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Abstract

Background: A549, a human lung adenocarcinoma cell line, is a KRAS mutant cell used for over 5 decades as a type II alveolar

cell and non-small cell lung adenocarcinoma model. Cyclin-dependent kinase inhibitor 2 A (CDKN2A) and cyclin-dependent

kinase inhibitor 2 B (CDKN2B) are protein-coding genes in the INK4-ARF locus and function as tumor suppressors and negative

regulators of the cell cycle. These genes have been reported to be deleted in the A549 cell line. The Long non-coding RNA ANRIL is

located in the antisense direction of CDKN2B and shares a bidirectional promoter with CDKN2A. ANRIL is a negative regulator of

the INK4-ARF locus genes and has an oncogenic role in cancers. ANRIL deletion in the A549 cell line has not been reported to

date.

Objectives: Herein, the presence of ANRIL was investigated in the A549 cell line.

Methods: In this study, the A549 cell line from 2 different sources was tested for the presence of the INK4-ARF locus genes by

polymerase chain reaction (PCR) using specific primers at both DNA and RNA levels. We compared our findings with Calu-6,

MRC-5, and HepG2 cell lines.

Results: Our analysis revealed that all protein-coding genes in the INK4-ARF locus, including CDKN2A and CDKN2B, were

deleted in the A549 cell lines. Furthermore, we observed that ANRIL was entirely deleted in the A549 cells. The evaluated locus

and all of its genes are present and expressed in other investigated cell lines.

Conclusions: For the deletion of ANRIL in the A549 cell line, 2 scenarios are possible: First, from a structural point of view, the

deletion of the protein-coding genes in the antisense of ANRIL in the INK4-ARF locus implies the possibility of a concurrent loss

of ANRIL with the deletion of these genes in the A549 cell line. Second, as cancer cell lines are genetically unstable and are always

susceptible to the acquisition of new mutations, ANRIL loss may have occurred later, following a novel genetic alteRNAtion in a

population derived from a mutated cell.
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1. Background

The human lung adenocarcinoma cell line A549 was

inaugurated by D.J.Giard in 1972 from grade IV lung

cancer tissue removed from a 58-year-old Caucasian
man and subsequently donated to the ATCC cell line

bank by M. Lieber under accession number CCL-185TM

(1). The A549 cell line is known as a hypotriploid alveolar

basal epithelial cell. It exhibits a polarized monolayer

adherent morphology and positive tannic acid staining

for lamellar bodies. The production of lamellar bodies,

the expression of IA1 and IIB6 P450 isoenzymes, and the

endocytic abilities of these cells have made them a
suitable model for use as a type II lung epithelial cell

and for in vitro studies of the oxidative metabolism of

drugs in the lung (2). Consistent with the pattern of
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phospholipid synthesis expected for cells responsible

for lung surfactant synthesis, A549 cells synthesize

lecithin with a high content of unsaturated fatty acids
using the cytidine diphosphocholine pathway at both

early and late culture passages. Considering that A549
cells are lung adenocarcinoma-derived cells that lack

tissue architecture, tumor microenvironment, and in-

situ tumor cell communication, and retain gene
expression patterns similar to tumors, it is a proper

model for human lung adenocarcinoma studies (3-8).

It should be noted that Lung Adenocarcinoma, which

is related to non-small cell lung carcinoma (NSCLC), is

the most common type of lung cancer, accounting for

about 40% of all lung cancer cases (7, 9).

Previous studies on A549 cells have shown that 24% of

all A549 cells have 66 chromosomes. Most of these cells
have two X and two Y chromosomes. However, in 40% of

the cells examined, one or both Y chromosomes were

missed (1). This cell line carries a homozygous mutation

at position 12p12.1 (c.34G>A/p.Gly12Ser) of the Kirsten rat

sarcoma virus (K-RAS) pro-oncogene protein (3, 10-12).
Due to the homozygous deletion of the p.Gln37Ter

(c.109C>T) and cyclin-dependent kinase inhibitor 2 A

(CDKN2A) homozygous, c.1_471del471/p.M1_*157del, A549

cell line does not express the serine/threonine kinase

tumor suppressor gene (STK11/LKB1) and CDKN2A locus (8,
10, 13-15). In addition, tumor suppressor in lung cancer 1

(TSLC1) and tumor suppressor NORE1A (RASSF5) are not

expressed in A549 cells (16-18). However, cyclin D, cyclin-

dependent kinases 4/6(CDK4/6), retinoblastoma

susceptibility gene (RB1), transcription factor E2F, mouse
double minute 2 homolog (MDM2),

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic

subunit alpha (PIK3CA), epidermal growth factor

receptor (EGFR), tumor protein p53 (TP53), anaplastic

lymphoma kinase (ALK), MYC proto-oncogene, and

phosphatase and tensin homolog (PTEN) genes are

expressed in the wild type as in normal cells (7, 8, 19-27).

