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Abstract  
Background: In medical research, dichotomisation of continuous variables is a 
widespread use approach. However, it has been argued that dichotomisation 
might be waste of information. The aim of this paper is to review the main methods 
to dichotomise continuous data, to address practical issues around dichotomisation 
methods, and to investigate whether dichotomisation is always a bad idea. 

Methods: A total of 310 breast cancer patients were recruited. Information on 3 
categorical and 1 continuous variable (age at diagnosis) was available. Missing 
data were imputed applying the Multivariable Imputation via Chained Equations 
(MICE) method. Then a minimum P-value method was applied to dichotomise the 
age variable. The Cox regression model was fitted to develop models in which 
dichotomised versus continuous version of the age variable plus other 3 variables 
were used. Results were compared in terms of discrimination ability, goodness of 
fit, and classification improvement. 

Results: For the age variable, an optimal split at 47 was found. This split was 
close to menopause age of women in Shiraz (48) so had biological 
interpretability. The stability of optimal split was confirmed in bootstrap study. 
Model in which dichotomised version of age was used showed higher discrimination 
ability and goodness of fit. Furthermore, dichotomised model assigned 14% of live 
patients into a more appropriate risk group.    

Discussion: Dichotomisation of continuous data is a contentious issue. We have 
shown that dichotomisation might improve performance of models when it has 
biological interpretation. More research is needed to understand situations in which 
dichotomisation might work.  
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Introduction 
Cancer is one of the most major health problems 

worldwide. Management of patients and treatment 
selection process is guided using prognostic models. 
For example, Nottingham Prognostic Index (NPI) was 
devised to guide the treatment of breast cancer 
patients [1]. This model has been widely validated 
and now is one of the central tools in risk prediction 
[2-4].  

In medical applications, to develop prognostic 
models, researchers often dichotomise continuous 
covariates prior to modelling analyses. From a 
statistical point of view, dichotomisation eliminates 
the need for the linearity assumption, makes data 
summarisation more efficient, and allows for simple 

interpretation of results [5]. In the regression setting, 
for instance, interpretation of the impact of a binary 
covariate on outcome is easier than that for a change 
of 1 unit in a continuous covariate. Furthermore, it has 
been claimed that, from the clinical point of view, 
binary covariates might be preferred because they 
offer a simple risk classification into high versus low, 
assist in making treatment recommendations, and in 
setting diagnostic criteria [5, 8].  

On the other hand, dichotomisation can result in 
the loss of information and power, if a linear rather 
than threshold association pertains, and non-linear 
relationships such as U-shape associations will not be 
detected [9, 10].  
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It has been emphasized that dichotomisation is 
appropriate only when a threshold effect value truly 
exists. That is, if we can assume some binary split of 
the continuous covariate creates two relatively 
distinct but homogeneous groups with respect to a 
particular outcome [11].  

The aim of this paper is to develop prognostic 
models using dichotomised versus continuous 
variables, and to address loss or gain in model 
performance due to dichotomisation. Methods 
applied analysing a breast cancer data set as an 
example.  

Materials and Methods 
Patients and outcome 

From 1994 to 2003, the information of 310 
breast cancer patients in Shiraz, southern Iran were 
collected from Hospital-based Cancer Registry of 
Motahhari Para clinic affiliated to Shiraz University 
of Medical Sciences. Median follow-up time was 2.5 
years. Survival was considered as the time period 
between diagnosis and death (or last visit) of 
patient. At the end of the study, there had been 56 
deaths.  

Variables 
Variables offered to the multifactorial models 

were those showed to have univariate predictive 
ability [12]: tumour stage with 3 levels (early, locally 
advanced, and advanced), tumour grade with 3 
levels (1, 2, and 3), history of benign breast disease 
(positive versus negative), and age at diagnosis.   

