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Abstract

Context: Epithelial carcinogenesis is a multistep process. Transmission from normal oral epithelium to oral dysplasia and cancer
is believed to result from several genetic alterations. Despite recent advances in the treatment approaches over the last decades, the
mortality and morbidity rate of patients with oral squamous cell carcinoma (OSCC) has not been markedly improved. A small subset
of cells, cancer stem cells (CSCs) with self-renewal properties, is a major focus of the current research. Here, we present a review of
CSCs and their role in oral premalignant and malignant lesions, offering an insight into the stem cell markers, their putative role,
and the means of targeting them in treatments.
Evidence Acquisition: Using the main keywords of “cancer stem cell”, “oral squamous cell carcinoma”, and “cancer stem cell mark-
er”, a comprehensive search was done among several research databases.
Results: Accumulating evidence supports the existence of CSCs as small subpopulations in OSCC, which are associated with tumor
progression and therapy resistance. A number of cell surface markers have been used to identify these cells by various studies.
Therefore, identifying a reliable CSC marker that is associated with OSCC seems to be necessary.
Conclusions: The identification of the mechanisms underlying oral cancer initiation and progression is of the utmost importance.
CSC markers that could act as a therapeutic target could play an important role in the effective treatment strategies of OSCC.
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1. Context

Oral cancer is one of the 10 most prevalent malignan-
cies in the world. Only in the United States, an estimate of
34000 new cases are reported annually (1, 2). Among the
oral cancers, oral squamous cell carcinoma (OSCC) is the
most common, making up more than 90% of malignan-
cies in this region (3). Despite recent advances in the treat-
ment modalities, including surgery, chemotherapy, and ra-
diotherapy, the mortality rate of OSCC (mainly due to its
lymphatic involvement and metastasis) still shows an in-
creasing trend, which poses a challenge toward both pa-
tients and healthcare systems (3-5).

It seems that a better understanding of the mecha-
nism underlying cancer initiation and growth provides us
with better therapeutic approaches against malignancies,
as well as beneficial countermeasures to prevent them. In
this study, we will focus on the more recently proposed
concept of cancer stem cells (CSCs) in oral premalignant
and malignant lesions, offering an insight into the stem
cell markers, their putative role, and the means of target-
ing them in treatments.

2. Evidence Acquisition

To determine the role of cancerous and precancerous
stem cells (pCSCs) in malignancies and also their markers
in OSCC, a systematic search was conducted in 3 databases,
including PubMed, ISI, and Scopus. Using the main key-
words of “cancer stem cell”, “oral squamous cell carci-
noma”, and “cancer stem cell marker”, a comprehensive
search was done among several research databases. Ap-
proximately, 470 papers were found. The primary selec-
tion of studies was done after reading their titles and ab-
stracts. Subsequently, the remaining papers were studied
and selected based on their relevance to our topic and also
their strength. It is worth noting that in this study, we men-
tioned the markers, which have been discussed more of-
ten.

3. Results

3.1. The Origin of Cancer: Clonal Evolution Model

The efforts to reach a compelling answer to the mystery
of cancers’ origin has a long history. Several theories have
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been proposed on the concept of carcinogenesis, among
which the most popular is the “clonal evolution” model (6)
(Figure 1). Based on this model, cancer is the consequence
of multiple mutations striking the somatic cell’s gene con-
secutively. These mutations, interplaying with epigenetic
aberrations, can alter the structure and function of normal
regulatory genes; proto-oncogenes driving the cell’s pro-
liferation, tumor suppressors inhibiting the cell’s growth,
apoptosis-inducing genes, and genes involved in DNA re-
pair. The result of this chain of nonlethal mutations is the
formation of an “immortal” cell possessing a collection of
traits, rendering an evolutionary competent cell lineage in
the process of natural selection (7-10).

