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Abstract

Background: Idarubicin is an anthracycline antibiotic drug widely used in chemotherapy. Dexrazoxane is an iron chelator used
clinically against anthracyclines-induced cardiotoxicity. The present study was designed to determine the possible genoprotection
of dexrazoxane on idarubicin-induced DNA damage and oxidative stress.
Methods: In this study, the induction of DNA damage by idarubicin was examined on HepG2 cells, using comet assay. Cells were
exposed to different concentrations of idarubicin in order to find the minimum and suitable genotoxic concentration. To survey
the genoprotective effects of dexrazoxane, cells were subjected to several safe concentrations of dexrazoxane (10, 50, 100, and 200
µM) for 24 hours followed by 1 hour exposure to established genotoxic concentration of idarubicin (0.05 µM). Lipid peroxidation
was assessed as a biomarker to show the index of oxidative stress and a possible mechanism underlying this amelioration.
Results: Dexrazoxane pre-treatment significantly reduced different parameters of DNA migration such as tail length, % DNA in tail,
and tail moment. Moreover, the treatment of dexrazoxane (200µM) decreased the severity of idarubicin-induced lipid peroxidation.
Conclusions: Dexrazoxane in addition to cardioprotection against idarubicin-induced cardiotoxicity has the potential to attenuate
its DNA damage and lipid peroxidation in normal cells of patients with cancer treated with idarubicin.
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1. Background

The noxious effects of cancer chemotherapeutic agents
on normal cells are one of the major limitations of using
them. Thus, it is prominent to evaluate possible DNA dam-
aging effects of anti-cancer drugs, which lead to probable
secondary malignancies. DNA strand break is one of the
biomarkers of genotoxicity (1).

Anthracyclines classify the most effective anti-cancer
drugs ever developed and are widely used for chemother-
apy of various types of cancers. Daunorubicin and doxoru-
bicin were the first anthracyclines discovered, originally
isolated from Streptomyces sp. The primary mechanism
proposed for the anthracycline cytotoxicity is the inhibi-
tion of topoisomerase II. Other mechanisms of cytotoxic-
ity include interference with helicase activity, intercalation
between base pairs of the DNA/RNA strand, which lead to
the inhibition of DNA and RNA synthesis, free radicals for-
mation with consequent induction of DNA damage (2-4) or
lipid peroxidation (5, 6). Finally, anthracyclines have been
appeared to induce apoptotic cell death (7-9).

Idarubicin (4-demethoxy-daunorubicin), an anti-
leukemic drug, is a member of anthracycline group used

for chemotherapy of melanoma, sarcoma, lung, ovar-
ian, and breast cancers (10, 11). Idarubicin was derived
from daunorubicin as its synthetic analog after omit-
ting a methoxy group that made it more lipophilic than
daunorubicin and doxorubicin. Enhancing lipophilic-
ity can increase its access to tumor cells and, therefore,
raising its binding potential to DNA and genotoxicity.
Binding and insertion to DNA prevent it from unwinding
by interfering with the enzyme topoisomerase II (12-14).
Some studies mentioned that idarubicin is 5 to 10 times
more potent than daunorubicin and doxorubicin (15-17).

Dexrazoxane (ICRF-187) is a strong catalytic inhibitor
of topoisomerase II, originally introduced as a chemother-
apeutic agent, but it has just been found to exert cardio-
protective effects against anthracyclines without reducing
their antitumor efficacy or inducing new toxicities (18-21).
This protection is due to its iron chelating properties. Also,
dexrazoxane metabolites are able to remove iron from its
complex with anthracyclines and, therefore, prevent the
generation of reactive oxygen species (22-24). Dexrazox-
ane is useful clinically against accidental anthracycline ex-
travasations (25).
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Although dexrazoxane has been confirmed to have a
protective effect against idarubicin-induced cardiotoxic-
ity, its possible protective effects on genotoxicity of idaru-
bicin have not been studied yet. The present research
was undertaken to elucidate the potential genoprotec-
tive properties of dexrazoxane on oxidative DNA damage
caused by idarubicin in HepG2 cells, using single cell gel
electrophoresis or comet assay as a useful method for de-
tecting DNA damage in individual cells (26). The most com-
monly used parameters in the comet assay method are tail
moment, tail length, and percent of DNA in tail (27, 28). All
these parameters were used in the present study to evalu-
ate DNA damage. Lipid peroxidation was used as a marker
of oxidative damage and a possible mechanism underly-
ing this amelioration (29). We utilized thiobarbituric acid
test for determination of lipid peroxidation extent, using
thiobarbituric acid reactive substances (TBARS).

