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Abstract

Background: Leukemia progression is intricately linked to interactions with neighboring cells within the bone marrow

microenvironment (BMM), and small extracellular vesicles (sEVs) emerge as vital mediators in facilitating these interactions.

Objectives: This study examined the proliferation effects of sEVs-derived from acute myeloid leukemia (AML) in the HL60 cell

line on the cell cycle progression of bone marrow mesenchymal stem cells (BM-MSCs), a key element of the BMM.

Methods: Small extracellular vesicles were isolated from the HL60 cell line supernatant, using the ExoCib kit, and

characterized through flow cytometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and

bicinchoninic acid (BCA) protein assay. bone marrow mesenchymal stem cells were cultured and treated with various

concentrations (20 μg/mL, 50 μg/mL, and 80 μg/mL) of AML-derived sEVs for 24, 48, and 72 hours. The effects on cell proliferation

and viability were assessed, using methylthiazole tetrazolium test (MTT) and Ki-67 assays, while cell cycle progression and

apoptosis were analyzed via flow cytometry. RT-qPCR was performed to evaluate the expression levels of CCND1, CDK4, CDK6, and

AKT1 genes.

Results: The proliferation effects of AML-derived sEVs on BM-MSCs were both dose- and time-dependent, with optimal effects

observed at 50 μg/mL after 48 hours. Flow cytometry analysis revealed a significant increase in the G1 phase, showing a 1.8-fold

change compared to the control group (P < 0.0001). RT-qPCR results demonstrated a significant upregulation of CCND1 (3.5-fold,

P < 0.0001), CDK4 (3.2-fold, P < 0.0001), CDK6 (2.5-fold, P < 0.0001), and AKT1 (3.2-fold, P < 0.0001) expression levels, along with

increased Ki-67 (2.3-fold, P < 0.0001) levels. Moreover, treatment with 50 μg/mL of AML-derived sEVs resulted in a notable

reduction in BM-MSC apoptosis (0.57-fold decrease, P < 0.0001).

Conclusions: Our findings revealed that AML extracellular vesicles could alter the gene expression associated with the

proliferation of BMSCs to increase their proliferation by stimulating the cell cycle of MSCs through the G1 phase.
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1. Background

Acute myeloid leukemia (AML) is a lethal malignancy

with rapid and unregulated proliferation of malignant

cells. This uncontrolled growth is not an isolated

phenomenon but is facilitated by a complex cellular

network in the bone marrow microenvironment (BMM)

(1, 2). Leukemic cells engage in sophisticated

communication with their surrounding cells in the

BMM through various mechanisms, including
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interleukins, small extracellular vesicles (sEVs), and

other signaling molecules, highlighting the complexity

of these interactions and potential therapeutic targets

(3-5). The interplay between leukemia cells and

mesenchymal stem cells (MSCs) within the BMM is

particularly noteworthy. Leukemic cells exploit the

supportive niche provided by MSCs, which, in turn,

undergo significant biological alterations influenced by

the leukemic cells (6). Delving into the molecular

intricacies of these interactions can yield valuable

insights into the mechanisms driving leukemia

progression and open new avenues for targeted

therapeutic interventions aimed at disrupting the

supportive niche orchestrated by MSCs in the context of

leukemia.

Small extracellular vesicles released by leukemic cells

play an essential role in leukemia progression by

mediating intricate communication within the BMM (7).

These vesicles transport diverse bioactive molecules,

including proteins, nucleic acids, and signaling entities,

facilitating complex interactions underpinning

leukemia development (8). For instance, AML-derived

sEVs can facilitate the transformation of hematopoietic

stem cells into leukemic cells by downregulating genes

essential for normal hematopoiesis, such as CXCR4, Scf,

IGF-1, CXCL12, KIT ligand, and IL-7, while concurrently

upregulating genes associated with leukemia, including

DKK1, IL-6, and CCL3 (9). Furthermore, sEVs modulate

processes such as angiogenesis, immune response, and

drug resistance within the BMM, and can serve as

diagnostic biomarkers, reflecting the disease state and

providing insights into the dynamic changes occurring

during leukemia progression (10-13).