3.2. Cancer Stem Cell Model

An alternative model that is gradually gaining popular-
ity is the “cancer stem cell” hypothesis. The idea that can-
cers arise from a distinct group of cells, known as “germ
cells” or “stem cells”, was first proposed about 150 years ago
(11). This concept became a hot topic again when Lapidot
et al. tried to induce human acute myeloid leukemia in
severe combined immunodeficiency (SCID) mice by trans-
planting different phenotypes of leukemic cell popula-
tions. They observed that only a rare population of cells
that are less mature than colony-forming cells were able to
initiate and propagate human AML in another host. These
CD34+ CD38- cells were the first “stem cells” proved to be
the origin of cancer (12).

In 2003, Al-Hajj et al. demonstrated that a small popu-
lation of tumorigenic cells of CD44+ CD24-/low lineage was
responsible for tumorigenesis in breast cancer (13). This
was the first reported in vivo experiment in solid tumors,
reiterating the role of a minor subset of cells with stem-
ness characteristics in the formation and expansion of ei-
ther blood-based or solid cancers.

Further studies and the inspection of intrinsic hetero-
geneities among cancer cells in a single tumor have led to
the cancer stem cell hypothesis. The model, also known as
hierarchical model, has 4 key concepts: (1) only a limited
fraction of cancer cells have tumorigenic potential; (2) a
distinctive profile of cell surface markers can be utilized to
separate the CSC subpopulation from the rest of tumor; (3)
the resulting tumor from CSC proliferation and differenti-
ation consists of tumorigenic and non-tumorigenic cells,
creating a heterogeneous environment; and (4) the CSC
subpopulation can be serially transplanted through con-
secutive generations, suggesting its self-renewing capacity
(14).

CSCs possess two principal features: the capability to
regenerate the same stem cell (self-renewal) and to pro-
duce a progeny that can differentiate. Both traits are
achieved by the CSC’s asymmetric division potential, as
the daughter cell may follow either pathway of retaining

the original identity or undergoing differentiation into
various types of cells called “transit-amplifying (TA) cells”,
which will eventually transform into the “more mature”
cells. The stem cells may also undergo symmetric divi-
sions, in which the mother cell divides into two similar
daughter cells; maternally identical, resulting in CSC pop-
ulation expansion and tumorigenesis or both differentiat-
ing, resulting in the tumor bulk growth (15-17).

As a consequence of CSCs’ asymmetric division, a
heterogeneous microenvironment consisting of different
cells with different biological behavior is formed. It must
be noticed that only CSCs and TA cells (cells with high pro-
liferative capacity) can initiate and develop the tumor. Sev-
eral alterations in the tumor microenvironment can form
cells with other abilities such as migratory cancer stem
cells (MCSCs), Radio-resistant cancer stem cells (RRCSCs),
and chemo-resistant cancer stem cells (CRCSCs), which are
responsible for cancer metastasis and relapse (15-17).

In addition, CSCs share several important properties
with normal stem cells. The creation of CSCs is a multi-step
process. Similar to the previously-explained clonal evolu-
tion, a cell has to “gain” some qualities and “lose” some
other through several generations to ultimately turn into
a cell with both “stemness” and “cancerous” traits- a cancer
stem cell.

It is speculated that CSCs originate from 4 different cell
types: (1) stem cells, (2) progenitor cells (PCs), (3) mature
cells and more recently proposed, and (4) pCSCs.

3.2.1. Stem Cells

Human stem cells are unspecialized cells responsible
for the formation and maintenance of tissues in the body.
They are broadly categorized into 2 types: embryonic stem
cells (ESCs) and adult stem cells (ASCs).

3.2.1.1. Embryonic Stem Cells

Three to 4 days after fertilization, a hollow ball of cells
called the blastocyst develops, comprising an inner and
outer layer. The cells in the inner layer are the ESCs. These
pluripotent cells can give rise to all cell types of the body.
ESCs are a transient class of cells, meaning that they re-
quire a special microenvironment and intercellular sig-
naling to remain in an “undifferentiated” state. Thus, the
ESCs cannot be normally found following the completion
of body development (18).