The 9p21.3 region, spanning approximately 350 kb of

the genomic region, harbors 3 protein-coding genes and

a long non-coding RNA in the antisense direction. The

protein-coding genes consisting of S-methyl-5′-
thioadenosine phosphorylase (MTAP), CDKN2A, which

encodes the p16INK4A and P14ARF splice variants and

cyclin-dependent kinase inhibitor 2 B (CDKN2B) (also

known as P15  INK4B). The long non-coding RNA in the

antisense direction of CDKN2B is called CDKN2B-AS1/ANRIL
(antisense non-coding RNA in the INK4 locus). The INK4-

ARF locus, mapped to the 9p21.3 region and its gene

cluster consisting of P14ARF, P16 INK4A, P15 INK4B, and long

non-coding RNA (LncRNA) ANRIL. Structurally ANRIL

shares a bidirectional promoter with the P14ARF gene

and transcribes ANRIL in antisense orientation to the

INK4-ARF gene cluster. P16 INK4A is located between MTAP
and ANRIL in the vicinity of the first exon of ANRIL. The

first exons of P14ARF (exon1β) and P16  INK4A (exon1α) are
different, but the second and third exons are identical.

P15  INK4B is mapped to the inside of the first intron of

ANRIL in antisense orientation (28) (Figure 1).

When the cell is exposed to various stress signals
such as DNA damage, oxidative stress, or enhancing

oncogenes, the expression of INK4-ARF genes is

activated. This results in a cascade of signaling events

that adequately initiate the cell cycle arrest. P14ARF, a

member of this gene cluster, interacts with the acidic

domain of MDM2 to block its interaction with P53.

Nuclear segregation of MDM2 intercepts MDM2-

mediated delivery of P53 to the cytoplasm, thereby

preventing P53 degradation. As a result, P53-dependent

cell cycle arrest occurs in both G1 and G2 phases. In

response to stress signals, the P16  INK4A and P15  INK4B are

activated and attached to CDK4/CDK6 kinases.

Preventing the formation of active complexes by cyclin

D leads to hypo-phosphorylation of RB. Hypo-

phosphorylated RB connects to the transactivation

domain of E2. This complex further engages histone

deacetylase 1 (HDAC1) and SUV39H1 histone lysine

methyltransferase to E2F target genes, thereby

hampering them and obstructing the G1-to-S phase

transition (15, 29).

For the first time, the ANRIL gene was discovered

through a 403 231 bp germline deletion in a French
family with a history of melanoma and nervous system

tumors syndrome (30). In response to genomic stress
induced by DNA damage, E2F1 activates the transcription

of ANRIL in an ataxia telangiectasia mutated (ATM)-
dependent manner. ANRIL is transcribed by RNA

polymerase II and spliced into several linear and

circular isoforms in a tissue-specific manner. The
complete gene has 21 exons and it has been only found

in simians. Under normal circumstances, ANRIL binds to
the SUZ12 subunit of Polycomb repressive complex 2

(PRC2) when DNA repair is complete. This binding helps

to suppress the inhibitory effects of the INK4-ARF locus
by inducing the methylation of histone 3 at lysine 27

(H3K27), allowing re-entry into the cell cycle; this has
been suggested as a potential mechanism. In addition,

ANRIL binds to CBX7 of Polycomb repressive complex 1

(PRC1), enabling recognition of H3K27 for
monoubiquitination of histone 2A at lysine 119