Since leukemic cells alter the BMM in their favor to

benefit from its comprehensive support, we treated

bone marrow-derived mesenchymal stem cells (BM-

MSCs) with sEVs derived from AML, which are among the

key mediators of the reciprocal communication

between malignant cells and the niche. Upon examining

the cell cycle of MSCs, we observed an increase in the G1

phase. To further assess the G1 phase, we investigated the

expression of genes such as cyclins and cyclin-

dependent kinases (CDKs) that are involved in

advancing the cell cycle through G1, with particular

attention to CCND1, CDK4, and CDK6 due to their roles in

G1 progression. On the other hand, among the various

signaling pathways that lead to changes in the

expression of CCND1, CDK4, and CDK6, we selected the

PI3K/AKT pathway and examined the expression levels of

AKT1 as the primary element of this pathway, along with

CCND1, CDK4, and CDK6 as its ultimate targets.

2. Objectives

This article was conducted to investigate the

proliferative role of sEVs secreted from AML cells in

inducing growth and proliferation and the effect on the

mesenchymal stromal mesenchymal cell cycle of Niche

cells.

3. Methods

3.1. Samples

The HL60 and BM-MSC cell lines were sourced from

the Stem Cell Technology Research Center (STRC) in

Tehran, Iran. The HL60 cell line was characterized by the

presence of CD45, CD34, CD117, CD33, and CD14 markers,

whereas the BM-MSC line was characterized by CD45,

CD34, CD73, and CD90 markers.

3.2. Cell Culture

The initial culture of the HL60 cell line was

conducted in RPMI-1640 medium (Gibco, USA), which

included 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin (pen/strep; Gibco, USA) within a

humidified incubator maintained at 37°C with 5% CO2,

until reaching 80% to 85% confluence. Following this

initial growth phase, the concentration of FBS was

methodically reduced over 8 days, starting with 10% for

the first 36 hours, then decreasing sequentially to 7%, 4%,

and ultimately 0%, each for 36 hours. After this

adaptation period, the supernatant was collected and

stored at -20°C for later sEVs extraction.

The BM-MSC line was cultured in DMEM medium

(Gibco, USA) with 10% FBS and 1% pen/strep in a

humidified incubator (5% CO2, 37°C). The medium

containing suspended apoptotic cells was replaced

every 48 to 72 hours. Upon reaching 80% to 85%

confluence, the cells were passaged, and BM-MSCs in

passages 3 to 5 were treated with AML-derived sEVs at

concentrations of 20 μg/mL, 50 μg/mL, and 80 μg/mL for

24, 48, and 72 hours, respectively, with each treatment

performed in triplicate. This study was approved by the

https://brieflands.com/articles/ijcm-152405
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Ethics Committee of Shahid Beheshti University of

Medical Sciences (IR.SBMU.RETECH.REC.1402.014).

3.3. Extraction and Characterization of the HL60 Cell Line-
Derived Small Extracellular Vesicles

3.3.1. Small Extracellular Vesicles Extraction

The isolation of sEVs from the HL60 cell line

supernatant was performed, using the ExoCib kit, which

employs polymer deposition for the isolation process

(14). A medium devoid of serum was utilized to

eliminate potential interference from sEVs contained in

FBS (Gibco, USA). The HL-60 supernatant was collected

frozen and thawed at 4°C for sEVs extraction. After that,

it was centrifuged at 3000 RPM for 10 minutes to remove

cell debris; then, reagent A was added to the samples at a

ratio of sample to reagent A of 5:1, vortexed for 5

minutes, and incubated for 12 hours at 4°C. Following

another minute of vortexing, the mixture was

centrifuged at 3000 RPM for 40 minutes at 4°C, after

which the supernatant was discarded, and 50 µL of

reagent B was added to the sEVs pellet per 10 cc of the

initial supernatant, with the purified sEVs stored at

-20°C until further use.

3.3.2. Acute Myeloid Leukemia-Derived Small Extracellular
Vesicles Surface CD Markers

To evaluate the phenotypic characteristics of the sEVs,

10 mL of monoclonal antibodies against sEVs surface CD

markers were incubated with 50 mL of sEVs suspension

for 30 minutes at 4°C, and after washing, reading was

done, using the Attune NxT flow cytometer (Thermo

Fisher Scientific, USA). Calibration was achieved, using

standard microbeads (0.3 - 0.1-3 µm in diameter; BD,

USA) to accurately gate particles as sEVs. The sEVs were

characterized, using FITC- or PE-conjugated antibodies

to detect CD9, CD63, and CD81 markers.

