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Abstract

Context: Cancer continues to be the first cause of mortality and morbidity all over the world, while the incidence of cancer is ex-
pected to increase by 50% over the next 20 years. Since the incidence of most of the cancers is increasing daily, it has been more
important to find related environmental risk factors. The epidemiological evidence indicates the effect of disinfection byproducts
(DBPs) through drinking water, as an environmental exposure, on most of the cancers. The goal of the current study was to combine
the results of most recent publications regarding the relationship between DBPs and their carcinogenic effects.
Evidence Acquisition: Using the main keywords of “cancer”, “drinking water”, and “disinfection byproducts”, a comprehensive
search was done among several research databases.
Results: Based on the previous studies, DBPs could cause most types of cancers, mainly including gastrointestinal, renal, bladder,
breast, liver, and thyroid cancers. Liver and renal cancers are the most common target organs for toxicity by DBPs. Among the
various DBPs, trihalomethanes are the most studied due to their relatively high prevalence and concentration in drinking water.
Also, haloacetic acids, such as trichloroacetic acid and dichloroacetic acid, have been known as one of the most affecting risk factors.
Unregulated DBPs, such as Mutagen X and Formaldehyde, are also of importance as they mostly have irreversible systemic effects.
Providing safe drinking water resources, restriction of unreasonable usage of disinfectants, and alternating disinfectants with less
harmful products could be the possible ways to overcome this crisis.
Conclusions: Disinfection byproducts can result in cancer development, especially in liver and kidneys. Providing safe drinking
water resources, using the membrane filters and changing the chlorination point are effective ways to encounter the risk of DBP
poisoning.
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1. Context

Cancer is a chief public health issue all around the
world, which is considered as a lethal disease in most re-
gions like the third leading cause of death in Iran and the
second in United States (1, 2). Studying the cellular basis
of cancer, most of the time an error in replication leads
to a cancerous cell (3). On the molecular basis, cancer is
a result of chromosome instability, DNA-repair defects, or
aberrant DNA methylation (4, 5). Current evidence sup-
ports the idea that chemical exposures are associated with
DNA-methylation and DNA-repair mechanisms, and, as a

result, they could get the expression processes under in-
fluence and affect human health (6-9). Therefore, by study-
ing the pathology of cancer, a considerable association be-
tween the exposure to particular chemicals and the onset
of malignancy can be witnessed (5).

Disinfectants are the common chemicals used to re-
move pathogenic microbes and infectious particles in
daily-used substances, like water, or in sanitary healthcare
units, such as hospitals, health centers, public environ-
ments, and even indoors (10, 11). The amount of a disin-
fectant used to cleanse a surface or an area depends on
the type of disinfectant and the desired level of disinfec-
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tion; for example, imagine a healthcare-related zone, filled
up with bacteria spores; an adequate amount of aldehydes
can eliminate almost all spores, but lots of phenolic disin-
fectants, as they just affect the tridimensional structure of
proteins, cannot remove any of them (12).

In the water treatment industry, disinfection
byproducts (DBPs), like chloroform, bromate, bro-
modichloromethane, trichloroacetic acid, and formalde-
hyde, are usually formed through the reaction of chlorine,
most frequently used disinfectant, with some poisons,
carbon-based substances, iodide, and other similar
species, which are totally named natural organic matter
(NOM) (13-15). As the nanomaterials’ trace in pollution has
been more scrutable, the role of carbon-based substances
in the production of DBPs gets more obvious and could
be considered as a remarkable issue in the modern nature
(16).