2. Methods

2.1. Chemicals

Idarubicin and dexrazoxane were respectively ob-
tained fro Pharmacia (Italy) and sigma Co. (USA). Tris,
Triton X-100, H2O2, NaCl, EDTA, NaOH, NaH2PO4, sodium
dodecylsulfate, acetic acid, and n-butanol were procured
from Merck Co. (Germany). Low melting point agarose
(LMA), Na2HPO4, KCl, ethidium bromide, 2-thiobarbituric
acid, pyridine, and 1,1,3,3-tetramethoxy propane were pur-
chased from Sigma Co. (USA). Cinnagen Co. (Iran) provided
normal melting point agarose (NMA). RPMI-1640, FBS, and
antibiotics were supplied by PAA Co. (Australia). HepG2
cells were provided by Pasture institute (Iran).

2.2. Cell Culture

Human hepatocyte HepG2 cells were cultured in RPMI
supplemented with 7% FBS and 1% penicillin/streptomycin.
The cell culture was incubated at 37°C in humidified air
(95%) and CO2 (5%) in micro-filter plates. The culture
medium was renewed as needed, and when the cells
reached 80 %, confluence was passaged.

2.3. Comet assay

2.3.1. Treatment

HepG2 cells were plated onto 25cm2 cell culture flask at
a seeding density of 25× 104 cells and allowed to adhere for
24 hours. To assess the suitable genotoxic concentration
of idarubicin, cells were incubated with various concentra-
tions (0.05, 0.5, 1, 5, and 10 µM) of idarubicin dissolved in
culture medium for 1 hour. To investigate the protective ef-
fects of dexrazoxane, cells were exposed to its safe concen-
trations (10, 50, 100, and 200 µM) diluted in 1% DMSO in

culture medium for 24 hours, followed by 1 hour exposure
to genotoxic concentrations of idarubicin. After this pe-
riod, washing cells was performed, using PBS and followed
trypsinization for 5 minutes. After that and harvesting, the
cell suspensions (1 × 104 cells/mL) were transferred to fal-
con tubes for the following steps.

To determine cell viability, cells were resuspended in
PBS, mixed with trypan blue solution. Cell suspensions
with viability > 80% were used.

2.3.2. Slide Preparation

Microscope slides were dipped into NMA (normal melt-
ing agarose) solution and they were dried. A mixture of 1
mL of LMA and 300 µL of above cell suspension were pro-
vided. This suspension was layered onto the slides and cov-
ered with a coverslip for 10 minutes 2 to 8°C. In lysis stage,
we gently removed the coverslips and transferred slides in
cold and freshly prepared lysing solution (pH = 10.0) un-
der dark conditions for 40 minutes. The slides were, then,
rinsed 3 times with deionized water to eliminate excess ly-
sis solution. Next, for unwinding DNA, the slides were sub-
merged in an alkaline solution (0.3 M NaOH, 1 mM EDTA, pH
> 13) at room temperature for 40 minutes. Electrophore-
sis was performed in the new and same alkaline solution
for 40 minutes at 25 V and 300 mA. After electrophoresis
and in neutralization stage, we used 0.4 M Tris (pH 7.5),
then, rinsed with water for 15 minutes and dried on a clean
surface. Afterwards, the slides were stained with ethidium
bromide (20µg/mL) and rinsed with PBS and deionized wa-
ter. All comet assay steps were carried out in dark condi-
tions and all solutions were prepared fresh daily. Cells were
examined under × 400 magnification, using fluorescence
microscope. In the last stage, Comet score freeware (ver-
sion 1.5) was used for control and treat analysis of comets
in randomly selected cells (at least 100 cell per sample).

2.4. Measurement of Lipid Peroxidation

The extents of lipid peroxidation were determined
by measuring TBARS levels in HepG2 cells according to
Ohkawa et al. (30). Briefly, the cells were exposed to cho-
sen concentrations of idarubicin and/or dexrazoxane. The
cells were washed with PBS, scraped in 500 µL lysis solu-
tion on ice, and incubated for 40 minutes until efficient
lysis was confirmed. The samples were, then, centrifuged
at 13000 g for 2 minutes. Then, 200 µL of lysate super-
natant, 200µL of 8.1% sodium dodecylsulfate, 1500 µL of
acetic acid (pH 3.5), 1500 µL of 0.8% 2-thiobarbituricacid,
and 600 µL of deionized water were mixed. The samples
were, then, vortexed and heated, using a boiling water bath
for 40 minutes and, then, cooled for 10 minutes. One mL
of deionized water and 5 mL of n-butanol-pyridine solu-
tion were used to extract TBARS before centrifugation at
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4000 rpm for 10 minutes. The organic layer was taken and
the fluorescence was measured at emission and excitation
wavelengths of 553 and 515 nm (synergy H1 multi-mode
reader, USA). TBARS standards were prepared, using 1,1,3,3-
tetramethoxypropane diluted in 40% ethanol to achieve
concentrations of 2, 4, 6, 8, 10, and 0 µM. The levels of
TBARS are expressed as nmol/mg of protein. The modified
method of Lowry was employed to measure the protein
concentration (31).

