a large class of non-coding RNAs with a

size exceeding 200 nucleotides and have an essential

role in the progression and development of cancer by

regulating genes related to cancer. Some lncRNAs have

shown abnormal expression in tumor tissues in

different stages of cancer (9).

Therefore, by discovering new lncRNAs affecting

cancer, it is possible to reduce the complexity of cancer

and help to better manage the treatment process. So, it

is crucial to explore potential relationships and improve

survival prediction using state-of-the-art models.

Deep learning (DL), an advanced computer
technique, has experienced explosive growth in the

fields of biomedical sciences and pattern recognition.

This advanced computer technique has been

successfully used in detecting and diagnosing various

types of cancer due to its algorithms (10). Deep learning
autoencoders (DL–autoencoder) are one type of DL (10)

that have been successfully used to reduce high-

dimensional gene expression (11, 12) and omics data (13)

and predict patients’ survival (10, 13-15).

Parallel to our study, Tapak et al utilized a DL–

autoencoder approach to analyze gene expression

profiles for extracting significant features. Their study

focused on patients with oral cancer and used a

different pipeline and did not consider lncRNAs (16).

In the current study the DL– autoencoder model was

used to predict the prognostic factors of ESCC then
created a prognostic stratification for estimating

patients survival. Finally, a machine learning algorithm

was employed to identify ideal biomarkers related to

the prognosis of primary ESCC.

2. Objectives

The aim of this study was to discover lncRNAs

markers associated with time-to-death from ESCC that

have not been fully understood and remained obscure,

using state-of-the-art machine learning and DL models.

3. Methods

A publicly available dataset of (ESCC) patients from
the gene expression Omnibus (GEO) repository with

accession series GSE53622 was utilized. The dataset was
generated using the Affymetrix transcript version

(microarray) with platform ID GPL18109.This dataset

consisted of preprocessed expression data of 60
patients.

The quantile normalization, summarization and

quality control of data were done using the Gene Spring

software V11.5 (Agilent) (17). Time-to-death from ESCC in
patients was considered as survival time, and the

patients for whom death did not occur considered as
censored.

In this study, we used a DL computational framework

on lncRNA profiles related to time-to-death from ESCC in

patients. For feature extraction, an auto-encoder

framework was used as a DL implementation.

Typically, in an auto-encoder framework, the number

of neurons in the first layer is equal to the number of

input observations. Moving towards the center of the

network, the number of neurons in each layer drops in

some measure. The middle layer, called bottleneck layer,

typically contains the fewest neurons, representing the

extracted new neurons. The layers after the middle are a

mirrored version of the layers before the middle one.

The Keras package (https://github.com/fchollet/keras

) was utilized to build an autoencoder with three hidden
layers (5000, 1000 and 5000 nodes). Each layer captures

different levels of abstraction and complexity in the
data. Rectified linear unit (ReLU), which is popular, was

used as the activation function.

The activation function is used in neural networks to

discover complex and non-linear patterns in data. This

function is chiefly implemented in the hidden layers of

a neural network. Its equation is represented as follows:

f(x) = max (0, x), producing an output of x if x is positive

and 0 otherwise.

Finally, the gradient descent approach with 10 epochs

(iterations) and 50% dropout as reasonable starting

points based on empirical experience with similar

models were utilized to train the autoencoder as the

learning algorithm. Each instance of training data is

processed once by the learning algorithm for one epoch.

The implementation codes are developed using Python

3.10 (18).

The 1000 lncRNAs that were extracted using
autoencoder model for 60 patients were considered

https://github.com/keras-team/keras
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independent variables and the survival time of these

people was considered as a dependent variable, then the

univariate Cox proportional hazard (Cox-PH) model was

used to find lncRNAs that have a significant relation

with survival times, expressed as h(t|xi) = h0(t)exp(bxi)
(19). The R.4.0.1 software was used to select the

significant lncRNAs (P < 0.05) (20).