3.3.3. Transmission Electron Microscopy

To analyze the size, shape, and distribution of AML-

derived sEVs, initially, 5 mL of sEVs suspension was fixed,

using 1% glutaraldehyde. Then, a mixture drop was

poured on the grid coated with carbon and placed at

room temperature to dry completely. Then, the grids

were washed twice for 1 minute with sterile PBS. Next,

the grids were stained with 1% uranyl acetate dye (PELCO,

Ted Pella) for 16 minutes. Finally, the morphology and

size of sEVs were analyzed, using transmission electron

microscopy (TEM) (Zeiss EMloc from Germany).

3.3.4. Dynamic Light Scattering

Dynamic light scattering (DLS) was used to measure

the diameter of AML-derived sEVs. The diameter of

particles in 1 mL of PBS was assessed, and their

absorbance was measured at 630 nm at room

temperature. The results were analyzed, using ZetaSizer

(V.7.12) software.

3.3.5. Bicinchoninic Acid Protein Assay

The bicinchoninic acid (BCA) protein assay was

utilized to quantify the concentration of AML-derived

sEVs. Following the manufacturer's instructions for the

BCA kit (DNA Biotech Co, I.R. Iran), the optical density

(OD) of standard serial samples (S1-S7), positive control

(FBS), negative control (PBS), and test samples was

measured at 595 nm, and the protein concentration of

sEVs was determined based on the standard curve.

3.4. Methylthiazole Tetrazolium Test

To determine the dose of sEVs that causes maximum

proliferation in BM-MSCs, methylthiazole tetrazolium

test (MTT) was performed with doses of 20, 50, and 80

during 24, 48, and 72 hours. BM-MSCs (3 × 103 cells/well)

were divided into two groups: Treated (test) and

untreated (control). The test group received AML-

derived sEVs at concentrations of 20 µg/mL, 50 µg/mL,

and 80 µg/mL for 24, 48, and 72 hours in a 96-well plate,

while the control group remained untreated. After the

incubation period, 10 µL of MTT solution (Acros

Organics, USA) was added to each well, and the plate was

incubated for an additional 4 hours at 37°C.

Subsequently, 100 µL of DMSO (Sigma Aldrich, USA) was

added to dissolve the formazan, and the OD was

measured at 570 nm, using an ELISA reader (Biotek Elx

800, USA).

3.5. Cell Proliferation Assay by Ki-67 Staining

The impact of sEVs on BM-MSC proliferation was

evaluated, using the Ki-67 antigen, a marker for cell

proliferation. Test BM-MSCs were exposed to 50 µg/mL of

AML-derived sEVs for 48 hours, whereas control BM-MSCs

were untreated. After washing, 10 µL of Ki-67 FITC

antibody was added to the cells, followed by a 30-minute
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incubation at room temperature. The cells were, then,

analyzed, using flow cytometry, and the data were

processed, using FlowJo software (v.10.10).

3.6. Cell Cycle Assay

The effect of AML-derived sEVs on the BM-MSC cell

cycle was investigated, using flow cytometry. Test BM-

MSCs were treated with 50 µg/mL of AML-derived sEVs

for 48 hours, while the control group remained

untreated. After washing with PBS and adding 50 µL of

cold PBS, the cells were fixed with 1 mL of cold 70%

ethanol. The cells were, then, centrifuged, the ethanol

was removed, and 1 mL of MASTER MIX PI solution was

added. The cells were incubated at room temperature

for 30 minutes and analyzed, using flow cytometry.

Results were interpreted, using FlowJo software (v.10.10).

3.7. Apoptosis Analysis by Flow Cytometry

To determine the impact of sEVs on BM-MSC

apoptosis, cells in the test group were exposed to

treatment with sEVs derived from AML at a

concentration of 50 µg/mL for 48 hours, while BM-MSCs

in the control group were untreated. The experimental

treatment was executed in triplicate after a 24-hour

incubation period at 37°C. To assess apoptotic cells, both

the supernatant and cells were collected and subjected

to centrifugation at 1500 rpm for 5 minutes. The

resulting cell pellet was, then, resuspended in Annexin

V-X1 buffer. To prepare flow cytometry analysis, 96 µL of

the cell suspension was transferred to a flow cytometry

tube, adding 1 µL of conjugated Annexin V-FITC and 12 µL

of propidium iodide solution. This mixture was

incubated in the dark on ice for 10 minutes and diluted

to a final volume of 250 µL with Annexin V-X1 binding

buffer. The samples were, then, analyzed, using a flow

cytometer, and data acquisition and interpretation were

performed, using FlowJo software.