Imputation of missing data 
Not all patients had available data on all 4 

variables under study. To avoid attrition in sample 
size, Multivariable Imputation via Chained Equations 
(MICE) method was applied to impute missing data 
[13]. The MICE method replaces each missing value 
by multiple imputed values, resulting in multiply 
imputed data sets [14]. Technical details of the MICE 
method is illustrated elsewhere [15].  

Continuous Model 
The only continuous variable was age. Keeping 

this variable in the continuous form, all four variables 
were offered to the multifactorial model. 
Multivariable Fractional Polynomial (MFP) modelling 
was applied to develop the multifactorial regression 
model and to identify the appropriate (possibly non-
linear) form of association between age and 
outcome [16]. The MFP modelling checks whether 
power transformation is required in the multifactorial 
model. The MFP, after fitting of linear factors, 

ascertains whether model fit would be improved by 
using a polynomial form for any of the linear 
variables. 

Dichotomised Model 
To dichotomise the age variable the minimum P-

value procedure applied, as explained below. 
Dichotomised version of age variable and other 3 
categorical variables were then offered to the 
multifactorial model. 

In the minimum P-value approach, after a 
systematic search across all possible values, the value 
chosen as the cut point was that with the smallest 
corresponding P-value in a Log-Rank test, when 
comparing the survival curve of two groups formed 
[17]. To avoid groups with very small/ high number 
of patients, no split at the outer 20% of the 
covariate distribution was applied [17, 18]. In 
addition, to take into account the multiple testing 
undertaken, cut point P-value was adjusted to reach 
a decision regarding whether or not to adopt the cut 
point. If l o wε and h i g hε  show the proportion of the 

observations at the bottom and top of the highest cut 
point value considered (0.10 in our application), 
derivation below was applied [18]. Cut point 
selected was adopted only if the adjusted P-value 
reached significance level at 5% level [18]. 

 

m in m in1 .63 (1 2 .35 ( ))ad jP P L n P= − +     

Applying this correction formula, an unadjusted P-
value of 0.002 corresponds to 0.05 if one single test 
applies.   

Stability of cut point selected was checked using 
graphical (minimum P-value graph) ad numerical 
methods (bootstrap re-sampling) [8]. A minimum P-
value graph plots all cut point values of covariate 
against corresponding P-values to assess whether 
any other cut off(s) exists with P-value similar to that 
of minimum P-value [19]. To reduce the instability, 
the median of optimum splits across bootstrap 
samples will be used as the split. In the case that 
competing cut offs are far from each other, the 
modal statistic will be used (instead of media) [19].  

Comparison of performance of models 
Models developed were compared in terms of 

discrimination ability, goodness of fit, and 
reclassification improvement. 

Discrimination refers to the ability to separate 
patients with different responses [20] and is 
measured using Harrell’s C-index which is a 
generalisation of the Area Under Curve (AUC). This 
statistic varies between 0.5 and 1 where values near 
1 indicate high discrimination power.  
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For all models, the Likelihood Ratio Test (LRT) 
which indicates how well the model fits the data is 
reported. 

For both models developed, patients were 
classified into three risk groups. To do so, a risk score 
was calculated for each model. This was done 
multiplying the estimated regression coefficients into 
the variables. The tertiles of risk scores derived were 
applied as cut off. Net Reclassification Index (NR 
Index) was used to compare risk group assignment 
across different models [21]. This method considers 
the joint distribution of patients into risk groups, by 
the two risk grouping schemes being compared. This 
statistics quantifies the ‘correct’ movement in the risk 
group classifications i.e. upwards for patients who 
did experience the event and downwards for 
patients who did not [21]. Net gain in cases with 
event has been defined as the difference in 
proportion of subjects who moved into a higher or 
lower risk group. The reverse calculations will be 
made for event free cases. The NR Index is defined 
as summation of net gains [21].  

Results 
The numbers (percentages) of patients with missing 

value on node status, grade, and history of benign 
disease were 63 (20.3), 64 (20.6), and 47 (15.2) 
respectively. In total, out of 310 patients, 203 cases 
(65%) had data available on all 4 variables of 
which 54 had died. Applying the MICE method, 
missing data were imputed 10 times. However, for 

the purpose of this paper, only first imputed data set 
was analysed. 