(H2AK119) to maintain silencing of the INK4-ARF locus.
ANRIL may regulate gene transcription through
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Figure 1. Schematic view of the INK4-ARF locus in the 9p21.3 chromosomal region. The INK4-ARF locus, mapped to the 9p21.3 region and consisting of the CDKN2A, CDKN2B and
lncRNA ANRIL genes. ANRIL shares a bidirectional promoter with theP14ARF and transcribes ANRIL in antisense orientation to the CDKN2A and CDKN2B genes. P16INK4A is located

between MTAP and the first exon of ANRIL. The first exons of P14ARF (E1β) and P16INK4A (E1α) are different, but the second and third exons are identical. CDKN2B is mapped to the
inside of the first intron of ANRIL in antisense orientation. The A549 cell line is characterized by homozygous deletion of the CDKN2A, CDKN2B and MTAP genes.

chromatin modulation (Nuclear localization

hypothesis). Circular ANRIL may also be involved in post-

transcriptional regulation (cytoplasmic localization

hypothesis) (28, 31). Recently, genome-wide association

studies (GWAS) identified the ANRIL gene as a genetic

locus commonly associated with a variety of health

conditions, including intracranial aneurysm, type 2

diabetes, coronary artery disease (CAD), periodontitis

(PD), Alzheimer's disease, aging, frailty, glaucoma,

endometriosis, multiple sclerosis, hypertension, as well

as cancer (28, 32). In cancer, ANRIL-microRNA (miRNA)

interactions can influence their target genes and

initiate a cascade of events that leads to the

intensification of the oncogenic aspect of ANRIL in

proliferation, metastasis, invasion, resistance to

radiotherapy, drug-induced cytotoxicity and apoptosis.
This occurs through the involvement of various

signaling pathways such as ATM-E2F1, PI3K/Akt, Wnt/β-

catenin, NF-κB, TGF-β/Smad, Notch, and mTOR (28, 33).

Several studies have shown a homozygous deletion

of the MTAP (34) and protein-coding genes of the INK4-

ARF locus in the A549 cell line (7, 14, 35-38); so, the

deletion of the LncRNA  ANRIL in the antisense of this

region is very likely from a structural point of view

(Figure 1). However, the search in the database and

literature did not reveal any report regarding the lack of

expression of the ANRIL gene in the A549 cells, and

several studies have reported the expression of ANRIL in

this cell line (39-41).

2. Objectives

The presence of the LncRNA ANRIL in the A549 cell

line was investigated in this study.

3. Methods

3.1. Cell Lines and Cell Culture

Human NSCLC cell line A549 was purchased from 2

cell bank centers in Iran, Pasteur Institute of Iran
(Tehran, Iran) and Iranian Biological Resource Center

(Tehran, Iran). The validity and authenticity of the A549

cell line were guaranteed by both of the cell banks. The

human NSCLC cell line Calu-6, as well as the human

normal lung fibroblast cell line MRC-5 and human

hepatocellular carcinoma cell line HepG2, were

acquired from the Pasteur Institute of Iran's cell bank.

The cell bank of the Pasteur Institute of Iran verified and

authenticated these cell lines. All cells were grown in

Roswell Park Memorial Institute 1640 (RPMI1640)

supplemented with 10% fetal bovine serum (FBS) and 100

U/mL penicillin-streptomycin and maintained at 37°C in

a humidified incubator with 5% CO2 (Figure 2).

3.2. Genome Preparation

The adherent cells were trypsinized and collected by

centrifugation at 250 g for 5 minutes. The cell pellets

were, then, resuspended in phosphate buffered saline

(PBS).

The DNA was isolated from the harvested cells, using

the FavorPrep Tissue Genomic DNA Extraction Mini Kit

(Favorgen, Taiwan), according to the manufacturer's

protocol. RNA was extracted from collected cells, using

the FavorPrep Total RNA Purification Mini Kit (Favorgen,

Taiwan), according to the manufacturer's

recommendations and 60 µL of 0.25 U/µL DNase I (Yekta

Tajhiz Aama, Iran) was used during the extraction

process to eliminate any possible contamination of the
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Figure 2. Cell morphology of the A549 (A), Calu-6 (B), MRC-5 (C) and HepG2 (D) cell lines. Scale bars: 100 μm.

genomic DNA. The samples were kept at -80°C until

further processing. The quantity and quality of

extracted DNA and RNA were checked, using a Nanodrop

spectrophotometer (Thermo Scientific™ NanoDrop™

One, USA).

