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Abstract 
Background: The Nottingham Prognostic Index (NPI) is widely-used in the UK for risk 
stratification of breast cancer patients. This paper aims to evaluate the ability of this 
index to detect patients with sufficiently low risk of recurrence that they could be 
spared harsh treatments, and to construct an enhanced prognostic rule that 
integrates biomarkers with clinical variables to achieve better risk stratification.

Methods: We undertook review of published studies of outcomes in risk groups 
derived by applying NPI, and report estimated event-free rates extracted from 
papers found. Then we analysed biological and clinical variables for 401 ER+ 
patients, to develop a Tree-based Survival Model (TSM), for risk prediction, and 
estimated event-free rates by resulting risk-groups, Kaplan-Meier (K-M) curves 
corresponding to TSM and NPI were plotted. 

Results: We concluded that NPI does not distinguish low risk patients with a 
sufficiently high event-free rate to make it likely clinicians would decide treatments 
with potential harmful side effects can be avoided in that group. On the other hand, 
in the decision tree constructed, utilising 3 biomarkers, nodal status and tumour size, 
the 4 risk groups were clearly diverged in terms of event-free rates. 

Conclusion: There is considerable potential for improved prognostic modelling by 
incorporation of biological variables into risk prediction. Whilst low risk patients 
identified by our TSM model could potentially avoid systemic treatment, higher risk 
patients might require additional treatment, including chemotherapy or other 
adjuvant treatment options. However, the decision tree model needs to be validated 
in a larger clinical trial cohort.

Please cite this article as: Baneshi MR, Warner P, Anderson N, Tovey S, Edwards J, 
Bartlett JMS. Can Biomarkers Improve Ability of NPI in Risk Prediction? A Decision 
Tree Model Analysis. Iran J Cancer Prev , 2010 ; Vol3, No2, p.62-74.

Keywords: Breast neoplasm, Tissue microarray data, NPI, Tree-based survival 
methods, Missing data

Introduction
Cancer is one of the most major health problems 

worldwide. In UK, more than a quarter of a million 
new cancer cases are diagnosed per year. Breast 
carcinoma is the most prevalent malignancy, with one 
million newly diagnosed cases annually, comprising 
18% of all female cancers [1]. Each year in UK, 
more than 44,000 women are diagnosed with breast 
cancer and 2400 die from it [2]. 
Management of patients suffering from cancer is 

guided using prognostic models. Prognostic models 
combine key patient characteristics (i.e. risk factors) 
to predict clinical outcomes such as recurrence of 
cancer. Such models are valuable tools for selection 
of treatment strategy and for providing a patient 
with information about her likely outcome[3].They are 

also useful for investigating the contribution of 
variables to the disease course, and to inform design 
of future studies [3].
In the case of breast cancer, Nottingham 

Prognostic Index (NPI) was devised to estimate the 
risk of recurrence and to classify patients into risk 
groups [4]. To do so, multiple conventional prognostic 
candidate variables (9 variables in total) have been 
investigated by applying the Cox regression model 
to derive an index of risk of disease recurrence [4]. 
This model (NPI) uses information on 3 clinical 
variables (number of positive nodes, tumour grade, 
and tumour size) to stratify into 3 risk groups, and 
has been widely validated [5-7]. However, it has 
been commented that, for a prognostic model such as 
NPI to be clinically useful in practice, it should be
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able to identify a subset of patients with a prognosis 
so good that it would be safe to forego the risks of 
adjuvant therapy with potential harmful side effects, 
such as chemotherapy [8]. Furthermore, it has been 
argued that NPI is not capable of identifying such a 
subgroup [7]. 
NPI calculates risk based on only the clinical 

presentation of the tumour, at biopsy, yet there is 
clear evidence that breast cancer is a heterogeneous 
disease which includes different subtypes [9]. As an 
example, Estrogen and Progesterone hormonal 
Receptors (ER and PR), present in nearly two thirds of 
breast cancer specimens, are associated with growth 
of cancer cells, and the HER2 gene controls growth, 
division, and the repair of cells (10). It has been 
found that estimated 6-year Disease Free Survival 
(DFS) differed markedly between (ER+, PR+) and 
(ER-, PR-) cases (85% versus only 72%)  [10]. 
However, recent developments in the field of cancer 
biology, have led to the development of Tissue 
Microarray Analysis (TMA), which enables
measurement of many cancer tissue characteristics 
describing the underlying biology of breast cancers, 
and offering potential insights to likely disease 
course, and hence management of breast cancer 
patients. 
TMA has been taken up by cancer researchers 