3.8. RNA Extraction, cDNA Synthesis & RT q-PCR Assay

Total RNA was extracted from BM-MSCs treated with

50 µg/mL of AML-derived sEVs for 48 hours and from

control BM-MSCs, using Ribo EX general (GeneAll,

Republic of Korea) according to the manufacturer's

instructions. RNA quality and quantity were assessed by

agarose gel electrophoresis and a nanodrop instrument

(Thermo Fisher, USA). cDNA synthesis was performed,

using the kit protocol (AddBio, Korea) with GAPDH as

the housekeeping gene.

RT q-PCR was conducted, using the ABI StepOnePlus

system (Thermo Fisher Scientific, USA) and SYBER Green

real-time PCR master mixes (Ampliqon, Denmark). The

primers for the target genes, specifically AKT1 from the

PI3K/AKT pathway, as well as Cyclin D1, CDK4, and CDK6,

which are critical downstream targets of this pathway

and are instrumental in the progression of the G1 phase

of the cell cycle, were designed, using advanced tools

such as NCBI Primer-BLAST, Oligo Analyzer, and Allele ID

software. Subsequently, employing the PCR instrument

(Thermo Fisher Scientific, USA) and the temperature

gradient method, the optimal temperature for primer

annealing was determined. The alteration in gene

expression was, then, calculated as the fold change

using the 2-ΔΔCt (Livak) method.

3.9. Statistical Analysis

Data analysis was executed, using GraphPad Prism

software version 9.5.1 (California, USA), and results were

expressed as means ± standard deviation (SD). A one-way

analysis of variance (ANOVA) was employed to analyze

variables across multiple conditions, followed by

Tukey's test for post-hoc comparisons. Further, Tukey's

test was applied for post-hoc analysis. All assays were

conducted independently in triplicate to ensure the

reliability and reproducibility of the findings. Statistical

significance was determined at a threshold of P < 0.05.

4. Results

4.1. Characterization of Bone Marrow Mesenchymal Stromal
Cells and HL60

The morphological characteristics of BM-MSCs and

their surface expression of CD markers were evaluated,

using an inverted microscope and flow cytometry,

respectively. The spindle-shaped morphology of

attached BM-MSCs observed under the inverted

microscope (Figure 1A), combined with the positive

expression of CD73 and CD90 and the negative

expression of CD45 and CD34 in flow cytometric

analyses (Figure 1B), confirmed the identity of the BM-

MSCs. In addition, flow cytometric analysis of the HL-60

cell line revealed the dim expression of CD45, negative

expression of CD14 and CD34, and positive expression of

https://brieflands.com/articles/ijcm-152405
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Figure 1. Characterization of BM-MSCs and HL-60 cell line. A, spindle-shaped morphology in attached BM-MSCs observed through an inverted microscope; B, flow cytometric
evaluation of BM-MSCs showing the expression of CD73 and CD90, with the absence of CD45 and CD34 expression; C, flow cytometric assessment of HL-60 cell line showing dim
expression of CD45, negative expression of CD14 and CD34, and positive expression of CD33 and CD117. BM-MSCs, bone marrow mesenchymal stromal cells; CD, cluster of
differentiation.

CD33 and CD117, which conclusively indicated the

myeloid origin of this cell line (Figure 1C).

4.2. Identification of Acute Myeloid Leukemia-Derived Small
Extracellular Vesicles

The characterization of sEVs derived from the HL60

cell line was validated, using flow cytometry, DLS, TEM,

and the BCA protein assay. Flow cytometry confirmed

the presence of sEVs in the harvested supernatant by

detecting the surface expression of sEVs pan markers

CD9, CD63, and CD81 (Figure 2A). Dynamic light

scattering analysis revealed an average sEVs size of 89.36

nm in diameter (Figure 2B). The BCA protein assay

quantified the concentration of AML-derived sEVs at

1499 μg per 1000 mL (Figure 2C). Furthermore, TEM

analysis illustrated the morphology of AML-derived

sEVs, showing them as two-layered spheres (Figure 2D).