2.5. Statistical Analysis

The parameters used for the statistical evaluation of
DNA damage were the tail moment, tail length, and per-
cent of DNA in tail. The statistical significant differences
were assessed by means of one-way analysis of variance
(ANOVA), followed by suitable multiple comparison post
hoc test. The differences were accepted to be significant if
P < 0.05. Data on lipid peroxidation also analyzed, using
ANOVA followed by Tukey’s multiple comparison.

3. Results

3.1. Genotoxic Effects of Idarubicin

The different concentrations of idarubicin (0.05, 0.5, 1,
5, and 10 µM) were incubated with HepG2 cells for 1 hour
and the results were compared with negative control (cells
incubated with RPMI) group. Among several parameters
of genotoxicity, we used 3 common markers including tail
length, % of DNA in tail, and tail moment for examination.
Comet assay results revealed a significant difference (P <
0.001) between all tested concentrations and negative con-
trol for all above-mentioned parameters. The results are
shown in Table 1.

3.2. Genoprotective Effects of Dexrazoxane

The results of comet assay after pre-treatment with
dexrazoxane and exposure to idarubicin are shown in Fig-
ure 1. Treatment of cells to dexrazoxane alone did not re-
sult in any significant difference in the level of DNA strand
breaks until 200 µM compared to negative control (data
not shown). Thus, concentrations equal or less than 200
µM were supposed to be safe to be used in examination
of genoprotective properties. Cells pre-treated with dexra-
zoxane following incubation with idarubicin showed sig-
nificant decrease in the level of all parameters of DNA dam-
age compared to idarubicin alone (control group).

3.3. Effect of Dexrazoxane on Idarubicin-Induced Lipid Peroxi-
dation

The effect of dexrazoxane on the idarubicin-induced
lipid peroxidation (LPO) was assessed by measuring TBARS
level in HepG2 cells. As shown in Figure 2, incubation of
HepG2 cells with dexrazoxane (Dex) did not show signif-
icant difference compared to control (HepG2 cells incu-
bated with RPMI), whereas idarubicin (Ida) treated cells
represented extensive enhancement of TBARSs levels. Ex-
posure to dexrazoxane in pre-treatment conditions exhib-
ited a valuable decline in TBARS levels as compared to the
data obtained after treatment with idarubicin alone.

4. Discussion

Dexrazoxane is still the only clearly effective cardiopro-
tective agent used to counteract anthracyclines-induced
cardiotoxicity. Therefore, we decided to evaluate possible
genoprotective effects of dexrazoxane against DNA dam-
age of idarubicin as a new anthracycline compound in or-
der to reduce the unwanted toxicity in normal cells. This
combination will provide more assurance on safe usage of
increased drug doses in chemotherapy.

Idarubicin is an antibiotic chemotherapeutic agent,
which is used in hematological malignancies. The supe-
rior DNA-binding capacity of idarubicin due to its higher
lipophilicity leads to greater cytotoxicity compared to
other anthracyclines. The first aim of this study was trying
to find the lowest genotoxic concentration of idarubicin
in cultured HepG2 cells by alkaline comet assay technique,
a standard method for determining DNA damages includ-
ing single- and double-strand DNA breaks (32). After com-
parison of different concentrations for all above parame-
ters of DNA damage versus negative control group, we se-
lected 0.05µM of idarubicin as at least and optimum geno-
toxic concentration. Anthracyclines including idarubicin
have quinone structure, permitting them to participate in
electron transfer reactions mediated by oxoreductive en-
zymes. The reception of free electron converts it to semi-
quinone free radicals and generation of reactive oxygen
species (ROS), which may result in their DNA damage (8,
33).

Reactive oxygen species production by the complex
metabolism of idarubicin could create abasic sites, and
also induce single and double strand breaks. In fact, idaru-
bicin, as topoisomerase II inhibitor drug, interacts with
DNA and leads to cell death in higher doses (34).