world-wide [11]. The tumour tissue is embedded in 
paraffin, and then using a hollow needle 6 millimetre 
diameter, tissue cores are removed from the region 
of interest, a process similar to clinical biopsies.  
Tissue cores are inserted in a new paraffin block and 
microtome used to cut sections for staining and/or 
microscopic examination. While these TMA variables 
could have the potential to enhance risk prediction, a 
challenge arises for prognostic modelling methods 
since TMA analysis results in many additional 
potential prognostic markers (i.e. biomarkers). Given 
the generally accepted requirement for at least 10
events per independent variable being tested, in 
order to develop a reliable Cox regression model 
[12], inclusion of TMA variables can substantially 
increase the size of cohort needed for regression 
modelling. However, as an alternative to traditional 
Cox regression model, Tree-based Survival Model 
(TSM) can be applied, since this place no limits on the 
number of variables included   [13]. 
The aim of this paper is to review the ability of the 

NPI index to detect low risk patients and, using 
cohort data available for analysis. We also will 
integrate both clinical and biomarker (TMA) 
variables, through TSM analysis, so as to develop an 
enhanced prognostic model for breast cancer 
recurrence.

Material and Methods
Literature review of ability of NPI to identify ‘low 
risk’ patients
To evaluate the ability of NPI in risk stratification, 

in Oct 2008 using Pubmed data base, the word 
‘Nottingham’ in the title of the paper was searched. 
References cited in papers which reported 
application of NPI, were also checked. Only papers 
which reported the application of the NPI to stratify 
patients into risk groups were considered. Papers 
cited by those papers selected were also checked. In 
the case of no report of event-free rates, if survival 
curves were presented, then figures were read off as 
accurately as possible from the plots. 

Sample 
A total of 401 Estrogen Receptor positive (ER+) 

women diagnosed during 1983 and 1999 at 
Glasgow Royal Infirmary formed our sample. 
Median follow-up time was 6.16 years and all 
patients received Tamoxifen for some of the follow-
up time (median of 5 years). At the end of the 
follow-up there had been 112 recurrences. All 
patients were treated by surgery with curative intent 
and received Tamoxifen after surgery; 73 (18%) 
were aged under 50 years of age at diagnosis [14-
16]. 

Variables and outcome 
The main outcome of the study was Recurrence 

Free Survival (RFS). Data for a large number of 
tissue microarray variables (72 variables describing 
41 protein biomarkers) and 3 clinical variables 
(nodal status, grade (Bloom and Richardson), and 
tumour size) were available. These 72 biomarkers 
belonged to RAS, AKT, PgR, MAPK, MTOR, BAD, and 
HER families [17]. Staining was analysed separately 
for membrane, cytoplasmic and nuclear localisation 
of biomarkers:

1. Membrane expression was analysed for: 
p118ERα , p167ERα , EGFr, HER2, phosphoHER2, 
HER3 (m), HER4-ICD (intracellular domain), HER4
ECD (extracellular domain) 

2. Cytoplasmic expression was analysed for: ER α, 
ER β, p118ER α, p167ER α, phosphoHER2, 
HER 3, HER4-ICD, HER 4 ECD, h RAS, n RAS, k
RAS, RAF 1, p259-RAF 1, p338-RAF 1, r Kip, 
TES, AKT 1, AKT 2, AKT 3, panAKT, p473AKT, 
p308AKT, mTOR, phospho-m TOR, p389-
p70S6k, Tace, Tacep, MAPK, phosphor MAPK, 
PTEN, Bcl2, Bax, Bad, p112-Bad, Bcl-xl. 

3. Nuclear expression was analysed for: ER α, ER
β, Pg R, p118ER α, p167ER α, phosphoHER 2, 
HER 3, HER4-ICD, HER 4 ECD, hRAS, n RAS, 
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k RAS, RAF1, p259-RAF 1, p338-RAF1, r Kip, 
TES, AKT1, pan AKT, p473 AKT, p308 AKT, 
MAP K, phosphor MAP K, PTEN, AIB1. 

In addition the gene amplification and the copy 
number for HER2 and AIB1 and TUNEL analysis of 
apoptosis were analysed.