We first developed the continuous model. 
Applying MFP model, we found that a linear risk 
function was adequate to capture effect of the age 
variable. Therefore this variable contributed to the 
multifactorial model using a linear risk function.  

We then calculated the optimal split for the age 
variable. The figure derives was 47 (corrected P-
value = 0.0002). To explore the underlying hazard 
structure of age variable, plotting the tested cut 
points versus split statistics; minimum P-value graph 
was plotted (Figure 1). No serious competition split 
was found. Stability of this split (i.e. 47) was 
confirmed in the bootstrap study. For subsequent 
checking of stability, 100 bootstrap samples were 
drawn. Investigation of the threshold effect of age 
found that in about 80% of bootstrap samples the 
optimal split was around 47 (ranged 44 to 52). 
Additionally, the median and mode of selected 
optimal thresholds was 47. Therefore, in the 
dichotomised model, the age variable was 
dichotomised at 47 and then offered to the 
multifactorial modelling. 

The area under the ROC curve corresponding to 
dichotomise and continuous models were 79% and 
77% respectively, indicating two percentage points 
improvement in discrimination ability of model after 
dichotomisation of age variable at 47. Furthermore, 
offering dichotomised version of age variable to the 
multifactorial model led to a slight improvement in 

 
Figure 1. Minimum P-value graph for the Age variable showing optimal split 
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the model's goodness of fit. The LRT statistics 
corresponding to these two models were 45.7 and 
41.8 respectively.   

We finally checked distribution of patients into 
low, intermediate, and high risk group, for 
dichotomised model relative to continuous model 
(Table 1). The proportion of alive patients that 
moved into more appropriate and less appropriate 
risk groups were 22% ([40+0+14]/253) and 8%, 
respectively ([19+0+2]/253). The corresponding 
figures for died patients were 9% ([2+0+3]/56) 
and 9% ([3+0+2]/56).  

The net gain in the proportion of patients that 
were reclassified was 14% (22% - 8%) for those 
that alive and 0% (9% - 9%) for those that died, 
giving an NRI at 14% (14% + 0%). 

Discussion 
Dichotomisation of continuous data is a debatable 

issue. It has been argued that it is statistically non-
intuitive, although it makes the presentation and 
interpretation of results easier. However, 
dichotomisation might work if it creates groups with 
similar biological characteristics.  

Table 1. Risk group assignment by continuous and the dichotomised models 

C
on

tin
uo

us
 m

od
el

 Status Risk group Dichotomised model 
L I H 

A
liv

e L 80 19 0 
I 40 45 2 
H 0 14 53 

D
ie

d 
L 3 2 0 
I 3 8 3 
H 0 2 35 

L: Low risk group   I: Intermediate risk group   H: High risk group 
Numbers show frequency of patients into risk groups based on two models developed 

 
 

 
Figure 2. ROC curve analysis comparing discrimination ability of dichotomised (blue line) versus continuous 
model (green line) 
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It should be emphasized that the main goal of this 
study was to demonstrate the application of 
statistical methods to dichotomise a continuous 
variable, to highlight advantages and disadvantages 
of dichotomisation, and to address impact of 
dichotomisation on model performance. To achieve 
our goals, we simply used a breast cancer data set 
as an example. Therefore discussion of risk factors of 
breast cancer and their contribution to the disease 
course is beyond the scope of this paper. This issue 
has been addressed here [22, 23].  

Before any modelling practice, we imputed 
missing data to avoid biased estimates [24]. In our 
data set, the optimal split derived was 47. 
Furthermore, it has been shown that menopause age 
of women in Shiraz is about 48. In other words, the 
dichotomised age variable was a surrogate for 
approximate menopausal status. The split applied 
created two homogenous subgroup of patients as 
menopause status is liked to activity Estrogen and 
Progesterone receptors. These receptors promote the 
growth of cancer cells, are present in nearly two 
thirds of breast cancer specimens, and can affect 
patient's outcome [25].  