3.2.1.2. Adult Stem Cells

During the entire lifetime, there are clusters of “organ-
specific” resident stem cells in tissues called ASCs (15). The
normal turnover of fully-formed tissues is dependent on
the ASCs through proliferation and differentiation within
their particular niches (19). Stem cells are long-lived with
high self-renewal capacity and low-proliferation rates. In
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Figure 1. Clonal evolution model

contrast, mature cells have a short lifespan, mostly do not
self-renew, and proliferate more.

While ESCs have the potential to become every cell type
in the body, ASCs are more likely to be “multipotent”, mean-
ing they can only give rise to specific cell types of their tis-
sue of origin (e.g. mesenchymal stem cells differentiate
into connective tissues and hematopoietic stem cells into
blood cells) (19). ASCs also express distinct cell markers al-
lowing us to separate them from their tissue in addition to
those “stemness” ones shared with ESCs.

There are several sites in the oral cavity with the identi-
fied populations of stem cells, including oral epithelium,
connective tissue, and tooth structures (20). The above-
mentioned properties also give stem cells exclusive dura-
bility against gene mutations, epigenetic changes, chemi-
cals, radiations, and other death-inducing factors. All these
bring up stem cells as the most expected source for CSCs
and the initiation of precancerous and cancerous lesions

in the oral mucosa.

3.2.2. Progenitor Cells

PCs are the “more specific” descendants of stem cells,
meaning they are in a higher stage of differentiation. Com-
pared with stem cells, a progenitor cell is more described
as oligopotent (capable of differentiating into a few cell
types) or even unipotent (only to a specific “target” cell
type). The other difference between stem cells and PCs is
that PCs cannot replicate indefinitely, and each division re-
sults in two differentiated cells.

Relative closeness to stem cells in terms of differenti-
ation status and gene expression in addition to a higher
number in tissues make PCs a good candidate for the ac-
cumulation of mutations and subsequent transformation
into a cancer stem cell (21, 22).
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3.2.3. Mature Cells

The theory that differentiated somatic cells can act as a
source for cancers is somehow similar to the clonal evolu-
tion theory in concepts-typical somatic cells with a series
of alterations that ultimately turn into a malignant cell
(23).

As a part of normal body homeostasis, an injury to a re-
gion of a tissue triggers the stromal cells to release signals
that induce surrounding cells to migrate to the wound
site for healing. The role of parenchymal hepatic cells in
the regeneration of the liver tissue following partial hep-
atectomy is evaluated (24). In another study, Takahashi et
al. attempted to induce some genes (Oct-3/4, Sox2, c-Myc,
and KLF4) in mature fibroblasts and drove them through
a stemness status. These were the first cells termed as in-
duced pluripotent stem cells (iPSC), the genetically repro-
grammed mature cells capable of behaving like stem cells
upon transplantation into the body (25).

What is more important to us now is the process, in
which the differentiated epithelial cells act as a source for
CSCs. In an interesting case, Radyk et al. studied mice with
injuries to the lining of their stomachs. They found that
even after blocking the signals that attract stem cells to the
area, the epithelial cells undergo a metaplastic process to-
ward a stem cell state, which can even lead to precancer-
ous conditions in more chronic wounds. This is strong evi-
dence for the role of mature epithelial cells in the develop-
ment of stem cells with cancer-initiating properties (26).

Another phenomenon that can be utilized to vindi-
cate the role of differentiated cells in cancer initiation is
the epithelial-mesenchymal transition (EMT). Being a key
role player in embryonic morphogenesis, EMT is mostly
silenced in adult tissues (reactivated in pathologic con-
ditions like wound healing, fibrosis, or cancer progres-
sion). During EMT, epithelial cells change in morphology,
cellular structure, and gene expression and “switch” to a
mesenchymal cell, giving them the ability to detach from
nearby cells and migrate to their destination (27, 28).