To evaluate the integrity and quality of the RNA and

genomic DNA, we conducted an agarose gel

electrophoresis, using 1% agarose and TAE running

buffer.

Total RNA (1 µg) was reverse transcribed into cDNA,

using a cDNA Synthesis Kit (catalog number: YT4500,

Yekta Tajhiz Azma, Iran) containing random hexamer

primers and M-MLV reverse transcriptase according to

the manufacturer's instructions.

3.3. Polymerase Chain Reaction

The presence of the target sequences in obtained

cDNA and genomic DNA from cell lines was checked by

performing a polymerase chain reaction (PCR) reaction

with specific primers (Table 1). Glucose 6-phosphate

dehydrogenase (G6PD) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) genes were used as common

isoenzyme markers and inteRNAl controls for DNA and

cDNA, respectively, in all cell lines.

The PCR reaction was carried out according to the

procedure of the 2X PCR master mix kit (Yekta Tajhiz

Azma, Iran). The reaction mixture was as follows: Ten µL

of master mix, 0.25 µL of forward and reverse primer (10

µM), 1 µL of DNA/cDNA template, and 8.5 µL nuclease-free

water to a final reaction volume of 20 µL. A no-template

control (NTC) was included for each primer pair.

The thermal cycle programs were as follows: Initial

denaturation for 5 minutes at 94°C, followed by 40
cycles of 94°C for 20 seconds, Annealing 56 - 60°C (based

on primer annealing tm) for 20 seconds, and extension

at 72°C for 20 seconds. The final extension was 72°C for 5

minutes.

The PCR products were confirmed by 2% agarose gel

electrophoresis, using Tris-acetate-EDTA (TAE) running

buffer and visualized on a UV transilluminator.

3.4. Real-time PCR

Real-time PCR was performed to assess ANRIL

expression in cDNA libraries from Calu-6 and A549 cell

lines with the protocol of Smart Green qPCR (real-time)

master mix (Yekta Tajhiz Azma, Iran) containing primers

for ANRIL- RT1, ANRIL- RT2 (Table 1), using a LightCycler®

96 instrument (Roche, Germany) for 45 cycles as follows

https://brieflands.com/articles/ijcm-151972
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Table 1. The List of Primers for Amplification of the Target Sequences in the INK4-ARF Locus at the 9p21 Region

Primer Name and Accession Number Primer Sequences Size of Product (Base Pair) Template

P14 ARF ( NM_058195.4 )
Forward: 5’- AGTGAGGGTTTTCGTGGTTC -3’

93 DNA/cDNA
Reverse: 5’- AGTAGCATCAGCACGAGGG -3’

P15 INK4B( CDKN2B ) ( NM_004936.4 )
Forward: 5’- TGGGAAAGAAGGGAAGAGTGTC -3’

173 DNA/cDNA
Reverse: 5’- TCGCACCTTCTCCACTAGTC -3’

P16 INK4A( CDKN2A ) ( NM_058197.5 )
Forward: 5’- AGCAGCATGGAGCCTTCG -3’

124 DNA/cDNA
Reverse: 5’- GCCTCCGACCGTAACTATTC -3’

ANRIL  1 ( NC_000009.12 )
Forward: 5’- TCACCTGACACGGCCCTACC -3’

292 DNA
Reverse: 5’- TCAGAGGCGTGCAGCGGTTTAG -3’

ANRIL  2 ( NC_000009.12 )
Forward: 5’- ATGCTTTCTTTAGATCAACCCAG -3’

356 DNA
Reverse: 5’- TACTCTGGCAAGACGGAGG -3’

ANRIL  3 ( NC_000009.12 )
Forward: 5’- ATTGTCCATATCACTTAACCAGTTG -3’

348 DNA
Reverse: 5’- TCATCACAGCAGTACAGAGGAAG -3’

ANRIL  4 ( NC_000009.12 )
Forward: 5’- AATTGAAGGATCAGGGAGTCAG -3’

497 DNA
Reverse: 5’-ATTCCCATGATTCACTGTAGGC -3’

ANRIL  5 ( NC_000009.12 )
Forward: AAGTGGCAGGAATTTGGGAATG -3’

84 DNA
Reverse: AGTCACTGGTCTGAGTTCTTAAA -3’

ANRIL  6 ( NC_000009.12 )
Forward: 5’- TAATGCTTACCTAGTGCCAGATG -3’