This is in agreement with other studies, which repre-
sent a linear correlation between DNA bound anthracy-
cline, DNA double strand breaks, and cell death. Although
this effect is favorable in cancerous cells, DNA damage in
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Table 1. Genotoxic Effects of Idarubicin on HepG2 Cellsa

Tail Length (Pxl) % DNA in Tail Tail Moment

Control 1.08 ± 0.63 1.05 ± 0.68 0.01 ± 0.00

Idarubicin (µM)

0.05 20.32 ± 1.37b 15.40 ± 0.95b 3.22 ± 0.59b

0.5 27.47 ± 1.17b 20.67 ± 0.89b 5.68 ± 0.43b

1 30.93 ± 1.22b 24.65 ± 0.95b 7.64 ± 0.46b

5 33.05 ± 1.58b 25.62 ± 1.15b 8.46 ± 0.59b

10 41.27 ± 1.61b 28.79 ± 1.30b 11.92 ± 0.96b

aComparison of tail length, % DNA in tail and tail moment of HepG2 cells treated with different concentrations of idarubicin. Each data has been represented as Mean
± SEM.
bSignificant result (P < 0.0001) in compare with the control group.
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Figure 1. Genoprotective effects of dexrazoxane on idarubicin induced DNA damage. Results of the comet assay performed on HepG2 cells pre-treated for 24-h with dexrazox-
ane followed by incubation for 1 hour with idarubicin. A, Tail length; B, % DNA in tail and C, Tail moment. Data are presented as Mean ± SEM of three replicates. The sign (*)
shows significantly decreased results (P < 0.0001) in compare with the control (idarubicin alone) group.

normal cells increases the risk of secondary malignancies
(35, 36). Thus, in order to increase safety and effectiveness
of idarubicin, we attempted to evaluate the protective po-
tential of dexrazoxane against DNA damage evoked by it.

The possible protective effects of dexrazoxane against
the DNA damage of several genotoxic drugs were inves-
tigated (29, 37, 38). Furthermore, dexrazoxane has been
reported to reduce ROS generation, lipid peroxidation,
and oxidized glutathione (GSSG) accumulation (37). There
are several reports documenting that dexrazoxane have
inherent anti-oxidant activity, and ability to reduce the
epirubicin-induced free radical production (24). Combina-

tion use of dexrazoxane did not disturb doxorubicin‘s dis-
tribution, metabolism or excretion; and indeed, the phar-
macokinetics of anthracyclines remain unchanged (39).

The results of this study demonstrated that the treat-
ment of HepG2 cells with dexrazoxane, 24 hours before
idarubicin exposure, caused a noticeable decrease in DNA
damage in comparison to idarubicin alone. Anti-genotoxic
effects of dexrazoxane against doxorubicin in mouse ovar-
ian cells were also reported (40). Their results revealed
the ability of dexrazoxane to inhibit the topoisomerase II
catalytic activity, to reduce double-strand DNA breaks and,
thus, to prevent genotoxicity. Moreover, they found that
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Figure 2. Effect of dexrazoxane on idarubicin induced lipid peroxidation. Effects of
dexrazoxane on lipid peroxidation levels (TBARS) induced by idarubicin in HepG2
cells (mean ± SD). The signs (*) and (**) show significantly differences results (P <
0.001) in compare with idarubicin alone group and (P < 0.0001) in compare with
control group respectively.

dexrazoxane can protect against oxidative stress-induced
DNA damage in a dose-dependent manner. They reported
a concentration range of 20 to 200 µM of dexrazoxane in
ameliorating effects that was similar to our protective con-
centration of dexrazoxane (100 and 200 µM).

Oxidative stress and production of ROS can result in
DNA damage and degradation of protein and lipids, and is
mainly accepted as one of the most important risk factors
in the development of chronic diseases (41). Another result
of free radical generation is lipid peroxidation, which is be-
lieved to be one of the causes of cardiovascular disease and
cancer (42). The lipid peroxidation products mostly react
with DNA, showing both genotoxic and mutagenic action.

In the present study, lipid peroxidation was assessed as
an oxidative stress marker. TBARS level was measured after
the cells were treated with idarubicin, compared with pre-
treatment of cells with dexrazoxane and control.

Our results demonstrated that treated cells with idaru-
bicin showed the increased levels of TBARS compared to
control. This study indicates that lipid peroxidation result-
ing in oxidative stress may contribute to the genotoxicity
of idarubicin. However, pre-treatment of cells with dexra-
zoxane significantly decreased the level of TBARS, which
demonstrates that dexrazoxane is able to ameliorate the
lipid peroxidation caused by idarubicin. The potential of
dexrazoxane for reduction of lipid peroxidation is in accor-
dance with other observations (29, 37, 38).

4.1. Conclusions

In conclusion, the results of this study indicate that
dexrazoxane was effective for the prevention of idarubicin-
induced lipid peroxidation and DNA damage in HepG2
cells. Thus, dexrazoxane is able to attenuate deleterious

effects of idarubicin in normal cells of patients with can-
cer in addition to its clinical application to prevent both
anthracyclines-induced cardiotoxicity and extravasation
(10, 20, 25). Further investigations are needed to focus on in
vivo protective effects of dexrazoxane against idarubicin.
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