It is clear that one of the hallmarks of every cancer is
invasion and metastasis. This is achieved in a way rather
similar to the EMT process. It is already shown that EMT
might be involved in the creation of specific CSCs (i.e. EMT
cancer stem cells) within tumor bulk that drive tumor in-
vasion and metastasis (27, 29, 30). It is worth mentioning
that the evidence is not strong enough yet to support the
correlation between EMT and tumor metastasis in oral car-
cinomas (28). Additionally, the role of aberrant activation
of EMT in gastric cancer initiation, as well as its progression
and association with CSC theory, has been proven (26, 28).
Given all these facts, it is quite reasonable to deduce that
the same thing may happen in the outset of oral cancers,
e.g. OSCC (31).

3.2.4. Precancerous Stem Cells

The idea that CSCs may arise from pCSCs is a relatively
new one. The first evidence came out in 2003 when Gao
et al. found a distinct subpopulation of cells in dendritic
cell-like leukemic mice (32). These cells neither expressed
hematopoietic and lineage nor hematopoietic stem cell
markers. Interestingly, it was observed that these cells have
the ability to transform into both benign and malignant
lesions depending on the environmental condition. Based
on this ability, the term pCSCs was coined (33).

Like CSCs, pCSCs can also originate from normal stem
cells, PCs, and adult cells and possess the ability to self-
renew and differentiate into more mature cell lines (17).
They also express embryonic and adult stemness markers
such as CD133, aldehyde dehydrogenase 1, and OCT-4, which
can be utilized to isolate them from mature cells. More-
over, they can hide in the lesions’ microenvironment (17).

As mentioned before, depending on the microenviron-
ment, these cells may give rise to primary CSCs and initiate
a malignant condition. Several genetic and epigenetic fac-
tors contribute to this long process, making pCSCs distinct
from CSCs. Chen et al. observed that during the transfor-
mation of pCSCs into CSCs in lymphoma induced in mice,
lineage markers and CD45 were upregulated. These were in
association with the expression of CD117 and SCA-1, the two
markers that indicate the progression of different types
of cancer. They also found that PIWIL2 (a PIWI/AGO fam-
ily gene expressed in ESCs) can promote the proliferation
of pCSCs (32, 33). A study in 2008, which compared the
gene expression pattern between ductal carcinoma in situ
(DCIS) (a premalignant condition) and invasive ductal car-
cinoma, found a difference in the expression pattern of 147
genes in these two lesions. Moreover, two genes, SULF1 and
LOX, seemed to be correlated with the aggressive behavior
of the tumor and can act as biomarkers to predict the risk
of DCIS progression (34).

Therefore, we can differentiate CSCs from pCSCs ac-
cording to the following criteria: firstly, precancerous cells
can start either a benign or a malignant lesion based on the
microenvironment condition while CSCs are responsible
for the initiation and development of a malignant lesion.
Secondly, pCSCs are found in precancerous lesions such as
oral leukoplakia while CSCs are found in cancerous foci.
The third is the epigenetic and genetic profile of CSCs and
pCSCs (17). Taken together, it seems that the identification
of pCSCs in precancerous lesions can provide us with the
ability to evaluate the risk of malignant transformation of
precancerous lesions and prevent their progression in the
early stages.

3.3. Premalignant and Malignant CSC Markers

The progression of normal mucosa to mild, moderate,
and severe dysplasia and then to an oral SCC is a multivari-
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ate process, comprising structural and functional changes
in cells. The identification of the events relevant to malig-
nant transformation is of the utmost importance. It can be
useful for the clinician to evaluate the progression risk of
premalignant lesions toward cancer, and preventive strate-
gies can be performed. CSCs have been identified by using
specific markers in various studies. Identifying a reliable
CSC marker that is associated with cancer treatment is im-
portant (11, 35).