165 DNA
Reverse: 5’- AAATCCCAGCCAATTACCAGCG -3’

ANRIL - RT1 ( NR_003529 )
Forward: 5’-AGAGAGGGTTCAAGCATCAC -3’

121 cDNA
Reverse: 5’-TCTGATGGTTTCTTTGGAGTTAG -3’

ANRIL - RT2 ( NR_003529 )
Forward: 5’- TTATTCCTGGCTCCCCTCGTC -3’

222 cDNA
Reverse: 5’- TGTCCAGATGTCGCGTCAG -3’

G6PD ( NG_009015 )
Forward: 5’- AGACGAGCTGATGAAGAGAGTGG -3’

174 DNA
Reverse: 5’- AATGTGCAGCTGAGGTCAATGG -3’

GAPDH ( NM_001256799.3 )
Forward: 5’- AAATCAAGTGGGGCGATGCTG -3’

192 cDNA
Reverse: 5’- TGATGATCTTGAGGCTGTTGTCA -3’

95°C for 20 seconds, 58°C for 20 seconds, 72°C for 20

seconds, and post-denaturation for 3 minutes.

4. Results

4.1. All Protein-Coding Genes in the INK4-ARF Locus Are
Homozygous Deleted in the A549 Cell Line

The presence of protein-coding genes located at the

INK4-ARF locus at 9p21 region, including P15/CDKN2B-

P16/CDKN2A-P14/ARF, was investigated at both DNA

(Figure 3A and Appendix 9, 11, 13, 15 for the complete

photography of the gels) and RNA levels (Figure 3B and

Appendix 10, 12, 14, 16 for the complete photography of

the gels) using specific primers. Based on our

observations, the sequences of all three genes were lost

in both investigated A549 cell lines. In the other

examined cell lines used as control, including the

normal diploid human lung cell line (MRC-5), the NSCLC

cancer cell line (Calu-6), the liver carcinoma cell line

(HepG2), and the sequences of all three protein-coding

genes were detected at the DNA and mRNA levels.

4.2. ANRIL Long Non-coding RNA is Entirely Deleted in A549
Cells

To further investigate the presence of ANRIL in the

9p21 locus, 7 regions of the entire genomic sequence of

this gene (126.3 kb) were examined, using specific

primers (Figure 4B). In addition, the presence of several

common exons of the ANRIL gene was also evaluated at

the RNA level by conventional and real-time PCR. The

conventional PCR products of all the genomic regions

were observed on agarose gel electrophoresis for the

MRC-5, Calu-6, and HepG2 cell lines. None of these

targeted regions were amplified in the A549 cell line,

confirming the absence of all these genomic regions in

the investigated cells (Figure 4A and Appendix 1, 11, 2, 3,

4, 5, 6, 15 for the complete photography of the gels). In

contrast to other cell lines, none of the ANRIL’s targeted

exons were amplified neither targeting DNA nor cDNA

library indicating that this gene has no expression in

the A549 cell line (Figure 4C and Appendix 7, 8, 16 for the

complete photography of the gels). The level of ANRIL

expression was also assessed by real-time PCR, where the
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Figure 3. (A) The amplification bands of the protein-coding genes (P14ARF, P15INK4B and P16INK4A) located at the ink4-ARF locus at the 9p21 region in the DNA extracted from
the MRC-5, Calu-6, A549 and HepG2 cell lines; (B) the amplification bands of the protein-coding genes (P14ARF, P15INK4B and P16INK4A) of the INK4-ARF locus at the 9p21 region
in the cDNA libraries prepared from the MRC-5, Calu-6, A549 and HepG2 cell lines. NTC, non template control. See the Supplementary Figures section for the complete
photography of the gels.

data revealed no detectable ANRIL  RNA for A549 cells,

while ANRIL was expressed in the Calu-6 cell line. (Figure

5 and Appendix 17). All these results suggest that ANRIL is

fully deleted in A549 cells.

