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Abstract

Context: One of the most important achievements in cancer research is the development of cancer immunotherapy. However,
only a subset of patients respond to immunotherapy modalities, and few patients respond for a durable time. Here, we review the
possible genomic mechanisms of response and resistance to these therapies, which can lead to the selection of responders, who
may benefit most from immunotherapy.
Evidence Acquisition: We searched PubMed, Scopus, and Web of Science Core Collection with the following keywords: “Im-
munotherapy, Resistance, Response, Programmed cell death 1 receptor, CTLA-4, Cancer immunity, Tumor Genomics, and Somatic
Mutations”.
Results: T cells that specifically recognize cancer-associated antigens, are responsible for the immune system response against can-
cer. Nonsynonymous mutations, which are transcribed and translated into polypeptides, may generate new epitopes (neoepitopes),
which can lead to their presentation on major histocompatibility (MHC) class I molecules and subsequently recognized by the adap-
tive immune system. Despite the unprecedented durable responses, the majority of patients treated with cancer immunotherapies
do not respond to the therapy (primary resistance), and some patients relapse after an initial response (acquired resistance). Resis-
tance to immunotherapy can be a result of tumor cell intrinsic or extrinsic factors. There is correlation between tumor mutation
burden (TMB) and response to immunotherapy. In addition, mismatch repair deficient tumors harbor considerably more somatic
mutations compared to mismatch repair proficient tumors and respond better to anti-programmed cell death protein 1 (anti-PD1)
therapy. Mutations in other DNA repair genes may also affect immunotherapy response.
Conclusions: Neoantigen specific T cells constitute a major “active component” for the success of cancer immunotherapies. The
genetic damage that confers tumorigenic growth, can also be targeted by the immune machinery to inhibit cancer development
and progression. With further validation of experiments, genomics-based approaches can allow to select patients most likely to
achieve durable responses to immunotherapy modalities.
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1. Context

One of the most important achievements in cancer re-
search is the development of cancer immunotherapy (1, 2).
The first cancer immunotherapy was performed by Coley,
when he demonstrated that the administration of bacte-
rial products could make tumor regression of inoperable
neoplasms (3). Coley’s findings resulted in the beginning
of cancer immunotherapy and, consequently in the 1960s,
Bacillus Calmette-Guerin (BCG) was used to treat solid ma-
lignancies, such as bladder cancer. Subsequent research
efforts in the 1970s and 1980s showed that activating lym-
phocytes with interleukin-2 (IL-2) could kill cancer cells in
vitro (4). Large clinical trials investigated the therapeu-

tic effects of cytokines for melanoma, and renal cell carci-
noma in the 1980s (5-8). During this same period, it was
demonstrated that interferon-α (IFN-α) has anti-tumor ac-
tivity in melanoma (9-12).

Several monoclonal antibodies targeting cancer-
associated proteins (such as HER2, EGFR, VEGF, and CD20)
have been approved for the treatment of solid and hema-
tologic neoplasms. These antibodies may opsonize cancer
cells and induce their death by antibody-dependent
cellular cytotoxicity or phagocytosis, in addition to an-
tagonizing oncogenic pathways (13, 14). More recently,
newer approaches in cancer immunotherapy have been
developed, including administration of therapeutic can-
cer vaccines and adoptive cell transfer by chimeric antigen
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receptor (CAR) T-cell therapy (15, 16). The finding of check-
points in the immune machinery, such as CTL-associated
protein 4 (CTLA-4) and programmed cell death protein
1 (PD-1) resulted in the development of antibodies that
inhibit these checkpoints, leading to T-cell activation
(17, 18). Antibodies against these checkpoints have been
approved in diverse malignancies, such as non-small cell
lung cancer, melanoma, Hodgkin’s lymphoma, renal cell
cancer, and head and neck cancer (19-24). An important
characteristic of immunotherapy is durable responses,
which is supposedly due to the adaptive immune system
memory, resulting in increased survival in some patients.

Regrettably, merely a subset of patients respond to im-
munotherapy modalities, and few patients respond for
a durable time. Here, we review the possible genomic
mechanisms of response and resistance to these therapies,
which may lead to the selection of responders, who may
benefit most from immunotherapy.