Disinfection byproducts are commonly divided into
two categories: hydrophobic and hydrophilic. The hy-
drophilic DBPs contain two major groups of chlorinated
and non-chlorinated DBPs. The most common DBPs in
drinking water are chlorinated DBPs. They are also divided
into two classes: regulated and unregulated DBPs. Regu-
lated DBPs are trihalomethanes (THMs), haloacetic acids
(HAAs), and bromates. The major unregulated group of
DBPs, on the other hand, includes chlorate and chlorite (13,
17-19). The most famous THMs are trichloromethane (com-
monly known as chloroform), bromodichloromethane,
chlorodibromomethane, and tribromomethane (com-
monly known as bromoform). Haloacetic acids are a wider
group with 3 subgroups, including monohaloacetic acids
(monochloroacetic acid and monobromoacetic acid),
dihaloacetic acids (dichloroacetic acid, dibromoacetic
acid, and bromochloroacetic acid), and trihaloacetic
acids (trichloroacetic acid, chlorodibromoaceti acid,
bromodichloroacetic acid, and tribromoacetic acid). Tri-
halomethanes and HAAs are formed due to the reaction
between chlorine and NOM in chlorinated water. Bromate
and chlorite are also known as inorganic DBPs, which can
be formed after water and wastewater disinfection by chlo-
rine dioxide and ozone, particularly in water resources
with high bromide content (20-22). Other halogenated
DBPs are haloacetonitriles, cyanogen chloride, and mu-
tagen X (MX). Also, the reaction of ozone with natural
organic matter can lead to the formation of aldehydes,
ketoacids, and carboxylic acids (5, 13, 17, 23-25).

Chemicals used as water and wastewater disinfectants
are able to either destruct or completely inactivate mi-
croorganisms; so, they have an anti-life nature (26). As a
result of this quiddity, they possibily can affect the healthy
body cells. They make their influence on the fundamental
mechanisms of the cells, and according to the pathology of

cancer, a possible correlation between DBPs and cancer is
not out of mind (27-29). The association between DBPs and
various types of cancer has been previously demonstrated
(5, 12, 30, 31). Also, the matter of DBPs in causing cancer has
been studied previously (32-35). The role of the current re-
view is to address the underlying mechanisms and discuss
the most common cancers caused by the continuous expo-
sure to DBPs. Furthermore, the effective treatment meth-
ods and mechanisms of DBPs removal in drinking water is
provided.

2. Evidence Acquisition

During current narrative review, which was conducted
between November 2017 and January 2019, the conse-
quences of DBPs, which are led to cancer, were inves-
tigated. A comprehensive literature review of research
databases, containing Medline, PubMed, Scopus, Embase,
Google Scholar, Cochrane Library, Toxline, Pollution Ab-
stracts, Water Resources Abstracts, and BIOSIS previews
was performed, using the main keywords of “cancer”,
“drinking water”, and “disinfection byproducts”. Up to
the end of the time period of the study, the published
manuscripts were considered. Also, for improving the pre-
cision, a manual searching among the references of gath-
ered articles was performed. MeSH terms and free text
words were also included, regarding the inquiry method
of some databases. Of total 7420 gathered articles, 4300
articles were excluded due to inconformity with the sub-
ject. From the remaining 3120 articles, 2510 were excluded
after checking the abstracts by the research team. After
inspecting the full text of the remaining 610 articles, 103
eligible articles were selected. The qualified manuscripts
were reviewed and appraised based on their relation to the
subject; the impact of DBPs on various cancers, and the
subject-related contents and data were analyzed by the re-
search team. In all processes, articles were appraised by
two members of the research team and the points of differ-
ences in opinion were referred to a third arbitrator. Also,
the research team contacted with the authors to obtain ad-
ditional information, if necessary. Among all cancer types,
the most relevant types were chosen and the relationship
between them and DBPs was considered.

3. Results

Disinfection byproducts can cause many different
types of cancers (5, 13, 36), but some types are more likely
to be developed due to exposure to DBPs. Previous stud-
ies showed that the most common cancers in laboratory
animals, due to exposure to DBPs, are renal cancer, intesti-
nal carcinoma, hepatocellular tumors, mesothelioma, and
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thyroid follicular cell tumor (13, 37). Some of them, like bro-
mate, are probably human carcinogens too, meanwhile
some are not known as human carcinogens yet (13, 38, 39).
But, as the liver and kidney are the most common target or-
gans for toxicity, they are most likely to develop tumors in
humans (5). In a recently published systematic review with
the aim of detecting the populations and regions vulner-
able to bladder and colorectal cancer due to exposure of
DBPs, the incidence of the mentioned cancers among dif-
ferent groups of people have been discussed; furthermore,
it has been determined that socio-demographic character-
istics may play an important role as risk factors (40-45).
Most common cancers related to DBPs are discussed in the
following paragraphs and summarized in Table 1. Figure 1
illustrates how DBPs pass from gastrointestinal tract into
the circulation system and damage the vital organs. The
number of arrows shows the absorption rate of different
sites in Figure 1.