4.3. Methylthiazole Tetrazolium Test Assay

Test BM-MSCs were incubated with sEVs

concentrations of 20 μg/mL, 50 μg/mL, and 80 μg/mL for

24, 48, and 72 hours, while the control group was left

untreated. The results demonstrated that the effects of

AML-derived sEVs were both dose- and time-dependent.

Specifically, an increase in BM-MSC proliferation was

observed at 20 μg/mL after 24, 48, and 72 hours and at 50

μg/mL after 24, 48, and 72 hours, with the highest

proliferation rate occurring at 50 μg/mL during the 48-

https://brieflands.com/articles/ijcm-152405
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Figure 2. Identification of acute myeloid leukemia (AML)-derived small extracellular vesicles (sEVs). A, surface expression of pan-sEVs markers (CD9, CD63 and CD81) by flow
cytometry; B, average size of sEVs by DLS; C, quantification of sEVs by BCA; D, two-layered spheres of sEVs with TEM. DLS, dynamic light scattering; BCA, bicinchoninic acid; TEM,
transmission electron microscope.

hour treatment period (P < 0.0001). In contrast, the 80

μg/mL concentration decreased metabolic activity at 24,

48, and 72 hours, indicating apoptosis in the test group

compared to the control group (Appendix 1).

4.4. Acute Myeloid Leukemia-Derived Small Extracellular
Vesicles Increased Ki-67 Levels in Treated Bone Marrow
Mesenchymal Stromal Cells

Treating BM-MSCs with AML-derived sEVs at a

concentration of 50 μg/mL for 48 hours resulted in a

https://brieflands.com/articles/ijcm-152405
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Figure 3. Increased Ki-67 levels in treated BM-MSCs. A, flow cytometric analysis of BM-MSCs treated with acute myeloid leukemia (AML)-derived small extracellular vesicles (sEVs)

(50 μg/mL, 48 hours) showing the population, control, and test groups. The test group exhibits a higher Ki-67 expression compared to the control; B, fold change in Ki-67
expression levels in BM-MSCs treated with AML-derived sEVs compared to the control group. The test group showed a 2.7-fold increase in Ki-67 expression levels compared to the

control group. Statistical significance was assessed using paired t-test and ordinary one-way ANOVA (**** P-value ˂ 0.0001). BM-MSCs, bone marrow mesenchymal stromal cells.

significant elevation in Ki-67 levels compared to the

control group. This was confirmed by flow cytometry

analysis, which demonstrated a 2.7-fold increase (P <

0.0001) and was further supported by RT-qPCR data,

showing a 2.3-fold increase in Ki-67 gene expression

levels (P < 0.0001) compared to the control group

(Figure 3A, B, and C respectively).

4.5. Acute Myeloid Leukemia-Derived Small Extracellular
Vesicles Caused Cell Cycle Progression Through the G1 Phase

Flow cytometry analysis of BM-MSCs treated with

AML-derived sEVs (50 μg/mL, 48 hours) revealed an

increase in the G1 phase, showing a 1.8-fold change

compared to the control group (Figure 4A and B). The

RT-qPCR results for BM-MSCs treated with AML-derived

sEVs (50 µg/mL, 48 hours) exhibited a significant

upregulation in the expression levels of CCND1 (3.5-fold,

P ˂ 0.0001), CDK4 (3.2-fold, P ˂ 0.0001), CDK6 (2.5-fold, P ˂
0.0001), and AKT1 (3.2-fold, P ˂ 0.0001), along with Ki-67

(2.3-fold, P ˂ 0.0001) compared to the control group

(Figure 4C).

4.6. Evaluation of Bone Marrow Mesenchymal Stromal Cells
Apoptosis Following Treatment with HL60-derived Small
Extracellular Vesicles

The assessment indicated a significant reduction in

the apoptosis rate of BM-MSCs treated with HL60 sEVs at

a concentration of 50 µg/mL for 48 hours,

demonstrating a 0.57-fold decrease relative to the

control group (P ˂ 0.0001), as quantified by Annexin/PI

https://brieflands.com/articles/ijcm-152405
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Figure 4. The effect of a 50 μg/mL dose of HL-60-derived sEVs on cell cycle and gene expression of BM-MSCs. A, flow cytometric analysis of BM-MSCs treated with 50 μg/mL of
acute myeloid leukemia (AML)-derived sEVs for 48 hours, showing the control and test groups. The treated BM-MSCs exhibited an increase in the G1 phase compared to the
control group, with a 1.8-fold change; B, quantifying cell cycle phases in BM-MSCs treated with AML-derived sEVs compared to control cells. The results show significant increases