2. Evidence Acquisition

We searched PubMed, Scopus, and Web of Science Core
Collection with the following keywords: “Immunotherapy,
Resistance, Response, Programmed cell death 1 receptor,
CTLA-4, Cancer immunity, Tumor Genomics, and Somatic
Mutations”. We also analyzed the references mentioned by
the selected articles.

3. Results

A hallmark of cancer is the accumulation of somatic
genetic alterations and loss of normal cellular regulatory
control (25). The number of these somatic alterations is
different between and within cancer types (26). Somatic
mutations in tumors may be due to intrinsic infidelity of
the DNA replication system, exposure to exogenous or en-
dogenous mutagens, or impaired DNA repair. In some can-
cers, most somatic alterations are a consequence of envi-
ronmental exposures, such as ultraviolet light in skin and
smoking in lung cancers (27). In other cancers, there are
abnormalities in DNA maintenance, such as impaired DNA
mismatch repair in some colorectal cancers (28).

3.1. The Catalogue of Somatic Mutations in Cancer

A cancer cell, similar to all cells of the body, is a descen-
dent of a fertilized egg through mitotic cell division, and
has a copy of diploid genome. The DNA of a tumor cell
genome, similar to many normal cellular genomes, has dif-
ferences from the original fertilized egg genome. These dif-
ferences are known as somatic mutations, and varies from

germline mutations, which are transmitted from parents
to their children.

The somatic mutations in neoplastic cells include
divers types of DNA change, including base substitutions,
insertions, deletions, rearrangements, and copy number
alterations. The tumor genome has also acquired epige-
netic alterations, which change the chromatin structure
and gene expression. The mutations in a malignant cell
have accumulated during the lifetime of the patient with
cancer. In normal cells, exogenous and endogenous mu-
tagens continuously damage DNA. This DNA damage is
mostly repaired, but a small subset becomes fixed muta-
tions. In addition, there is a low intrinsic error rate in DNA
replication machinery (29). The knowledge on somatic
mutation rate in normal human cells is limited, but it is
likely dependent on the specific somatic mutation class
and various cell types (29).

It seems that the rate of somatic mutation is higher
when a cancer cell shows phenotypic evidence of malig-
nant change (30). This is evident at least in some cancers.
For instance, there is an increased rate of single nucleotide
change and small insertion/deletions at polynucleotide
tracts in colorectal and endometrial cancers with impaired
DNA mismatch repair (31). Other classes of “mutator phe-
notypes” may lead to abnormalities in chromosomal num-
ber and increased rate of chromosomal rearrangements
(31). Increased mutation rate leads to increased DNA se-
quence diversity, on which selection acts. The catalogue
of somatic mutations in a neoplastic cell is a record of all
mutational processes throughout the life of the cancer pa-
tient.

Somatic mutations in a neoplastic genome may be clas-
sified as driver or passenger, based on its consequences
on tumor development. Driver mutations lead to growth
advantage of the cancer cell and have been selected posi-
tively during cancer development. They are located in the
so called “cancer genes”. The number of driver mutations
and aberrant cancer genes vary between different cancers
(32). The rest of mutations are passengers and do not con-
fer growth advantage. Passenger mutations do not have
functional consequences and can happen during cell divi-
sion (29).

The number of driver mutations in a malignancy is an
area of active research, but on the basis of age-incidence
statistics, it is likely that 5 to 7 driver mutations are
required in common epithelial cancers, such as breast,
prostate, and colorectal cancers, whereas hematological
cancers may require fewer rate-limiting events (29). Recent
research have suggested that the number of positively se-
lected cancer driver genes range from 1 in thyroid and tes-
ticular cancers to more than 10 in endometrial and colorec-
tal cancers (33, 34). Although cancer genes frequently con-
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tain driver mutations, only a fraction of the somatic mu-
tations detected in these genes are considered true drivers
and the rest are passenger mutations (35).

3.2. Cancer Genome as a Driver of Tumor Immunity

T cells that specifically recognize cancer-associated
antigens are responsible for the immune system response
against cancer. Nonsynonymous mutations, which are
transcribed and translated into polypeptides may gener-
ate new epitopes (neoepitopes), which can lead to their
presentation on major histocompatibility (MHC) class I
molecules and subsequently recognized by the adaptive
immune system (Figure 1) (36). However, even when T cell
recognition occurs, they rarely confer protective immu-
nity and cannot be used as a basis for therapy.