3.1. Intestine Cancer

Intestine cancer is one of the most common carcino-
mas all around the world (65). Intestine cancer could have
numerous reasons, but the most involving mechanisms
of occurrence contain the association between insulin-
resistance and colonic adenoma, and epithelial barrier fail-
ure (66). The first mentioned mechanism can be a re-
sult of pancreas damage. On the other hand, most chem-
icals and toxins involve pancreas (5, 67). So, the chemicals,
which hurt pancreas and involve its mechanisms, onset
a cancerous intestine. The second mechanism, the dam-
age of epithelial barrier, can also appear as a side-effect
of exposure to chemicals. Trihalomethanes including bro-
modichloromethane, chlorodibromomethane, chlorodi-
fluoromethane (CFC), chloroform, bromoform, and other
similar compounds are the most common DBPs and top
accusers of intestine cancer (32, 68-70). CFC is used as re-
frigerant and chloroform is also a useful solvent. Accord-
ing to previous researches, THMs can harm pancreas and
cause intestine cancer by the first-mentioned mechanism
(5, 71, 72). They can cause pancreas cancer, too. Also, the im-
pact of THMs on the epithelial tissue of intestine is proven
(52, 73). So, both predicted mechanisms are involved in
the process of exposure to THMs and pathology of intes-
tine cancer. Limiting smoking and alcohol consumption,
exercising regularly, and lowering the dietary fat are effec-
tive ways to help reducing pancreas-damage and epithelial
barrier failure risk (74, 75). It is necessary to mention that
a multicenter case-control study conducted in 2016 dis-
proved the association of lifetime total THM exposure and
colorectal cancer, but regarding the high heterogenicity in
the observed sample, more studies are needed to prove the
point (76).

3.2. Renal Cancer

Kidneys carry the important role of preserving home-
ostasis and omitting blood wastes. Renal cancer makes
up more than one out of every 30 cancers worldwide (77).
Obesity, cigarette smoking, hypertension, renal failure,
change of lining tissue, diabetes mellitus, trichloroethy-
lene exposure, and consumption of analgesics are known
risk factors for renal cancer (67, 78-80). As THMs (bro-
modichloromethane and chloroform) affect the epithe-
lial and lining tissues of organs, renal cancer is a pos-
sible result of THM exposure (5, 13, 46). Bromate also
increases the risk of kidney cancer by causing oxidative
damage and inducing mutation to chromosomes in the
kidney (5, 48). The mechanism of cancer occurrence
by bromate may mostly lie on lipid peroxidation mech-
anism (81, 82). It is notable that lipid peroxidation in-
creases in hypertension and obesity (81). So, both THMs
and bromates have a positive effect on renal cancer oc-
currence. N-nitrosodimethylamine (NDMA) is another car-
cinogenic disinfection byproduct, which follows the men-
tioned mechanisms and exposure to NDMA leads to methy-
lated bases forming in the genomes. The formation of
O6-methylguanine as a result of NDMA N-demethylase en-
zyme activity could be responsible for the carcinogenicity
of NDMA (49-51).

3.3. Liver Cancer

The liver plays the important role of detoxification
in the human body and is the most exposed organ
to toxins (27). Also, many chemicals can cause liver
problems; for example, exposure to aflatoxin is a ma-
jor risk factor for the pathology of liver cancer (65).
Multiple DBPs can cause liver cancer, including THMs
such as bromodichloromethane (13, 52), HAAs such as
dichloroacetic acid and trichloroacetic acid (53, 83), and
many unregulated DBPs (13). Chloroacetaldehyde, bro-
mochloroacetic acid, bromodichloroacetic acid, dibro-
mochloroacetic acid, dibromoacetic acid, chloral hydrate,
and MX, are among those DBPs with a proven effect on
increasing the risk of developing liver cancer (13, 54-57).
Liver cancer due to exposure to chloroform and THMs is
roughly related to cytotoxicity and cell multiplying in tis-
sues (46). Haloacetic acids can cause harm by direct DNA
damages and inhibiting glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) activity and, therefore, onset the
carcinoma forming in livers (84). MX has a mutagenic na-
ture and is responsible for near half of the mutagenic quid-
dity of chlorinated water (85). Ionization of DNA bases due
to reductive feature of MX can cause DNA damage. Also,
DNA adduction is another considered mechanism of muta-
tion caused as a result of exposure to MX (61). Liver carcino-
mas due to exposure to dibromoacetic acid are supposed
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Table 1. Types of Cancers and Related Disinfection Byproducts (Discussed in This Article)