in the G1 phase and decrease in the S and G2 phases of the cell cycle (**** P-value < 0.0001); C RT-qPCR results for BM-MSCs treated with AML-derived sEVs (50 μg/mL, 48 hours)
exhibited a significant upregulation in the expression levels of AKT1, CCND1, CDK4, CDK6, and Ki-67. Statistical significance was assessed using a paired t-test and ordinary one-
way ANOVA (**** P-value < 0.0001). sEVs, small extracellular vesicles; BM-MSCs, bone marrow mesenchymal stromal cells; RT-qPCR, reverse transcription-quantitative polymerase
chain reaction; CCND1, cyclin D1; CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6.

staining. This treatment resulted in a notable reduction

in early and late apoptosis phases (Figure 5A and B).

5. Discussion

Acute myeloid leukemia is distinguished by its rapid

onset and aggressive progression, typified by the

uncontrolled proliferation of myeloid progenitor cells.

Recent research has elucidated the crucial role of AML-

derived sEVs in reshaping the BMM to favor leukemic

cell survival and proliferation. These sEVs, laden with

oncogenic proteins and RNAs, induce significant

phenotypic alterations in BM-MSCs, thereby fostering

AML progression through enhanced proliferation,

invasion, and chemoresistance (15). The intricate cross-

talk between AML cells and BM-MSCs involves

sophisticated signaling pathways, notably the

https://brieflands.com/articles/ijcm-152405
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Figure 5. Apoptosis analysis of BM-MSCs after 48 hours of incubation with 50 μg/mL HL60-

upregulation of S100A4 and the activation of PI3K/AKT,

creating a feedback loop that sustains the malignant

phenotype of AML cells (15, 16). This complex interaction

promotes leukemic cell growth and impairs normal

hematopoiesis, complicating therapeutic efforts. A

thorough understanding of these dynamics is

imperative for developing targeted therapies to disrupt

these supportive interactions and improve patient

outcomes. Therefore, in this study, we investigated the

proliferative effects of AML-derived sEVs from the HL60

cell line on the cell cycle progression of BM-MSCs. The

PI3K/AKT pathway was specifically examined due to its

significant role in influencing cell proliferation through

its effects on the G1 phase.

Our study demonstrated that sEVs from AML cells

significantly increased BM-MSC proliferation in a dose-

and time-dependent manner. This finding is consistent

with several recent studies highlighting the influence of

leukemia-derived sEVs on BM-MSCs. For instance, sEVs

from B-cell acute lymphoblastic leukemia (B-ALL) cells

have been shown to promote MSC proliferation and

drug resistance (17). Similarly, sEVs from chronic

https://brieflands.com/articles/ijcm-152405
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myeloid leukemia (CML) cells, particularly from the

LAMA84 cell line, enhance MSC proliferation and

migration by promoting IL-8 secretion (18). Additionally,

sEVs derived from AML cells have been reported to alter

MSC behavior, enhancing their proliferation and

supporting leukemia cell survival and drug resistance

(6). These studies collectively underscore the critical role

of leukemia-derived sEVs in modulating the BMM to

favor leukemic cell survival and proliferation, providing

valuable insights into potential therapeutic targets.

The increased BM-MSC proliferation in our study was

evident from the MTT assay results, which showed

enhanced metabolic activity of BM-MSCs treated with 50

µg/mL of sEVs for 48 hours. Further analysis revealed a

2.7-fold increase in Ki-67 levels, a cell proliferation

marker, corroborated by flow cytometry and RT-qPCR

data. Ki-67, renowned for its pivotal role in regulating

the cell cycle and its correlation with cellular

proliferation, is the most extensively employed marker

for proliferation (19). Our results showed a significant

increase in Ki-67 levels, measured through flow

cytometry, alongside a concurrent rise in Ki-67 gene

expression levels, as indicated by RT-qPCR data. Recent

research has highlighted the significance of Ki-67 in

understanding the biology of cancer. For example, sEVs-

derived FZD10 has been identified as a crucial factor in

boosting Ki-67 expression, particularly in colorectal and

gastric cancer (GC) contexts, by activating phospho-

ERK1/2 (20).