As demonstrated by mouse models, continued dele-
tion of tumor cells expressing targets of T-cell recognition
(immune editing) may help cancers evolve to avoid im-
mune attack (37). In addition, factors in tumor microenvi-
ronment can modulate activated T cells and act as an “im-
munostat”. Despite these results, recent research on hu-
man cancer has shown that overcoming negative regula-
tors of T cell responses in lymphoid tissue (checkpoints) or
in the tumor (immunostat function) can reverse the failure
of immune protection in most patients with cancer (38).

Results from mouse models have shown that point mu-
tations may result in the production of mutant antigens,
which induce T cells and elicit endogenous immunity or
immunity with the administration of a therapeutic vac-
cine (39, 40). However, the recognition of mutant antigens
by the immune system is not efficient. A study on a mouse
model showed that only 10% of nonsynonymous point mu-
tations encoded peptides that could be recognized with
high affinity by MHC class I molecules and merely a sub-
set of generated peptides were highly immunogenic after
administration as cancer vaccine (41). Immunogenic pep-
tides contain mutations that are exposed to the T-cell re-
ceptor or mutations that make new anchor that enhance
the affinity to MHC class I molecules. In addition to point
mutations, frameshift mutations, insertions, or deletions
may generate new peptides (neoantigens) that are suppos-
edly more immunogenic due to their more sequence diver-
gence (42).

Protective immunity may be conferred by mutant pep-
tides that can bind MHC class I or class II molecules (40, 43),
although it is not certain whether CD4+ T cells have a role
in anti-cancer immunity. CD4 expressing T cells help the
cytotoxic CD8 positive T cells and B cell antibody produc-
tion. In addition, they secret IFN-γ and induce an inflam-
matory response that is in favor of antitumor immunity
(44). A study on human melanoma detected CD4+ T cell re-
sponse against tumor neoantigens, suggesting that in ad-

dition to intratumoral CD8+ T cells, antigen-specific CD4+ T
cells also have a role in cancer immunity (45). Several stud-
ies have determined the specificities of tumor infiltrating
lymphocytes (TILs) to tumor mutant epitopes by massively
parallel sequencing and demonstrated that the adoptive
transfer of antigen specific TILs into cancer patients is cor-
related with tumor regression (46-49). Together, these
findings suggest that tumor mutanome is the main target
of protective anti-cancer immunity and the large number
of passenger mutations constitutes the most probable tar-
gets. Therefore, the mutational neoepitope load of a tumor
is considered an important part of the cancer-immune set
point (42).

It is important to consider the nature of the mutated
genes, from which neoantigens derive and the frequency,
with which they occur. It is clear that T cell responses
against MHC class I-restricted and class II-restricted tu-
mor neoantigens that are shared between subgroups of
patients, sometimes occur (50, 51). At the same time,
research on melanoma has shown that the majority of
neoantigen-specific T cell responses are against mutated
proteins unique to each tumor and likely without a key
role in cellular transformation (45). This T cell preference
toward patient-specific passenger mutations means that
the development of personalized immunotherapies is pos-
sibly required for targeting neoantigens.

3.3. Resistance Mechanisms to Cancer Immunotherapy

With the finding of cancer immune checkpoints and
the successful clinical implementation of checkpoint in-
hibitors, cancer treatment focus has changed from the tu-
mor itself to the host’s immune machinery. It is important
to note that host immune responses and cancer genomics
are closely linked, as neoantigens driving from tumor mu-
tations may shape immune responses (52). However, the
heterogeneous and evolving tumor environment may ren-
der these responses ineffective.

Despite the unprecedented durable responses, the ma-
jority of patients treated with cancer immunotherapies
do not respond to the therapy (primary resistance), and
some patients relapse after an initial response (acquired
resistance). With regard to resistance mechanisms to can-
cer immunotherapies, it is necessary to consider that in
each cancer patient, the immune response is dynamic and
evolves either due to the patient’s environmental and ge-
netic factors or due to treatment interventions, such as
surgery, radiotherapy, chemotherapy, and immunother-
apy. Many of these factors may affect anti-tumor immune
responses and result in the establishment of resistance
(53). Furthermore, human tumors differ considerably with
regard to the constituents of their microenvironment, and
this variability supposedly influences the capability of the
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Figure 1. Processing of tumor neoantigens and their recognition by CD8+ T cells. MHC: Major histocompatibility complex, TCR: T cell receptor, TAP: Transporter associated
with antigen processing.