3.3.1. ALDH1

ALDH1 is an isoform of the ALDH enzyme family, serv-
ing as a detoxifying enzyme that oxidized aldehydes. It can
also oxidize retinol (vitamin A) to retinoic acid (RA), the
functional form of this vitamin (36). The overexpression
of ALDH1 has been detected in the lower epithelial strata
of oral premalignant lesions and has been correlated with
the degree of cellular dysplasia (37, 38). Lesions with the
higher expression of ALDH1 had a higher risk of transform-
ing into a primary malignant lesion (38-40).

The presence of ALDH+ cells is significantly correlated
with the histopathologic differentiation of the malignant
tumor (41-43). Interestingly, although ALDH1+ cells are scat-
tered in the OSCC microenvironment, they are not found
in the areas adjacent to the keratin pearls (44). High ALDH
expression has also been linked with a decreased overall 5-
year survival of patients (43, 44). It seems that high ALDH+

expressing cells are more chemo- and radio-resistant (41,
45). One reason for this might be that cells with the higher
expression of ALDH1 are more capable of metabolizing
chemotherapeutic agents and free radicals produced fol-
lowing radiotherapy (46, 47). It is also speculated that the
high expression of ALDH1 enables the migratory of cells to
undergo EMT and, therefore, reside in the other tissues and
spread the malignancy to the other organs (38, 42, 48, 49).

3.3.2. CD44

The CD44 antigen is a transmembrane glycoprotein
encoded by the CD44 gene. Alternative splicing in the
process of CD44 gene expression results in a large family
of protein isoforms widely distributed on the surface of
many cell types, functioning as receptors for various lig-
ands, such as hyaluronic acid, collagen, matrix metallopro-
teinases (MMPs), and homing chemokines (36, 50). This
makes CD44 involved in a series of cell functions, includ-
ing tissue remodeling, matrix degradation, and cell migra-
tion, which also happens in a tumor’s growth, invasion, or
metastasis (51).

CD44 is abundantly expressed on normal cells in head
and neck tissues. To date, lots of work has been done on
CD44 isoforms as putative biomarkers for CSC differentia-
tion and prognostic implications (52). A study on the ex-
pression of CD44s (standard isoform) and CD44v6 (a CD44

splice variant) in normal mucosa, oral leukoplakia, and
OSCC indicated that with the progression of normal ep-
ithelia toward dysplasia, the staining intensity slightly in-
creases and extends to more suprabasal layers. CD44 ex-
pression in OSCC samples even showed a diminished rate
(53). Another study on actinic cheilitis demonstrated that
while the expression increases both in intensity and extent
with dysplastic severity, cell distinction using CD44 is not
easily possible in different tissue conditions (54). Several
studies report that different CD44 variants are associated
with higher grades, higher drug resistance, and poor prog-
nosis in head and neck SCC (52, 55-57).

Generally, we can conclude that alteration in CD44 ex-
pression is a valuable factor for the early detection and
prognosis of oral epithelial dysplasia and OSCC, although
it may not be specific enough to determine cell types solely
and other biomarkers are also needed to isolate CSC popu-
lations for further target therapies (47, 58, 59).

3.3.3. BMI1

B cell-specific Moloney murine leukemia virus integra-
tion site 1 protein (BMI1) is a member of polycomb group
proteins encoded by the BMI1 gene. This protein acts by the
remodeling of chromatins and modification of histones
and serves a crucial role in the cell cycle (60). It is also be-
lieved that these genes are important in the maintenance
and self-renewal property of embryonic and adult stem
cells (60-62). The unregulated expression of these genes
has been associated with many solid malignancies includ-
ing HNSCCs (11). BMI1 expression is significantly higher
in oral leukoplakia and OSCC compared to the normal
oral mucosa and there is also a significant difference in
the expression pattern of BMI1 in mild dysplastic lesions
compared to moderate and severe ones (63). BMI1+ leuko-
plakias have a higher risk of transformation into a primary
tumor (64).