TSM analysis

Construction of TSM 
TSM has no upper limit for number of variables 

included. TSM involves successive binary partitioning, 
to sub-classify subjects into a number of smaller 
groups (known as nodes), that are homogeneous with 
respect to recurrence rates.  To start,  the Log-Rank 
test is applied to every possible cut point for each 
prognostic variable, so as to select the split that 
ensures the greatest difference in recurrence rates 
between the two resulting subgroups (as judged by 
the lowest P-value, and highest Hazard Ratio (HR)) 
[18]. The process then proceeds in the same way on 
each of the two subgroups (each parent node is split 
into two subgroups known as child nodes), on these 
child nodes, and so on.  Once a sub-group cannot be 
sub-divided further (that is, when all splits have Log-
Rank p-value > 0.05 , or the only split with P value ≤ 
0.05 has its cut-point in the outer 20% of the 
distribution for that biomarker in the entire original 
sample [18], or would yield a sub-subgroup with n 
<30), then partitioning ceases and the un-split 
subgroup is declared a terminal node. The whole 
iterative process of sub-division creates a tree 
structure.  
Patients with missing data are not used in the 

initial TSM analysis, but once each node has been 
selected, patients  with missing data on the variable 
used, are assigned to an appropriate node by 
means of the ‘surrogate variable’ approach. This 
involves re-applying the partitioning algorithm 
explained above to all values for all other variables 
to select the second best variable cut off to achieve 
that split. If the surrogate variable has a missing 
value for that patient, then the next potential 
surrogate variable is tried, and so on [13]. 

Refinement of tree
A systematic search across all possible values, to 

detect the optimal split, can lead to the selection of 
over-optimistic and hence unstable cut points, due to 
the multiple testing undertaken [19]. To tackle
potential over fitting, branches with P-value 
exceeding 0.002 (corresponding to 0.05 if a single 
test had been applied [20]) were revoked (including 
all sub-branches) [21,22]. Furthermore, to avoid 
groups with small numbers of patients, no split at 

outer 20% of distribution of biomarkers was applied 
[18].

Amalgamation of groups with similar survival 
curve 
Although TSM ensures that the two terminal nodes 

within a branch are significantly different, it remains 
possible that terminal subgroups from distinct 
branches might have very similar survival curves. In 
accordance with usual practice in TSM modelling, 
terminal nodes will comprise a minimum of 30
patients. However, the higher the number of patients 
in node, the more robust the estimated event-free 
rate is. Although it would be possible, to decide in 
advance to require a higher minimum number of 
patients per terminal node, this leads to risk of a tree 
with very few ‘branches’, and hence of missing of 
high order interactions, in particular when the sample 
size is low. Therefore, further examination is required 
to rationalise the number of terminal nodes (risk 
groups), by examining the survival curves and event-
free rates in the terminal nodes, and also considering 
number of patients in each node. We plotted the 
Kaplan-Meier survival curves and estimated the 
actuarial 7-year RFS rates (see below) [23,24]. 

Assignment to NPI risk groups
The NPI risk scores are calculated as: NPI = 0.2 x 

Size (cm) + Nodal status + Grade where both nodal 
status and grade are scored as 1, 2 or 3. Tumour 
size was based on measurement of the mastectomy 
specimen. Histological grade (1 to 3) was 
determined based on criteria of Bloom and 
Richardson [25]. The Bloom-Richardson grading 
method is based on three features of invasive breast 
cancers: the percentage cancer composed of tubular 
structures, the rate of cell division, and the nuclear 
pleomorphism of tumor cells (nuclear grade, change 
in cell size and uniformity). Each of these 3 features is 
rated from 1 to 3. Summation of these scores, which 
give a total score that ranges from 3 to 9, is used to 
grade the tumours as follows:
• Grade 1 tumor (well-differentiated): scores 3 to 

5
• Grade 2 tumor (moderately-differentiated): 

scores 6 to 7
• Grade 3 tumor (poorly-differentiated): scores 8

to 9
Lymph node involvement was determined based 

on biopsy of a lower axillary node, an apical 
axillary node, and a node from the internal 
mammary chain. Patients were staged into 3 groups 
in terms of lymph node findings:
• Stage 1: Tumour absent from all 3 nodes

sampled
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• Stage 2: Tumour in low axillary node only.
• Stage 3: Tumour in either of apical or internal 

mammary nodes
In the data set used there was some missing data 

for clinical variables; altogether 58 patients had one 
or more missing values for clinical variables - 33 for 
nodal status, 11 for grade and 22 for tumour size. 
In calculation of the NPI, Multivariable Imputations 

by Chained Equations (MICE) method [26,27] was 
applied to deal with missing data. The MICE method 
is a probability-based simulation technique which 
takes into account imputation uncertainty pertaining. 
This is an iterative process where missing data for a 
variable is estimated using its imputation model and 
then in turn these data are used in estimation of 
missing data for another variable. In accordance with 
the usual practice, we imputed 10 values for each 
missing value, and thus created 10 imputed data 
sets. 
For each woman, an NPI risk score was calculated 

as above for each of the 10 imputed data sets, and 
her final NPI score was the average of these 10 risk 
scores. To create the risk groups, cut offs were 
applied to final (average) NPI risk scores, so that 
patients with average score ≤ 3.4 and > 5.4 formed 
the lowest and highest risk groups respectively, and 
the remainder the intermediate risk group. In this 
way, every patient was categorised into one of the 3
risk groups. 