These lncRNAs were then divided into two different

groups using the hierarchical clustering algorithm

(HCA) in the subsequent step. The group with a low

median survival time was identified as the high-risk

group and the other group with a high median survival

time was identified as the low-risk group.

Hierarchical clustering algorithm is an unsupervised

learning method that involves grouping data points

into clusters based on their similarity. This clustering
can be accomplished in two different ways. In this

research, we used the agglomerative HC method, the

most popular model, which involves combining small

clusters to create larger clusters. The silhouette

coefficient method was employed to establish the

optimal number of clusters. The algorithm's parameters

include minimum, maximum, average, and center

distance (21).

The difference between the survival curves of these

two groups was measured using the log-rank test (22,

23).

The C5.0 algorithm, which is used in supervised

learning, is an extension of the ID3 (simple decision tree

learning algorithm) and the C4.5 algorithm. It has

improved in speed, memory, and efficiency compared to

C4.5 and has proven its high detection accuracy in many

fields of research. The accuracy criterion, which employs

a confusion matrix, is used to compare machine
learning models (24).

4. Results

In the presented study, 80% (n = 48) of patients were

men. The number of patients who used tobacco and

alcohol were 56.7% (n = 34) and 53.3% (n = 32),

respectively. The clinical information of the patients is

shown in Table 1. Thirty-three out of 60 patients died

from ESCC. The mean and median follow-up time of the

patients were 36.62 and 39.17 months (min=1.67 and max

= 58.20 years), respectively. One- and three-year survival

rates of the patients were 91% and 78%, respectively.

Table 1. Demographic and Clinical Information of two Identified Groups a

Index Low Risk High Risk Total P-Value

Gender 0.892

Total 21 (100) 39 (100) 60 (100)

Index Low Risk High Risk Total P-Value

Female 4 (19.0) 8 (20.5) 12 (20.0)

Male 17 (81.0) 31 (79.5) 48 (80.0)

Use of tobacco 0.251

No 7 (33.3) 19 (48.7) 26 (43.3)

Yes 14 (66.7) 20 (51.3) 34 (56.7)

Use of alcohol 0.419

No 8 (38.1) 20 (51.3) 28 (46.7)

Yes 13 (61.9) 19 (48.7) 32 (53.3)

Tumor location 0.573

Lower 9 (42.9) 17 (43.6) 26 (43.3)

Middle 11 (52.4) 17 (43.6) 28 (46.7)

Upper 1 (4.8) 5 (12.8) 6 (10)

Tumor grade 0.045

Poorly 3 (14.3) 14 (35.9) 17 (28.3)

Moderately 12 (57.1) 22 (56.4) 34 (56.7)

Well 6 (28.6) 3 (7.70) 9 (15.0)

T stage 0.785

T1 2 (9.5) 2 (5.1) 4 (6.7)

T2 3 (14.3) 4 (10.3) 7 (11.7)

T3 16 (76.2) 32 (82.1) 48 (80.0)

T4 0 1 (2.6) 1 (1.7)

N stage 0.898

N0 10 (47.6) 19 (48.7) 29 (48.3)

N1 8 (38.1) 12 (30.8) 20 (33.3)

N2 2 (9.5) 7 (17.9) 9 (15.0)

N3 1 ()4.8 1 (2.6) 2 (3.3)

Arrhythmia 0.392

No 14 (66.7) 30 (76.9) 44 (73.3)

Yes 7 (33.3) 9 (23.1) 16 (26.7)

Pneumonia 0.722

No 20 (95.2) 37 (94.9) 57 (95.0)

yes 1 (4.8) 2 (5.1) 3 (5.0)

Anastomotic leak 0.650

No 21 (100) 38 (97.4) 59 (98.3)

Yes 0 1 (2.6) 1 (1.7)

Adjuvant therapy 0.978

No 8 (38.1) 15 (38.5) 23 (38.3)

Yes 13 (61.9) 24 (61.5) 37 (61.7)

Tnm stage 0.450

1 2 (9.5) 2 (5.1) 4 (6.7)

2 11 (52.4) 19 (48.7) 30 (50.0)

3 8 (38.1) 18 (46.2) 26 (43.3)

a Values are expressed as No. (%).