We have found that, offering dichotomised version 
of age variable to the model –instead of continuous 
version- led to two percentage point improvement in 
discrimination ability of model (i.e. C-index).   

It should be noted that although the C-index is the 
most frequently used criteria in the literature [26,27], 
this statistics is not sensitive to assess the benefit of 
addition of a new risk factor to a set of standard risk 
factors, or to compare impact of change in the form 
of risk function (i.e. continuous versus dichotomised) 
[28-30]. As an example, the C-index has been used 
to assess the incremental coronary risk prediction 
using C- reactive protein and other novel risk factors. 
C-index for the basic model was 80%. This model 
was included age, race, sec, cholesterol level, high-
density lipoprotein cholesterol level, systolic blood 
pressure, antihypertensive medications, smoking 
status, and diabetes. Although most of novel markers 
showed age-adjusted significant association predict 
CHD, out of 19 variables studied only 4 of them 
added the most to the AUC ranged from 0.006 to 
0.011 [31]. In another study, the extent to which 
inclusion of seven single nucleotide polymorphisms 
(SNP) improves assessment of breast cancer risk was 
assessed [32]. AUC of new models were compared 
with that of the National Cancer Institute's Breast 
Cancer Risk Assessment Tool (BCRAT), which is based 
on ages at menarche and at first live birth, family 
history of breast cancer, and history of breast biopsy 
examinations. Only two percentage point increase 

was seen in AUC (0.61 versus 0.63). It has been 
shown that addition of a new risk factor with an odds 
ratio as large as 3, to a set of prognostic factors, 
may have little impact on C-index [28]. Therefore, 
we believe two percentage points improvement, as a 
consequence of using a different form of risk function 
(i.e. dichotomised versus continuous), might be 
remarkable.  

When biological knowledge cannot guide 
selection of an appropriate split, alternative 
approaches (i.e. media or optimal split methods) can 
be used. Although dichotomisation based on 
biological evidence is attractive, for the majority of 
variables the biological knowledge needed is not 
available.  

Another method commonly used is to categorise 
the covariate at a pre-determined split such as the 
median [33]. In this way an equal proportion of 
patients (50%) are assigned to each group. It should 
be added that dichotomisation at median leads to 
different threshold values from one study to another, 
and creates difficulties in comparing findings across 
different studies [10]. As an example, in a meta 
analysis of eleven studies on the role of cathespin D 
on Disease Free Survival (DFS) of breast cancer 
patients, the cut points used to define high/low 
cathespin D concentration ranged from 20 to 78 
[34]. Therefore this approach might not be useful in 
practice. In our data set, the median of age variable 
was 46 which were very close to optimal split. 
Therefore, no separate model was developed.  

In majority of situations, there is no biologic 
evidence or priori information regarding the 
underlying relationship between the covariate and 
the outcome. In such situations, it is possible to seek 
the cut point which gives us the largest difference 
between individual outcomes in the resulting two 
groups [35]. It should be emphasized that multiple 
testing is a regrettable consequence of minimum P-
value method. To reflect the multiple testing 
undertake, we adjusted the P-value estimated. 
Furthermore, we checked the stability of optimal split 
selected through graphical (minimum P-value graph) 
and numerical methods (bootstrap study). The 
stability of optimal split derived was confirmed.  

Use of minimum P-value method might result in a 
type one error as high as 40% [36]. This rate might 
be inflated to 50% if examining 50 cut points [37]. 
To show the danger of application of minimum P-
value method without P-value adjustment, a series of 
686 node-positive breast cancer patients was 
divided into two equally sized samples (training and 
test samples). A Minimum P-value method was 
applied to the training sample. An optimal split for 
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age at 43 years old was proposed in the training set 
(unadjusted P-value= 0.02). On the other hand, if the 
adjusted P-value had been calculated for the 
training sample, it would have been 0.31, far from 
significant and preventing a misleading impression of 
association with age younger or older than 43. 
Applying this cut point to the test sample gave a P-
value of 0.23. Furthermore, application of this split to 
another independent sample (n=139) resulted in P-
value of 0.38 [38]. 