Kaplan-Meier (K-M) curves for TSM and NPI risk 
groups
K-M survival curves were plotted and actuarial 5

and 7 year event-free rates years (with 67% and 
40% follow-up data respectively) were calculated 
corresponding to TSM and NPI risk groupings. Being 
event free all the way to the end of 7th year 
depends on no event in any of the preceding years, 
and also none in the 7th year. In actuarial life-table 
procedure, the whole follow-up duration is split into 
one year intervals.  If   indicates the number of 
patients at risk just before the i-th year starts, and   
the number of events during the i-th year, then the 
probability of being event free up to and including  
7th year is given by 

7

1

( 7 ) (1 )i
i i

dS
n=

= −∏

Results
Review of event free survival by NPI risk group 
Our literature review resulted in 470 papers; the 

majority of them were not relevant to breast cancer. 
Only 17 papers were relevant, but two studies split 

each of the three risk groups into two, thus dividing 
the patients into 6 risk groups [28, 29]. Results of 
these 2 studies could not be compared with other 
studies since different cut offs were applied. Of the 
15 papers included in the review, not all provided 
information on confidence interval of reported 
survival rates, detailed information about the number 
of patients and recurrences in risk groups, follow-up 
time, and estimated event-free rates. 
A total of 15 papers reported short-term rates at 

5 years (Table 1). Actuarial 5-year survival rate 
derived from original NPI was 88% [4]. In the 
literature, the estimated/ reported rate varied from 
82% [30, 31] to 96% [32, 33]. In the case of 3
studies, breast cancer patients were all node 
negative, so none was assigned into the high risk 
group [30, 31, 34]. 
Focusing on longer-term survival rates (Table 2), in 

the largest studies, nearly 25000 and 10000
patients were recruited [7,35]. In both studies, 
estimated 10-year survival rate was about 80%. 
Some other studies reported a similar rate [6, 35-
37]. 
The highest 10-year event-free rate in the low risk 

group was 88%, reported for a study recruiting only 
patients with small primary breast cancer [33]. 
However the same 10-year event-free rate (88 %,) 
was reported in the longest follow-up study [38], and 
the event-free rate for the high-risk group in the 
latter study was also higher than most of the other 
studies. 
The poorest 10-year survival rate in a low risk 

group was only 66% [39]. Sample size and duration 
of follow-up was not reported. Callagy et al. (40) 
reported an estimate only slightly better (73% versus 
66%). 
Two cohorts were analysed in which lowest-risk 

patients were defined as those with      NPI≤ 2.4 (not 
shown in the tables) [28,29]. The cohort with longer 
follow-up data gave    10-year survival rate of 88%
[29]. The corresponding rate for the other cohort was 
96% [28 ].

TSM and NPI Model
The tree constructed is given in Figure 1. Branching 

points are shown as rectangles, and numbers in 
square brackets are, respectively, number of patients 
at this branching point, and number who had 
recurrences. Terminal nodes are shown as ovals, with 
numbers as for branching points. For each split, the P-
value reported corresponds to the Log-Rank P-value 
test. A total of 5 variables were used to construct the 
tree. The first two variables which best separated the 
patients were nodal status and tumour size. 
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Biological variables, Tunel, Prhisto, and cytoplasmic 
KRAS were also required. 
The absolute difference between estimated 7-

year RFS rates of nodes 3 and 4 was 20% (Table 3). 
Comparing nodes 1 with 2, and 5 with 6 (Table 3), 
rates within each pair were fairly similar (difference 
6% in each comparison). Furthermore, the number of 
patients comprising nodes 1, 2, 5 and 6 were smaller 
than for nodes 3 and 4. Therefore, to ensure more 
robust estimates nodes 1 and 2 were combined to 
create a single lowest risk group. In addition, nodes 
5 and 6 were grouped to create a highest risk 
groups. 
In the lowest risk group identified by TSM (nodes 

1 and 2 combined), there were only 3 recurrences 
out of 84 patients. This gave a 7-year RFS of 96%
(95% C.I. 92% to 100%). Figure 2 presents K-M 
curves showing survival experience for NPI risk 
groups and for risk groups derived by applying TSM 
model. While in NPI the three groups are fairly well 
diverged, the survival curve for the lowest risk group 
(top curve) continues to decline across the entire 
follow up period. In contrast, for the four TSM risk 
groups, the lowest risk group (top curve) shows very 
few events and no event at all after about 3 years 
follow-up.