Figure 1 illustrates the architecture of the

autoencoder. The activity of the 1000 nodes from the

bottleneck hidden layer was extracted as new lncRNAs.

Out of 1000 lncRNAs, 42 were statistically significant

using the univariate Cox-PH model (P < 0.05) and were

shown to be related to the survival of the patients.
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Figure 1. Architecture of the autoencoder

Using the silhouette indicator, the number of two

clusters (k = 2) was optimal. Consequently, the lncRNAs

were divided into two different groups. Figure 2 shows

the heatmap of the 4 selected lncRNAs. Warmer tones

like red and orange indicate over-expression of lncRNAs,

while cooler tones like green represent under-

expression of lncRNAs. High-risk patients (group 1) have

warmer colors, indicating overexpression of lncRNAs.

Table 1 displays the demographic and clinical

information of low and high-risk groups identified

through clustering utilizing 42 features.

Table 2 displays survival information of the two

groups. The median survival time for the high-risk

group was 29.87 months and for the low-risk group, it

was more than 60 months. Furthermore, the survival

analysis on the full data showed that the Kaplan-Meier

survival curves in the median survival time in the high-

risk group are significantly lower than the low-risk

group (P = 0.022) (Figure 3).

Table 2. Survival Information of Two Identified Groups a

Subgroup Patients Events Censor Month Median
(Month)

SE

High risk 39 (0.65)
26

(66.67) 13 (33.33) 31.99 ± 3.36 29.87 1.55

Low risk 21 (0.35) 7 (33.33)
14

(66.67)
44.93 ±

4.33
- -

a Values are expressed as No. (%) or mean ± SE.

Table 3 shows the results of employing different

learning techniques. According to these results, the C5.0

and Chaid algorithms achieved a classification accuracy

of 98.333 by selecting 4 genes and due to the simplicity

of C5.0, it was employed in the continuation of the

analysis. Using this method, 4 hub lncRNAs including

Lnc-FAM84A-1, LINC01866, Lnc-KCNE4-2, Lnc-NUDT12-4 were

selected that were related to time-to-death from ESCC.

This method with 4 selected lncRNAs provided total

accuracy and AUC of 99.878% and 0.999, respectively.

Table 3. Results of Classification of High/Low Risk Survival Groups Using Machine
Learning Models

Models Fields a Overall Accuracy Total Accuracy (%) AUC b

C5.0 4 98.333 99.878 0.999

Chaid 4 98.333 99.878 0.999

Quest 12 95.000 96.825 0.968

C & R tree 12 90.000 95.971 0.960

a Fields: The number of lncRNAs selected.

b Area under the ROC curve.

Table 4 shows the importance of 4 hub rank lncRNAs

as over expression in high-risk patients.

Table 4. Hub Long Non-coding RNAs Identified by C5.0 Decision Tree Algorithm
Method Through Variable Importance

Order Ensembl Transcript
ID

Nodes Importance Value in High-Risk
Group

1 ENST00000450715.1
Lnc-

FAM84A-1 0.30 Overexpressed

2 ENST00000421181.1 LINC01866 0.28 Overexpressed

3 ENST00000422118.1 Lnc-KCNE4-
2

0.25 Overexpressed

4 ENST00000506337.1
Lnc-

NUDT12-4 0.18 Overexpressed

5. Discussion
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Figure 2. Heat-map of the 4 selected long noncoding RNAs (lncRNAs) using C5.0 decision tree algorithm related two identified survival groups (1= high-risk, 0 = low-risk).