Two-fold cross-validation and sample-split 
techniques are two alternative approaches to deal 
with multiple testing [39]. In a two-fold cross-
validation approach the data is divided into two 
equally sized subsets. Minimum P-value method is 
applied separately in each subset to find the optimal 
cut points (say C1 for first subset, C2 for second 
subset). Cut points derived are applied to the other 
subset. The subgroups of patients with low values for 
the covariate is a combination of the below cut point 
patients in each subset. High risk patients are 
defined in a similar way. The P-value of the 
covariate is estimated using a Log-Rank or Cox 
model [40]. Simulation studies show that the type one 
error for this method is approximately correct [41].  

In the sample-split method, the data will be 
divided into training and test samples. The optimal 
cut point derived in the training set will be applied in 
the test set to find the correct P-value. It might be 
that neither two-fold cross-validation nor two-sample 
statistics are feasible when sample size and number 
of events is low.  

In a similar study, Royston et al. assessed the issue 
of loss or gain in model performance due to 
dichotomisation of continuous data. This has been 
illustrated in an analysis of 207 patients with 
primary biliary cirrhosis [42]. The association 
between 2 continuous (age and logarithm of 
bilirubin) and 2 binary variables (central cholestasis 
and cirrhosis), and treatment was evaluated. The two 
variables were dichotomised with both optimal cut 
point and at median. Different multifactorial models 
were developed in which continuous variables were 
modelled in continuous and binary form. The model in 
which continuous data were treated as being 
continuous had highest discrimination ability and 
model goodness of fit [42]. However, it has not been 
argued that whether splits applied had biological 
interpretation. In our data set optimal split applied 
was fairly close to menopause age. This might 
explain differences seen between our results and the 
Royston's study [42]. 

We believe that dichotomisation might improve 
performance of prognostic models when it creates 

groups with similar biological features. There is room 
in science for trying several approaches with a given 
data set and reviewing the results critically’ [43]. 
Comparison of results enriches the body of the 
literature and enhances the understanding of the 
situations in which dichotomization of continuous data 
improves performance of prognostic models.  

Acknowledgment 
We should thank staff of Motahhari Para clinic 

and Shahid Faghihi hospital who facilitated our 
access to patients' folder and information. 

Conflict of Interest  
There was no conflict of interest.   

Authors' Contribution 
The data set analyzed in this project was collected 

under the direction of Prof.TAR at Shiraz University 
of Medical Sciences. All analyses and writing of 
manuscript has been done by BMR.  

References  
1. Haybittle JL, Blamey RW, Elston CW, Johnson J, 

Doyle PJ, Campbell FC, et al. A prognostic index in 
primary breast cancer. Br J Cancer 1982 Mar; 45(3):361-
6. 

2. Todd JH, Dowle C, Williams MR, Elston CW, Ellis IO, 
Hinton CP, et al. Confirmation of a prognostic index in 
primary breast cancer. Br J Cancer 1987 Oct; 56(4):489-
92. 

3. Galea MH, Blamey RW, Elston CE, Ellis IO. The 
Nottingham Prognostic Index in primary breast cancer. 
Breast Cancer Res Treat 1992; 22(3):207-19. 

4. Balslev I, Axelsson CK, Zedeler K, Rasmussen BB, 
Carstensen B, Mouridsen HT. The Nottingham Prognostic 
Index applied to 9,149 patients from the studies of the 
Danish Breast Cancer Cooperative Group (DBCG). Breast 
Cancer Res Treat 1994; 32(3):281-90. 