The role of BMI1 in HNSCC seems to be a matter in dis-
pute, asking for further studies. However, we believe that
BMI1 upregulation is significantly connected with the in-
vasive properties of the tumor and also the overall survival
of patients (63, 65-67). The higher expression of BMI1 has
been observed in invasive cells, which was accompanied
by the upregulation of vimentin and downregulation of E-
cadherin, linking this marker to the EMT process (65, 68,
69). BMI1+ cells are also believed to resist chemotherapeu-
tic agents (69, 70). This might be due to the high expression
of “AP-1”, a transcription factor linked to tumor metastasis
and chemoresistance. The inhibition of BMI1 or AP-1 has re-
duced the resistance of HNSCC cell lines in animal models
(71).

The studies by Tamatani et al. (44) and Hayry et al. (72)
showed a negative connection between BMI1 upregulation
and tumor invasion, as well as overall survival rate. This
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can be due to the fact that these studies only investigated
patients in the early stages of their disease. Also, some
studies included patients in early and advanced stages and
suggested no significant association between BMI upreg-
ulation and the overall survival rate (73). However, their
study populations were much lower than other similar in-
vestigations. Therefore, it seems that more concise studies
with sufficient target populations are still required to shed
light on this topic.

3.3.4. p75NTR

The p75 neurotrophin receptor (p75NTR), also known
as nerve growth factor receptor (NGFR) or CD271, is a mem-
ber of the tumor necrosis factor (TNF) superfamily. Based
on the specific cell and ligands binding to it, p75NTR reg-
ulates various cellular activities like cell growth, mitosis,
or apoptosis through different signaling pathways (74, 75).
CD271 is found basically on neurons, and it was later found
to be a marker for stem cells (76). More recently, it has
been proposed as a putative CSC marker in the oral dysplas-
tic and malignant epithelium (mostly in conjunction with
other markers such as CD44 and ALDH1) (40, 54). Some
studies on the expression of p75NTR have shown that its
staining pattern does not differ much between normal oral
mucosa and dysplastic lesions, being confined to the basal
layer (40, 77). In the case of OSCCs, the staining extends
from the cellular nests’ margins in lower grades to the in-
ner layers in higher grades (78). Another study indicated
that stain intensity increases with the progression of oral
dysplasia’s severity. Given its good specificity in the deter-
mination of tumor-initiating cells (TIC) clusters in the oral
SCC tissues. Murillo-Sauca et al. (79) and Tong et al. (80)
have shown that CD271 is a useful marker for identifying
and targeting the biologically active cancerous cells.

3.3.5. CD133

CD133, OR Prominin 1, is a pentaspan transmem-
brane glycoprotein that is expressed in adult and embry-
onic epithelial cells and also non-epithelial cells such as
hematopoietic stem cells (81). This protein is widely used
as a CSC marker in many solid malignancies (82, 83). Liu et
al. found that CD133+ in patients with oral leukoplakia had
a 2.86 fold chance to transform into oral cancer compared
with CD133- cells (37). Moreover, a gradual increase of CD133
expression has been witnessed from normal to dysplastic
and OSCC cells. The expression of CD133 was also signifi-
cantly higher in the advanced stages of the OSCC compared
to the early stages (84-86). An in vitro studied showed that
silencing CD133 gene enhances the chemosensitivity of the
OSCC side-population cells (87). The role of CD133 in metas-
tasis remains contradictory and it seems we need more ev-
idence to understand its role in the process of metastasis
thoroughly (85, 86, 88, 89). It is necessary to note that we

still lack enough evidence to understand the role of CD133
in different stages of OSCC development and to utilize this
marker clinically.

4. Conclusions

The identification of the mechanisms underlying oral
cancer initiation and progression is of the utmost impor-
tance. Despite advances in therapeutic options for OSCC
over the last decades, mortality and morbidity rates have
not been markedly improved. Therefore, the search for
new and better CSC markers that relate comprehensively
with the known alterations of tumor progression seems to
be necessary. CSC markers that could act as a therapeutic
target could play an important role in the effective treat-
ment strategies of OSCC.
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