5. Discussion

In this study, we examined the INK4-ARF locus in the

9p21 region by PCR at both DNA and RNA levels in the
A549 cell line. We compared the results with normal
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Sherifi E et al. Brieflands

Int J Cancer Manag. 2024; 17(1): e151972 7

Figure 4. (A) The amplification bands of 7 different regions of the entire genomic sequence of lncRNA ANRIL in the DNA extracted from the MRC-5, Calu-6, A549 and HepG2 cell
lines; (B) the schematic map of seven selected genomic regions of the entire genomic sequence of lncRNA ANRIL; (C) the amplification bands of the lncRNA ANRIL at the INK4-ARF
locus in the cDNA libraries prepared from the MRC-5, Calu-6, A549 and HepG2 cell lines. NTC, non template control. See the Supplementary Figures section for the complete
photography of the gels.

human lung diploid cell lines (MRC-5), other non-small

cell adenocarcinoma cell lines (Calu-6), and a cell line

from a distinct cancer [human hepatocellular

carcinoma (HepG2)]. Our analysis revealed that all

protein-coding genes located at the INK4-ARF locus,

including P15/CDKN2B, P16/CDKN2A, P14 ARF, as well as the

long non-coding RNA ANRIL in the antisense of this locus,

have fully deletion at the DNA level in the A549 cell line.

Meanwhile, all of these genes are present and expressed

in other cell lines that were investigated.

Since the presentation of the HeLa cell line in 1951,

numerous cancer cell lines have been established and

propagated, and they have been utilized in research

regarding cancer biology and assessing the efficacy of

anti-cancer agents, both in-vitro and as xenografts in

laboratory animals (in vivo) (42).

The A549 cell line has been employed for over 5

decades as a model for type II alveolar cells, as well as an

appropriate model for non-small cell lung

adenocarcinoma in various studies (8).

Deletion of various encoding protein genes of the

INK4-ARF locus at the 9p21 region, such as P16  INK4A and

P15  INK4B has been reported in numerous cancers,

including melanoma, glioma, lung cancer, and some

leukemias, as well as cell lines linked to these cancers

(43-45). In several studies, loss of heterozygosity at the

9p21 region was exhibited in 52% of NSCLC malignancies,

while deletion of P16 was observed in 25% of NSCLC cases

(46, 47). In a study conducted by Kraunz et al., a

homozygous deletion of exon 2 of the P16 gene was

reported in 34% of NSCLC samples, resulting in complete

P16 protein deletion in more than half of these cases.

According to their findings, this deletion is due to

epigenetic silencing of 2 key genes involved in DNA

double-strand break repair, the Fanconi anemia

complementation group F (FancF) and Breast cancer

type 1 susceptibility protein (BRCA1) genes (48). In

another study, 58% of NSCLC tumors examined had an

abnormality in the P16 gene, and homozygous deletion

of this gene was reported in 48% of these cases (49). In

the study by Panani et al., P16 gene deletion was

identified in 8/11 squamous cell carcinoma, 5/6

adenocarcinoma, and 2/2 large cell lung cancer samples

and this is a common finding in all subtypes of NSCLC

(50). Homozygous deletion of P16INK4A is known to be

one of the hallmarks of the A549 cell line (14, 35, 51, 52).

P15 INK4B is an important protein that acts as a backup for

P16 in cells. When P16 is lost, especially under stressful

conditions, cells increase P15 protein levels to

compensate for the loss (36). However, the simultaneous

deletion of 2 P15/Pl6 genes at the D9S126 locus (9p21) has

been observed in tumors in NSCLC patients and cell

lines, including A549 cells (37, 38, 53, 54). P14  ARF is

another tumor suppressor gene co-located with P16 and
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Figure 5. The real-time polymerase chain reaction (PCR) result of lncRNA ANRIL amplification for individual A549 and Calu-6 cell lines, showed the lack of expression of the ANRIL
gene in A549 cells.

P15 at the INK4-ARF locus. Except for exon 1, the other 2

exons of this gene are similar in sequence to P16. P14 ARF

is deleted in 19% of NSCLC primary tumors and 25% of

NSCLC cell lines, inter alia the A549 cell line (7, 55).

It has been previously reported that in more than 13%

of NSCLC cell lines, including the A549 cell line, the MTAP

gene is homozygously deleted. The MTAP gene is located

on chromosome 9p21 (34, 56, 57) Interestingly, almost all

(99%) of the tumors and various cell lines that had MTAP

deletion also had CDKN2A/B loss (58, 59).