5. Williams BA, Mandrekar JN, Mandrekar SJ, Cha SS, 
Furth AF. Finding optimal cutpoints for continuous 
covariates with binary and time-to-event outcomes.  2006.  

6. Therneau TM, Grambsch PM. Modeling Survival Data: 
Extending the Cox Model. New York: Springer-Verlag .; 
2000. 

7. Harrell FE. Regression modelling strategies with 
application to linear models, logistic regression, and 
survival analysis. New York: Springer-Verlag; 2001. 

8. Mazumdar M, Glassman JR. Categorizing a 
prognostic variable: review of methods, code for easy 
implementation and applications to decision-making about 
cancer treatments. Stat Med 2000 Jan 15; 19(1):113-32. 

9. Altman DG, Royston P. The cost of dichotomising 
continuous variables. BMJ 2006 May 6; 332(7549):1080. 

10. MacCallum RC, Zhang S, Preacher KJ, Rucker DD. 
On the practice of dichotomization of quantitative 
variables. Psychol Methods 2002 Mar; 7(1):19-40. 



Baneshi et al. 
 

Iranian Journal of Cancer Prevention 
32 

11. Abdolell M, LeBlanc M, Stephens D, Harrison RV. 
Binary partitioning for continuous longitudinal data: 
categorizing a prognostic variable. Stat Med 2002 Nov 
30; 21(22):3395-409. 

12. Rajaeefard AR, Baneshi MR, Talei AR, Mehrabani D. 
Survival Models in Breast Cancer. Iranian Red Crescent 
Medical Journal 2009; 11(3):295-300. 

13. Moons KG, Donders RA, Stijnen T, Harrell FE, Jr. 
Using the outcome for imputation of missing predictor 
values were preferred. J Clin Epidemiol 2006 Oct; 
59(10):1092-101. 

14. Schafer JL. Analysis of Incomplete Multivariate 
Data. Florida: Chapman and Hall; 1997. 

15. Baneshi MR. Statistical Models in Prognostic 
Modelling of Many Skewed Variables and Missing Data: 
A Case Study in Breast Cancer (PhD thesis submitted at 
Edinburgh University) 2009. 

16. Royston P, Sauerbrei W. Multivariable Model 
Building a pragmatic approach to regression analysis 
based on fractional polynomials for modelling continuous 
variables. Chichester: John Wiley; 2008. 

17. Lausen B, Schumacher M. Maximally selected rank 
statistics. Biometrics 1992; 48:73-85. 

18. Altman DG, Lausen B, Sauerbrei W, Schumacher M. 
Dangers of using "optimal" cutpoints in the evaluation of 
prognostic factors. J Natl Cancer Inst 1994 Jun 1; 
86(11):829-35. 

19. Dannegger F. Tree stability diagnostics and some 
remedies for instability. Stat Med 2000 Feb 29; 
19(4):475-91. 

20. Justice AC, Covinsky KE, Berlin JA. Assessing the 
generalizability of prognostic information. Ann Intern Med 
1999 Mar 16; 130(6):515-24. 

21. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., 
Vasan RS. Evaluating the added predictive ability of a 
new marker: from area under the ROC curve to 
reclassification and beyond. Stat Med 2008 Jan 
30;27(2):157-72. 

22. Baneshi MR, Warner P, Anderson N, Bartlett JSM. 
Tamoxifen resistance in early breast cancer: statistical 
modelling of tissue markers to improve risk prediction. 
British Journal of Cancer 2010; 102:1503-10. 

23. Baneshi MR, Warner P, Anderson N, Tovey S, 
Edwards J, Bartlett JM. Can biomarkers improve ability of 
NPI in risk prediction? A decision tree model analysis. 
Iranian Journal of Cancer Prevention 2010; 2:62-74. 

24. Baneshi MR, Talei AR. Impact of imputation of 
missing data on estimation of survival rates: an example in 
breast cancer. Iranian Journal of Cancer Prevention 2010; 
3(3):127-31. 