Cancer Type Known DBPs as Risk Factors Year of
Publication

Authors Reference

Intestine cancer Bromodichloromethane
2010 Rahman et al. (32)

2018 Benmarhnia et al. (40)

Renal cancer

Bromodichloromethane

2014 Burcham et al. (5)

2007 Richardson et al. (13)

2004 Komulainen et al. (46)

Chloroform

2014 Burcham et al. (5)

2007 Richardson et al. (13)

2004 Komulainen et al. (46)

2017 Jone et al. (47)

Bromate
2014 Burcham et al. (5)

2006 Moore et al. (48)

N-Nitrosodimethylamine

2002 Choi et al. (49)

2000 Fujioka et al. (50)

2007 Arinç et al. (51)

Liver cancer

Bromodichloromethane
2007 Richardson et al. (13)

2017 El-Halim et al. (52)

Dichloroacetic acid

2017 Yang et al. (53)

2000 Lash et al. (54)

2004 Pereira et al. (55)

Trichloroacetic acid
2017 Yang et al. (53)

2000 Lash et al. (54)

Dibromoacetic acid 2007 Melnick et al. (56)

Chloroacetaldehyde 2007 Richardson et al. (13)

Bromodichloroacetic acid 2007 Richardson et al. (13)

Bromochloroacetic acid 2007 Richardson et al. (13)

Dibromochloroacetic acid 2007 Richardson et al. (13)

Chloral hydrate 2017 Holmes et al. (57)

Mutagen X
2007 Richardson et al. (13)

2017 Holmes et al. (57)

Leukemia

Dibromoacetic acid
2007 Program et al. (58)

2009 Baccarelli et al. (59)

Formaldehyde 2010 Zhang et al. (60)

Mutagen X

2007 Richardson et al. (13)

2005 McDonald et al. (61)

2009 Zhang et al. (62)

Thyroid cancer

Bromate 2014 Bull et al. (63)

Chlorate
2007 Richardson et al. (13)

2012 Righi et al. (64)

Mutagen X
2017 Holmes et al. (57)

2012 Righi et al. (64)

Breast cancer Mutagen X
2007 Richardson et al. (13)

2005 Mcdonald et al. (61)

Abbreviation: DBPs, disinfection byproducts.

to be part of the phenotype-based selective growth of a cell-
type (56). Hence, the liver is the main target of DBPs.

3.4. Leukemia

Apart from the types of leukemia, this type of can-
cer is broadly known as a lethal one (1). Alongside with
hereditary factors, ionizing radiation is knowingly associ-
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Figure 1. The absorption route of DBPs and the most influenced organs

ated with leukemia, accompanying by many environmen-
tal risk factors, such as cigarette smoking and electromag-
netic fields (EMFs) (86). As witnessed in rats, leukemia
could be associated with dibromoacetic acid exposure, as it
is known to be carcinogen due to the peroxisome prolifer-
ation effect and cytotoxicity (58, 59). Also, Formaldehyde is
carcinogenetic risk factors for leukemia, which affects DNA
repair pathways and DNA damage responses (60). The inva-
sion of bone marrow hematopoietic and blood stem cells
are considered other possible mechanisms of the cancer
pathology due to formaldehyde exposure (62). MX could
also be mentioned as a leukemia inducer. Although the
specific mechanism of MX carcinogenicity is uncertain, for
its reductive characteristic, the ionization of DNA bases
is the most considered mechanism of developing cancer-

leading mutations due to MX exposure (13, 61). Chronic
myeloid leukemia (CML) is the most common developed
type as a result of exposure to DBPs (87).