T cells to recognize and respond to neoantigens. Com-
prehensive understanding of resistance mechanisms can
lead to the discovery of biomarkers of response to im-
munotherapies, similar to biomarkers of response to other
cancer therapies (54-57).

Primary resistance to immunotherapy can be a re-
sult of tumor cell intrinsic or extrinsic factors. The most
obvious reason why a tumor would not respond to im-
munotherapy is the absence of tumor antigens being rec-
ognized by T cells (58). Alternatively, tumor antigens may
exist in tumor cells, but the neoplastic cells may develop
mechanisms to escape presenting them on their surface
bound to MHC molecules, such as antigen presentation al-
terations (including changes in proteasome subunits or
transporters associated with antigen processing [TAP]),β2-
microglobulin alterations (required for MHC class I fold-
ing and transport to surface of cell), or MHC alterations
(59).

Various clinical trials involving immune checkpoint
inhibitors have identified different response markers. A

study on pembrolizumab, a PD-1 inhibitor, found that the
proportion of tumor cells expressing PD-L1 affected the re-
sponse rate (60). This trial showed that it is possible to use
PD-L1 to select patients most likely to respond to the PD-1 in-
hibitor. Another study on atezolizumab, a PD-L1 inhibitor,
showed that the likelihood of response was correlated with
the immune cell infiltrate in the tumor, as well as PD-L1 ex-
pression on tumor cells (61). A study on pembrolizumab
showed superiority of this treatment in patients with tu-
mors that expressed PD-L1 on at least 50% of cancer cells
(62).

The advent of next generation sequencing (NGS) tech-
nology has resulted in sequencing cancer genomes in an
unprecedented ultra-fast and high-throughput manner.
Using genomic approaches, several research groups have
shown that there is a correlation between tumor muta-
tion burden (TMB) and response to checkpoint therapy (63-
67). As an example, in lung cancers mutations are often de-
tected with a frequency of 0.1 to 100 per megabase (26). In
non-small cell lung cancers with mutations in EGFR, ALK,
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ROS1, andMEK exon 14, TMB is usually low and these tumors
usually do not respond well to check point inhibitors (68).

The association between tumor mutation (and
neoantigen) load and immunotherapy response has
been typically detected in tumors that have high muta-
tional load (such as non-small cell lung cancer, melanoma,
and renal carcinoma). But, some tumors (such as colorec-
tal cancers) that generally have a significant number of
mutations, usually do not respond to immunotherapy
(26, 69). A likely reason is the extent of intratumoral het-
erogeneity, since bulk tumor sequencing might not fully
show the spatial complexity of the tumor mutanome (70).
As a heterogeneous population of subclones constitutes
the tumor bulk, immune response against one neoanti-
gen would target a subclonal population, thus leaving the
remainder of the tumor intact.

Defects in mismatch repair generate a high muta-
tion load. Research has shown that mismatch repair de-
ficient tumors harbor considerably more somatic muta-
tions compared to mismatch repair proficient tumors and
respond better to anti-PD1 therapy (69, 71). Mutations
in DNA repair genes may also affect immunotherapy re-
sponse. A study showed that the loss of function muta-
tions in BRCA2 gene were enriched in melanoma patients
responsive to anti-PD1 blockade (66). Another study also
detected mutations in DNA repair genes in patients with
non-small cell lung cancer responsive to PD1 blockade (67).
Therefore, even in cancers that generally have few muta-
tions, such genomic analysis may detect a group of pa-
tients, who may benefit from immunotherapy.

4. Conclusions

Based on data gathered over the past few years,
neoantigen specific T cells constitute a major “active com-
ponent” for the success of cancer immunotherapies. The
genetic damage that confers tumorigenic growth can also
be targeted by the immune machinery to inhibit cancer
development and progression. As expression of these
neoantigens is tumor restricted; cancer immunotherapies
offer the promise of specificity and safety. With further val-
idation of experiments, genomics-based approaches can
allow to select patients most likely to achieve durable re-
sponses to immunotherapy modalities.
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