Discussion
In our sample, actuarial 5 and 10-year RFS rates 

in the lowest NPI risk group were 94% and 79%
respectively, although it should be noted that sparse 
follow up to the 10th year (about 11%), means that 
our estimated 10-year rate might not be robust. The 
literature review of published studies (Tables 1 and 
2) showed that while the median of the short-term (5 
year) recurrence free rate of the lowest-risk group 
defined by NPI was 90%, a gentle decreasing trend 
was seen in K-M curves after fifth year of follow up 
to a median 10-year event-free rate of 80%
(ranging from 66% (39) to 88%) [33,38] Although 
patients were stratified by the same prognostic 
index (i.e. NPI), marked differences were seen 
between estimations. However, comparison of results 
is not straightforward since different patient
subgroups received a variety of treatment regimes. 
In addition, the sizes of studies varied hugely (from 
82 to more than 25000). However, our aim was 
neither to compare the results nor to do a quality 
assessment of estimations. We simply aimed to 
perform a narrative review, across the spectrum of 
study types in which NPI has been utilised, to 
investigate Balslev and co-authors’ statement that 
NPI is not able to identify patients with very low risk 
[7]. 

The second aim of our research was to develop a 
TSM prognostic model for RFS combining clinical and 
biomarker variables, that could identify a clearly 
low risk group, that might be spared adjuvant 
treatments.  Prior to the start of this research, this 
issue was discussed with the clinical collaborators of 
the study and it was proposed that a minimum 10-
year RFS of 95% would define such a group. 
Elsewhere it has been commented that a prognostic 
group with a 15-year survival of 94% could be 
considered ‘a group of patients potentially cured by 
locoregional treatment alone’ [33].  Our literature 
review showed that the best published estimate using 
standard NPI is 88% 10-year RFS in the lowest risk 
group. Our review therefore showed that standard 
NPI is not capable of identifying a subgroup of 
patients with sufficiently low risk of recurrence who 
do not require harsh treatments [7].  
With regard to the TSM model developed, the 

lowest risk group of the Glasgow data set had both 
5 and 7-year RFS of 96% (95% CI: 92%, 100%). In 
contrast, 7-year rates for NPI were 89% (95% CI: 
83%, 95%). However, an adaptation of NPI, 
applying an additional cut-off at ≤2.4, has 
identified a ‘lowest risk’ group with a    15-year 
survival of 94% [33]. However, this is essentially all 
those with nodal status, grade score of 1 and tumour 
size of ≤ 2 cm, and only a small proportion of 
patients are likely to meet these criteria. In the 
Glasgow data set this subgroup comprises only 43
patients (11%), who had an estimated 7-year, RFS 
of 95% (95 % CI: 89%, 100%).

Although the lowest risk group detected by TSM 
(n=84) had higher (better) 7-year RFS rate than the 
lowest risk group by NPI (n=133), it should be noted 
that for the same data set, event-free rates 
estimated for patients in the "lowest risk group", to a 
great extent depend on decisions as to the size of 
that risk group. The 84 patients with lowest NPI 
scores would have better RFS than the larger 
subgroup of 133 classified to as its ‘low risk’ group 
(by its pre-defined classification rule). So we are not 
comparing like with like. An alternative strategy for 
improving low risk group stratification in NPI would 
be to add a further cut off to is classification, and 
thus create an even lower risk NPI group, as has 
been done [33], or to use NPI scores to create a new 
grouping with more than 3 groups [41]. 
The main weaknesses of the TSM approach are 

multiple testing and potential over-fitting [19]. It has 
been discussed that decision trees are sensitive to 
small changes in the sample [42]. Sensitivity (of 
results) to sample is a problem in all modelling 
approaches (including regression methods). 