25. Martin M. Molecular biology of breast cancer. Clin 
Transl Oncol 2006 Jan; 8(1):7-14. 

26. Hanley JA, McNeil BJ. The meaning and use of the 
area under a receiver operating characteristic (ROC) 
curve. Radiology 1982 Apr; 143(1):29-36. 

27. Pencina MJ, D'Agostino RB. Overall C as a measure 
of discrimination in survival analysis: model specific 
population value and confidence interval estimation. Stat 
Med 2004 Jul 15; 23(13):2109-23. 

28. Pepe MS, Janes H, Longton G, Leisenring W, 
Newcomb P. Limitations of the odds ratio in gauging the 
performance of a diagnostic, prognostic, or screening 
marker. Am J Epidemiol 2004 May 1; 159(9):882-90. 

29. Greenland P, O'Malley PG. When is a new 
prediction marker useful? A consideration of lipoprotein-
associated phospholipase A2 and C-reactive protein for 
stroke risk. Arch Intern Med 2005 Nov 28; 165(21):2454-
6. 

30. Ware JH. The limitations of risk factors as prognostic 
tools. N Engl J Med 2006 Dec 21; 355(25):2615-7. 

31. Folsom AR, Chambless LE, Ballantyne CM, Coresh J, 
Heiss G, Wu KK, et al. An assessment of incremental 
coronary risk prediction using C-reactive protein and other 
novel risk markers: the atherosclerosis risk in communities 
study. Arch Intern Med 2006 Jul 10; 166(13):1368-73. 

32. Gail MH. Discriminatory accuracy from single-
nucleotide polymorphisms in models to predict breast 
cancer risk. J Natl Cancer Inst 2008 Jul 16; 
100(14):1037-41. 

33. Linderholm B, Grankvist K, Wilking N, Johansson M, 
Tavelin B, Henriksson R. Correlation of vascular endothelial 
growth factor content with recurrences, survival, and first 
relapse site in primary node-positive breast carcinoma 
after adjuvant treatment. J Clin Oncol 2000 Apr; 
18(7):1423-31. 

34. Ferrandina G, Scambia G, Bardelli F, Benedetti PP, 
Mancuso S, Messori A. Relationship between cathepsin-D 
content and disease-free survival in node-negative breast 
cancer patients: a meta-analysis. Br J Cancer 1997; 
76(5):661-6. 

35. Klein JP, Moeschberger ML. Survival Analysis: 
Techniques for Censored and Truncated Data. New York: 
Springer-Verlag; 2003. 

36. Altman DG. Suboptimal analysis using 'optimal' 
cutpoints. Br J Cancer 1998 Aug; 78(4):556-7. 

37. Hilsenbeck SG, Clark GM, McGuire WL. Why do so 
many prognostic factors fail to pan out? Breast Cancer Res 
Treat 1992; 22(3):197-206. 

38. Hollander N, Schumacher M. On the problem of 
using 'optimal' cutpoints in the assessment of quantitative 
prognostic factors. Onkologie 2001 Apr; 24(2):194-9. 

39. Hilsenbeck SG, Clark GM. Practical p-value 
adjustment for optimally selected cutpoints. Stat Med 
1996 Jan 15; 15(1):103-12. 

40. Mazumdar M, Smith A, Bacik J. Methods for 
categorizing a prognostic variable in a multivariable 
setting. Stat Med 2003 Feb 28; 22(4):559-71. 

41. Faraggi D, Simon R. A simulation study of cross-
validation for selecting an optimal cutpoint in univariate 
survival analysis. Stat Med 1996 Oct 30; 15(20):2203-
13. 

42. Royston P, Altman DG, Sauerbrei W. Dichotomizing 
continuous predictors in multiple regressions: a bad idea. 
Stat Med 2006 Jan 15; 25(1):127-41. 

43. Royston P, Sauerbrei W, Altman DG. Modeling the 
effects of continuous risk factors. J Clin Epidemiol 2000 
Feb; 53(2):219-21. 

   