Similarly, Wang et al. explored the diagnostic and

prognostic potential of EVs positive for the epidermal

growth factor receptor (EGFR) in glioma. Their findings

demonstrated the ability of EGFR in serum EVs to

distinguish between high-grade and low-grade glioma

patients, revealing a positive correlation with Ki-67

expression in tumor tissues (21). In a more recent study,

Zadka et al. conducted a recent investigation on

colorectal cancer (CRC), which found a significant

positive association between Ki-67 and particular sEVs

markers (CD9 and CD63) (22).

The regulation of cell cycle progression in the G1

phase is governed by intricate signaling pathways,

where active biomolecules and growth agents (GA) serve

as pivotal initiators. The GA-induced activation of the

PI3K pathway subsequently triggers AKT1, which

modulates cell cycle progression by influencing critical

components, including CCND1, CDK4, and CDK6 (15). To

rigorously investigate this hypothesis, we examined the

ultimate targets of these signaling pathways,

specifically CCND1, CDK4, and CDK6. In this study, our

findings revealed a marked upregulation in gene

expression associated with the G1 phase regulation, as

evidenced by RT-qPCR analyses, further corroborated by

flow cytometric validation. The data demonstrate that

AML-derived sEVs profoundly influence the cell cycle

dynamics of BM-MSCs, mainly through modulation of

the G1 phase. The observed significant changes in cell

cycle distribution and the upregulation of key genes

within the PI3K/AKT pathway indicate that these sEVs

activate pathways crucial for cell proliferation and

survival. The enhanced expression of genes such as

CCND1, CDK4, and CDK6 suggests that AML-derived sEVs

facilitate cell cycle progression and foster a proliferative

microenvironment. These findings underscore the

pivotal role of sEVs in reshaping the BMM, thereby

supporting leukemic cell survival and proliferation.

Moreover, Matsumoto et al. conducted a study, where

they extracted sEVs from human esophageal squamous

cell carcinoma (ESCC) cells, using ultracentrifugation.

Employing cell proliferation assays and fluorescence

imaging of the cell cycle, the investigation aimed at

elucidating phenotypic changes induced by high

concentrations of tumor-derived sEVs. The results,

revealing a significant increase in the ratio of G1-phase

cells in the sEVs exposure group, contribute valuable

insights into the influence of these sEVs on cell cycle

dynamics (23). This intricate interaction presents

potential therapeutic targets within the sEVs-mediated

signaling pathways, offering promising avenues for

improving treatment outcomes in AML. The alterations

in gene expression profiles strongly imply further

involvement of the PI3K/AKT signaling pathways,

reinforcing the critical impact of AML-derived sEVs on

BM-MSC behavior and leukemia pathobiology.

Consistent with our findings, mounting evidence

indicates that the sEVs-activated PI3K/AKT pathway plays

a crucial role in developing and progressing various

malignancies, including cervical, breast, prostate,

colorectal, and lung cancers (24-30). The clinical

relevance of the PI3K/AKT/mTOR pathway in cervical

cancer has been highlighted by Zhang et al., who

analyzed neoplastic tissues, adjacent normal tissues,

and sEVs from vaginal secretions. They found no

significant difference in the expression levels of

https://brieflands.com/articles/ijcm-152405
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PI3K/AKT/mTOR genes between cancer tissues and sEVs;

however, gene expression in both was significantly

elevated compared to normal marginal tissues (25).

Moreover, Zheng et al. demonstrated that exosomal

apolipoprotein E (ApoE) activates the PI3K/AKT pathway,

facilitating the migration of GC cells (31). Another study

revealed that exosomal LncRNA MALAT1 sequesters miR-

26a/b, promoting the invasive behavior of CRC by

activating the PI3K/AKT/mTOR signaling pathway (32).

5.1. Limitations and Suggestions

Given the involvement of sEVs and their pan markers,

including CD9, CD63, and CD81, in various biological

processes such as aging and fertilization, it is

conceivable that suppressing these markers could give

rise to significant complications. Consequently, there is

a critical imperative for identifying and developing

specific inhibitory tools against tumor-derived sEVs.

5.2. Conclusions

The findings of this study showed that AML-derived

sEVs can further activate PI3K/AKT signaling pathways

and influence the survival and proliferation of cancer

cells. Our investigations suggest their specific targeting

as a potential therapeutic strategy against cancer

progression, invasion, and metastasis.
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