A bidirectional promoter in the 5' end of the ANRIL

prime exon, flanking 300 bp upstream of the

transcription initiation site of P14 ARF, transcribed ANRIL

in the antisense orientation of the INK4B-ARF- INK4-ARF
gene cluster. Therefore, it would appear that the

expression of the two genes is related to each other and

is influenced by E2F1 both in physiologic and pathologic

conditions. It is interesting to note that the entire

P15/CDKN2B-P16/CDKN2A-P14/ARF gene cluster and its
transcriptional regulator gene (ANRIL) are part of 403 kb

germline deletion in the French family with melanoma,

the family behind the discovery of ANRIL (30, 60, 61).

Similarly, based on our observations, the entire INK4-

ARF locus, including the protein-encoding genes P14,

P15, P16, and the long non-coding RNA  ANRIL were

completely deleted in the A549 cells. The structural

evidence indicates that the deletion of the long non-

coding RNA ANRIL likely occurred concurrently with the

deletion of other protein-coding genes within the INK4-

ARF locus.

But how possible, that the search in databases and

literature did not reveal any report regarding the lack of

expression of the LncRNA ANRIL gene in the A549 cell

line and there are several studies indicating the

expression of ANRIL in this cell line?

Another hypothesis that could be responsible for the

deletion of ANRIL in the A549 cell line is the inheritance

of this deletion to a population derived from a single

mutated cell.

Genomic instability is one of the hallmarks of

cancers. Cancer cell lines have been propagated and

immortalized from cancerous tissues for use in

oncology research. Over time, during in vitro culture,

cancer cell lines may undergo genetic and phenotypic

changes, leading to genetic heterogeneity and

instability within a cell population (62).

https://brieflands.com/articles/ijcm-151972
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A549 is an NSCLC cell line that homozygously

expresses the endogenous KRAS G12S mutation (11, 12). A

downstream effector protein in the RAS signaling

pathway is the HMG box-containing protein 1 (HBP1)

transcription factor. The HBP1 enhances acetylation of

the INK4A promoter by facilitating the activation of the

histone acetyltransferase P300 and CREB binding protein

(CBP) (29). Boosting histone acetylation or inhibition of

histone deacetylase activity, in turn, has been shown to

induce incorrect kinetochore localization of mitotic

checkpoint proteins and extend mitotic arrest (63). In

addition to incorrect kinetochore localization, the

extension of the mitotic process leads to increases in the

possibility of errors in its various parts, such as the cell

division machinery and the gene repair system,

resulting in both numerical and structural

chromosome abnormalities (62). It should be noted that

the proximity to the common fragile region (FRA9G),

the intranuclear architecture of chromatin, and the

sensitivity of genomic segments of the CDKN2A locus as

hotspots for DNA double-strand breaks and subsequent

microhomology-mediated repair through non-

homologous end joining (NHEJ) may be a major cause of

homozygous deletion of INK4-ARF region (64-66). This

mechanism may be a possible explanation for the

occurrence of ANRIL deletion in the A549 cells.

5.1. Conclusions

Based on our observation, in addition to the protein-

coding genes of the INK4ARF locus, including P14  ARF,

P16  INK4A, and P15  INK4B genes, the long non-coding

RNA ANRIL is completely deleted in the A549 cell line.

Two scenarios can be considered to explain the

deletion of LncRNA ANRIL in the A549 cell line. First,

from a structural point of view, ANRIL shares a

bidirectional promoter with the P14  ARF gene and

transcribes ANRIL in an antisense orientation to the

INK4-ARF gene cluster. P16 INK4A is located between MTAP

and ANRIL in the vicinity of the first exon of ANRIL.

P15  INK4B is mapped to the inside of the first intron of

ANRIL in antisense orientation. Given that various

studies have reported that the MTAP, P14  ARF, P16  INK4A,

and P15  INK4B genes are deleted in the A549 cell line and

that this deletion is one of the key characteristics of this

cell line for use in related studies, it appears that ANRIL

was also deleted at the time of the deletion of its

antisense protein-coding genes. The second scenario

that could explain the deletion of ANRIL in the A549 cell

line is the recent acquisition of this deletion in a

population derived from a single mutated cell through

successive passages under different conditions, notably

considering that cancer cell lines, like cancer itself, are

genetically unstable and always susceptible to acquiring

new mutations.
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