Table 1.Comparison of 5-year event frees rate across studies in the subset of patients identifies as being low risk by NPI 

Study Ref. 
number

Cohort 
size

Treatment Given Follow-up 
(years)

Lowest-risk group (L) Intermediate-risk group (I) Highest-risk group (H)
Number
(%) of cases

Event-free rate
(%)

Number
(%) of cases

Event-free rate
(%)

Number
(%) of cases

Event-free 
rate(%)

Haybittle 
(1982)

(4) 387 Simple mastectomy + triple node biopsy 1- 6 64 (21) 88 169 (57) 69 65 (22) 21

Todd (1987) (5) 3871+
320

Simple mastectomy + triple node biopsy
Simple Mastectomy

6-11.5
1.7- 6.5

192 (27) 88 381 (54) 69 134 (19) 22

Okugawa 
(2005)

(32) 311

ER- patients treated with adjuvant 
systematic chemotherapy consisting of 
cyclophosphamide, methotrexate,
and 5-fluorouracil (CMF) for 5 months 
ER+ treated with tamoxifen for
2 years.

97 (31) 96 142 (46) 85 72 (23) 45

Sauerbrei 
(1997)

(30) 603
Modified radical mastectomy + en bloc 
axillary dissection with ≥ 6 identifiable 
lymph nodes in the specimen 

5 163 (27) 82 440 (73) 70 No case 

Coradini 
(2001) 

(31)
226 Radical or conservative surgery + 

radiotherapy, and complete axillary 
dissection until relapse

0.3- 8.17
Median 
6.25

82* 72* No case

Ring (2006) (34) 195 Only ER+ lymph node – patients were 
analysed. Treatments applied not given

90 90 No case

1. These 387 patients were those used to devise the NPI index
* inexact read off from graph



Table 1 (continued). Comparison of 5-year event frees rate across studies in the subset of patients identifies as being low risk by NPI

Study
Ref. 

number
Cohort size Treatment given

Follow-up 
(years)

Lowest-risk group (L) Intermediate-risk group (I) Highest-risk group (H)
Number

(%) of cases
Event-free 
rate (%)

Number
(%) of cases

Event-free rate
(%)

Number
(%) of cases

Event-free 
rate (%)

Balslev 
(1994)

(7) 9149 94.8% simple mastectomy
5.2% tumorectomy + radiotherapy

2.3- 13.9
median 7.1

2494 (27) 92 5245 (57) 75 1410 (16) 40

Kollias 
(1999)

(33) 2684 69.1% mastectomy or subcutaneous mastectomy
30.9% lumpectomy (more details in the paper)

894 (33) 96* 1374 (52) 82* 416 (15) 35*

Sidoni  
(2004)

(36) 82 Not reported Min 5 27 (33) 92* 39 (48) 63* 16  (19) 55*

Eden  
(2004)

(37) 971 5 patients adjuvant systemic therapy (no more 
information was provided)

83* 43*

Callagy 
(2006)

(40) 557 Chemotherapy 0.4- 39.4
Median 8.7

34 (6) 83* 236 (42) 75* 287  (52) 55*

Lundin 
(2006)

(35)

2036
(FinProg 
series)

Node negative     Node positive

Adjuvant therapy       8.8% 92.3%
Chemotherapy    6.2% 52.0%
Hormone therapy       2.4% 36.1%
Unknown 0.2% 3.1%

Median 9.5 90* 80* 50*

25752
(SEER series)

Approximately 66% adjuvant therapy, 18%
chemotherapy, 35% hormone therapy, and 9% both

Median 9.7 91* 83* 60*

D’Eredita 
(2001)

(38) 402 Surgery + axillary clearance (details provided in the 
paper)

11-19
median 15

110 (27) 93* 198 (49) 75* 94 (23) 50*

Galea 1
(1992)

(6) 1629 Not reported 470 (29) 92* 879 (54) 72* 280  (17) 25*

2. Eden et al. studied 46 patients who developed distant metastasis within 5 years and 51 patients being distant metastasis-free for ≥ 5 years 
3. Galea et al. reported 15-year event-free rates    
* inexact read off from graph



Table 2. Comparison of long-term event free rate (10 years or more) across studies in the subset of low risk patients identifies as being low risk by NPI

Study
Ref. 

number
Cohort 
size

Treatment given
Follow-up 
(years)

Lowest-risk group (L) Intermediate-risk group (I) Highest-risk group (H)
Number

(%) of cases
Event-free rate

(%)
Number

(%) of cases
Event-free 
rate(%)

Number
(%) of cases

Event-free 
rate(%)

Brown 
(1993)

(39) Not reported 66 50 34

Balslev 
(1994)