3.5. Thyroid Cancer

Thyroid cancer is one of the most common endocrine
carcinomas (88). Obesity, diet, lifestyle, radiation, and envi-
ronmental pollutants are the most well-known risk factors
for thyroid cancer (89). Bromate has a positive effect on the
formation of thyroid malignancies by inducing the forma-
tion of 8-oxodeoxyguanosine (8-oxoG) in DNA and its prod-
ucts (63). The impact of chlorate and MX on thyroid can-
cer have also been discussed in previous studies and con-
firmatory evidence have been found (13, 64). The imitation
of endocrine hormones could be a possible reason for the
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toxicity and carcinogenicity of MX and other hormone-like
DBPs (57).

3.6. Breast Cancer

Breast cancer is the most diagnosed malignancy in the
American women (90). Obesity, hormonal therapies, and
genetic factors are the most common causes of breast can-
cer in women, alongside the exposure to chemicals (91).
MX is the only known DBP that acts in the way of inducing
breast cancer, as many other DBPs are not studied yet. The
mechanism involving MX carcinogenicity could lie on the
ionization of DNA bases and its mutation-inducing abil-
ity. DNA adduction may also be considered, but the certain
mechanism is not specified yet (13, 61). As the breast can-
cer has got many more important risk factors, the effects
of DBPs on this malignancy has not been a priority for pre-
vious researchers.

3.7. Approaches to Remove DBPs from Drinking Water

The main strategy for DBPs control is preventing their
formation through NOM, major DBPs precursors, removal
before peroxidation, and disinfection processes in treat-
ment plants. However, after occurrence, drinking water
DBPs can be reduced through different ways. Best available
technologies include two precise methods: enhanced co-
agulation and granular activated carbon, commonly with
an empty bed contact of 10 minutes have been suggested
for DBPs removal (92). Granular activated carbon acts in
two ways and reduces both DBPs and DBP precursors (93).
Also, powdered activated carbon plays a positive role in the
control of natural organic maters and DBPs (94). Point-
of-use carbon devices are known as other useful carbon-
dependent tools to control taste and odor of chlorine and
its detrimental byproducts (95). Using membrane filters
is another point of use removal technique that was also
suggested for DBPs removal; however, in order to have a
high removal efficiency, regular replacement, and orderly
maintenance are necessary (96). Another established way
to reduce DBPs in drinking water is the omission of pre-
chlorination and changing the chlorination point to in-
termediate or post-chlorination, especially in large water
systems (17). In this way, the application of chlorine diox-
ide is useful for reducing the impact of pre-chlorination
elimination on latter therapeutic processes, and also aug-
ments the disinfection effect (97). Advanced oxidation pro-
cesses such as plasma and ferrate-based processes are also
studied for DBPs removal in lab scale; however, due to nu-
merous degradation byproducts that is formed in this pro-
cesses, more studies are required before their application
in full scale water treatment plants (18, 23).

Regarding the differences in chemical interactions,
effects, and properties of various disinfectants, replac-
ing chlorine with other alternatives such as chloramines,
ozone, chlorine dioxide, and UV is an effective way to lower
the levels of DBPs (17, 98-102).

4. Conclusions

Based on the results of previous studies, liver and kid-
ney are the most common target organs for toxicity by
DBPs, which are on their way to becoming a major health-
related problem, as the usage of disinfectants is increas-
ing day by day and more cases get to be exposed. Bro-
modichloromethane and MX have been known as the most
affecting risk factors in cause of most of the cancers. It
has been offered reasonable and argumentative evidence
on the carcinogenetic nature of most DBPs, as the animal
laboratory studies confirm this claim, too. By passing time
and showing up the crisis of by-products accumulation,
the urgency of this issue becomes clearer. Providing safe
drinking water resources, limiting the unreasonable usage
of disinfectants, using the membrane filters, changing the
chlorination point, and alternating disinfectants with less
harmful DBPs could be the joint pin of further actions in
this field. Further studies should be conducted, as the ef-
fects of many DBPs are not studied yet, due to their appar-
ently less importance.
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