In the present study, we identified four lncRNAs with

prognostic significance in ESCC. According to the

findings, lnc-FAM84A-1

(ENST00000450715.1_transformed) was the first hub

lncRNAs identified by the C5.0 model. These results

indicated an overexpression of lnc-FAM84A-1 in high-risk

patients compared to the low-risk (25). LINC01866, lnc-
KCNE4-2 and lnc-NUDT12-4 were the other lncRNAs found

in this study.
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Figure 3. Kaplan Meier curve for two subgroups of survival time.

The mentioned lncRNAs have not been well studied

and could be considered as novel biomarkers in ESCC.

More research is needed to determine its specific

function and biological significance.

The ability to predict a patient's time-to-death is

critical for making informed treatment decisions,

providing patients and their families with realistic

expectations, and guiding end-of-life planning. Accurate

prognostication is an essential aspect of managing

patients with ESCC, one of the deadliest forms of cancer

(26).

LncRNAs play a role in various aspects of cancer

biology, including prognosis, diagnosis, tumorigenesis,

and progression (27). They also have the ability to

regulate various biological processes involved in cancer

progression, such as cell proliferation, apoptosis,

angiogenesis, and immune evasion. By modulating

these processes, lncRNAs can affect the ability of cancer

cells to survive and evade therapeutic interventions (28).

Since the expression of lncRNAs in cancer has been

shown to correlate with overall survival (OS), metastasis,

tumor stage, and tumor grade, these RNAs might serve

as indicators for prognosis. For instance, HOTAIR as an

important lncRNA, has been proven to be a prognosis

biomarker of various cancer (29). In a study conducted

by Svodoba et al., it was demonstrated that HOTAIR

serves as a negative prognostic factor in colorectal

cancer, exhibiting a sensitivity of 92.5%, a specificity of

67%, and an AUC of 0.8742 (30).

MALAT1 as another important lncRNA was also

proved to have a role in the prognosis of different

cancer types. It has been shown that high expression

levels of this lncRNA are correlated with poor prognosis

in breast cancer and hepatocellular carcinoma (31).

In a study by Cao et al., it was found that MALAT1

expression was significantly elevated in ESCC tissue

compared to adjacent normal tissue samples (P < 0.001).
Additionally, the level of MALAT1 was positively

associated with the pT stage. Kaplan-Meier analysis

revealed that high MALAT1 expression was correlated

with poorer prognosis in ESCC patients (32).

CCAT2 is also a lncRNA with prognostic value and

high expression levels of CCAT2 is associated with poor

survival in ESCC. Recent studies have shown that these

lncRNAs have potential value in predicting ESCC

prognosis (33).

Integrating lncRNA expression data with gene

mutations and DNA methylation profiles enhances

understanding of ESCC tumorigenesis. This multi-omics

approach identifies dysregulated pathways and

biomarkers for personalized treatment strategies.

Specific novel lncRNAs show promise as ESCC

biomarkers, pending validation in larger cohorts. Their

integration with molecular markers offers
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comprehensive insights into ESCC biology, advancing

therapeutic targeting.

Future research should validate these lncRNAs in

diverse ESCC cohorts to establish prognostic value and

diagnostic assays. Integrating lncRNA expression into

prognostic models could enhance outcome prediction,

while further studies are needed to understand their

roles in ESCC biology.

In this study, a large quantity of lncRNAs from ESCC

patients was used to extract lncRNAs with an

autoencoder framework. In similar studies the use of

autoencoder, when compared with alternative methods,

was more robust and much more efficient in identifying

lncRNAs linked to survival (10). Then, we used a

univariate Cox-PH model for the selection of significant

lncRNAs.

We could not use the multivariate regression for this

purpose because the number of unsupervised extracted

lncRNAs (> 100) is more than the number of the sample

size (n = 60) therefore, it is suggested to use penalized

Cox regression model to select a subset of lncRNAs.

5.1. Conclusions

This study identified 4 hub lncRNAs including lnc-

FAM84A-1, LINC01866, lnc-KCNE4-2 and lnc-NUDT12-4, that

have a role in the pathogenesis of developing ESCC.

Further experimental investigations are required to

well-understand the role of these lncRNAs.
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