(7) 9149 94.8% simple mastectomy
5.2% tumorectomy + radiotherapy

2.3- 13.9
median 7.1

2494 (27) 79 5245 (57) 56 1410 (16) 25

Kollias 
(1999)

(33) 2684 69.1% mastectomy or subcutaneous mastectomy
30.9% lumpectomy (more details in the paper)

894 (33) 88* 1374 (52) 58* 416 (15) 17*

Sidoni 
(2004)

(36) 82 Not reported Min 5 27 (33) 83* 39 (48) 60* 16  (19) 42*

Eden 
(2004)

(37) 971 5 patients adjuvant systemic therapy (no more 
information was provided)

83* 43*

Callagy 
(2006)

(40) 557 Chemotherapy 0.4- 39.4
Median 8.7

34 (6) 73* 236 (42) 60* 287  (52) 38*

Lundin 
(2006)

(35)

2923
(FinProg 
series)

Node negative      Node positive

Adjuvant therapy       8.8% 92.3%
Chemotherapy     6.2% 52.0%
Hormone therapy  2.4% 36.1%
Unknown                0.2% 3.1%

Median 9.5 79* 70* 29*

25752
(SEER 
series)

Approximately 66% adjuvant therapy, 18%
chemotherapy, 35% hormone therapy, and 9% both

Median 9.7 80* 70%* 29*

D’Eredita 
(2001)

(38) 402 Surgery + axillary clearance (details provided in 
the paper)

11-19
median 15

110 (27) 88* 198 (49) 70%* 94 (23) 40*

Galea 1
(1992)

(6) 1629 Not reported 470 (29) 80* 879 (54) 42* 280 (17) 13*

4. Eden et al. studied 46 patients who developed distant metastasis within 5 years and 51 patients being distant metastasis-free for ≥ 5 years
5. Galea et al. reported 15-year event-free rates
* Inexact read off from graph
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To improve the prognostic prediction, bagging of 
survival trees has been proposed. In this approach, a 
large number of trees are constructed by re-
sampling from the original data. The aggregated 
Kaplan-Meier curve for a new patient is defined as 
the Kaplan-Meier curve of all observations identified 
by the M leaves containing the new patient [43]. 
Therefore, no single tree can be reported and 
communication of results is not simple. Application of 
bagging was beyond the scope of this paper. 

Another approach is to construct the tree using half 
of the data, and then investigate its ability in risk 
prediction in the second half (known as data-splitting 
technique). This approach is not practicable when 
sample size is small [44]. 
Missing data is a common problem in oncology. In 

a recent review of 100 papers reporting survival 
analysis, published in 2002, a total of 81 papers 
had data with missing covariates and 4 papers did 
not provide sufficient information to determine 

Figure 1. Classification tree using biomarkers and clinical predictors  
For each branching point/ terminal node, numbers in square brackets show respectively number of patients 
and number of recurrences. 
For each branching point, the Log-Rank P-value is reported for comparing RFS in resulting ‘child’ nodes.  
For each terminal node, characteristics of cases within it are listed in curved brackets.

< 3[330, 75]
Size > 12mm or not?

(P<0.001)

Node 1 [36, 0]
(Nodal status < 3 & 
size <=12mm)

[294, 75]
Tunel >107 or not?

(P<0.001)

[250, 51]
Prhisto <172 or not?

(P<0.001)

Node 2 [48, 3]
(Nodal status < 3, Size > 
12mm, Tunel <=107 & 

Prhisto>=172)

[201, 48]
Krascy < 61 or not?

(P=0.002)

Node 3 [82, 10]
(Nodal status < 3, Size > 
12mm, Tunel <=107, 

Prhisto<172 & Krascy >=61)

= 3

<= 12mm  >12 mm  

>107<=107

>=172
<172

>=61
<61

[401, 112]
Nodal status < or = 3? 

(P<0.001)

Node 4 [119, 38]
(Nodal status < 3, Size > 
12mm, Tunel <=107, 

Prhisto<172 & Krascy <61)

Node 5 [45, 24]

(Nodal status < 3, Size > 
12mm & Tunel >107)

Node 6 [71, 37]

(Nodal status = 3) 
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whether there was missing data [45]. Complete-case 
analysis, which is the exclusion of cases with missing 
data on any of variables under study, was the 
method most frequently used [45]. However, 
exclusion of patients with missing data will diminish 
precision of estimates and genralisability of results 
[46]. The TSM approach to prognostic modelling has 
the advantage that the method handles missing data, 
and so intensive imputation techniques can be 
avoided.
Only 3.5% of patients in the lowest risk group 

experienced a recurrence compared to 53% of those 
categorised into the highest risk group had a 
recurrence (61 out of 116). Endocrine therapy, using 
tamoxifen or aromatase inhibitors remains the most 
successful approach to the treatment of early breast 
cancer but it is likely that many women do not 
require endocrine therapy at all, or if treated with 
aromatase inhibitors and/or chemotherapy, derive 
minimal additional benefit over tamoxifen treatment 
[47]. 
Molecular differences between breast cancer 

tumours support treating different molecular sub-
types based on their biology and pathology rather 
than pathology alone. We have taken a purely 
statistical ‘survival curve’ approach to merging of 
small terminal nodes into larger ones. As can be seen 
from Figure 1 and Table 3, patients with large 
tumours and with low Tunel and High Prhisto had 
similar prognosis to that of patients with small 
tumours (which resulted in merging of nodes 1 and 2). 
While this might be clinically counter-intuitive, 
reflection on this could enable TSM models to offer 
insights, and generate new biological hypotheses 
about mechanisms that govern cancer progress and 
interactions between biomarkers, which could be 
tested in fresh samples.  As another example, cases 
with nodal status of <3 and tumour size of <12 had 
a poor prognosis if their tunel is higher than 107, but 
had a very good prognosis if their tunel is lower than 
this threshold and if their Prhisto is higher than 172. 

It is likely that the validity of the final refinements 
to the TSM model could be improved with cancer 
biologist input to decisions regarding merging of 
small terminal nodes (with similar recurrence-free 
survival curves), by taking into account the place of 
TMA variables along the cancer pathway.  Certainly 
the most important issue for a model is its external 
validity, the extent to which it provides good 
predictions for similar patients who were not involved 
in the development of the model. If performance is 
assessed on the same sample as used for model 
development, then performance will be 
overestimated [48]. Therefore results presented in 
this paper are tentative until validated using a new 
data set.
Referring to the possibility that for some patients 

the balance of harm/benefit means that they would 
be better off with no adjuvant  treatment, it has been 
postulated that ‘it is an inability to identify such 
patients prior to treatment, rather than an 
expectation that all patients derive benefit, which 
drives the treatment of significant number of breast 
cancer patients with often aggressive chemotherapy’ 
[49]. It has also been commented that the 
identification of novel prognostic markers and their 
integration in risk prediction is essential for the 
solution of this dilemma [49]. Over the past few 
years, applying regression modelling strategies, the 
role of a large number of candidate predictive 
biomarkers has been explored [14-16,50,51]. It has 
been concluded that tumour profiling might improve 
patient selection for endocrine therapies [14-
16,50,51], and that over the next 3 to 5 years 
biomarkers will be incorporated as part of clinical 
diagnostic decision making [49]. The majority of 
published prognostic studies using TSM have focussed 
on clinical variables and traditional risk factors (such 
as race, ER and Progesterone Receptor (PR) status, 
family history) [24].  As an example of a model 
based on biomarkers, a total of 126 biomarkers, but 
no other variables, were available to construct a 
decision tree which predicts recurrence of breast 

Table 3. Estimated RFS rates in each of tree nodes  
Node number N at start 5-year RFS(%) 7-year RFS(%) Risk grouping

1 36 100 100
Low

2 48 94 94

3 82 93 87 Low Intermediate (LI)

4 119 74 67 High Intermediate (HI)

5 45 64 54
High

6 71 48 48
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cancer [34]. The final tree used information on 6 of 
the biomarkers. However, to the best of our 
knowledge, our present study is the first to assess the 
value of integration of biological and clinical 
variables together into risk prediction, using TSM. 
There are a variety of statistical approaches to 

deal with the issue of many potential variables [17], 
and elsewhere we have applied complex regression 
methods to develop a prognostic model combining 
biomarkers and clinical variables [41]. However, 
TSM analysis has a lot to offer researchers, because 
it provides a readily interpretable picture, which 
results in easier clinical decision making, and aids 
future studies [24,24,52-54]. For example, 
traditional multi-factorial regression tools (such as 
Cox without interaction term), suppose a uniform 
effect of the variable for the whole sample, whereas 
TSM can reveal a factor with different effects in 
different subgroups, a  biologically plausible 
situation, in that a biomarker might be important for
only a subset of patients. TSM therefore has 
potential benefits in terms of therapeutic 
management [24]. Furthermore, TSM is easy to apply 
(no distributional assumptions to be checked), avoids 
the needs for techniques to deal with missing data, 
and can be used as a good approximation for a 
complex model.
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