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abstract
Slow heart rates, due to sinus node disease or atrioventricular conduction block, are 
a significant problem for many patients. Currently, these patients are treated with 
electronic pacemakers, which provide effective therapy, but are also associated with 
many problems. Use of biological pacemakers is an attractive solution to these problems. 
Approaches for the creation of such pacemakers include either the injection of cells 
that have pacemaker activity (cell-based approach) or modification of cells in the heart 
to induce pacemaker activity by delivering genes (gene-based approach). This article 
reviews the progress in the development of biological pacemakers.
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INTRODuCTION

Decades of innovation has produced and refined the modern 
electronic pacemaker, which has revolutionized the treat-
ment of patients with slow heart rates. Currently, we stand 
on the cusp of the next major revolution in this field, which 
is the development of biological pacemakers that will replace 
electronic components with biological components with var-
ious attendant benefits. This article will review the progress 
so far in this field. 

Normal Pacemaker activity of the Heart

The heart is a muscular organ, yet unlike skeletal muscles, 
which are activated by nerves, it is activated intrinsically. 
Many of the cardiac muscle cells have the ability to generate 
an action potential after a certain period of time, a proper-
ty called automaticity. In cells possessing this property, the 
membrane potential during diastole does not stay constant, 
yet gradually increases, eventually reaching a threshold when 
the cells are excited. While many cells in the heart show auto-
maticity and can thus behave as pacemakers, a group of spe-
cialized cells in the right atrium form the Sino-Atrial Node 
(SAN), which is the dominant pacemaker of the heart by 
virtue of its higher rate. Excitation spreads to adjacent atrial 
muscle and then the entire atrium from this group of pace-
maker cells. Electrical connections between cells, which facil-
itate this spread of depolarization between cells, are mediated 
by gap junctions. The depolarization wave-front is then con-
ducted by atrioventricular node to activate the ventricles. Ac-

tivation of the ventricles produces the final pumping function 
of the heart. When there is failure of pacemaker activity or 
failure of impulse conduction in the atrioventricular node, a 
slow heart rate ensues. This could result in inadequate blood 
flow through the body, which causes various symptoms and 
sometimes even death.

Electronic Pacemakers

Patients are currently treated by implantation of a pacemak-
er, which is a device capable of delivering timed electrical 
impulses to the heart muscle. The pulse generator, which is 
the electronic component generating the pulses, is placed 
under the skin while a lead connected to the pulse generator 
is placed in contact with the heart muscle by being passed 
through a vein. While pacemakers are a very effective form of 
treatment and many advances have made the treatment safe 
with few complications, there still remains various problems. 
The pacemaker is a foreign substance with a risk of infection, 
which is likely to occur at the time of implant, yet rarely hap-
pens many years later. The pacemaker batteries have a finite 
longevity, about 10 years, and surgery is needed to replace 
it at the end of this period. Therefore, a younger person may 
require multiple surgeries in his or her lifetime for battery 
depletion. The leads generally last longer, but they may also 
develop problems with wear and tear and may require re-
placement. Small children, who need pacing, are especially 
exposed to many problems. Rapid growth may result in the 
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need for leads to be changed. A lifetime of pacing will lead to 
multiple surgeries. In addition to these, the electronic nature 
of the devices results in occasional electromagnetic interfer-
ence and inability to perform Magnetic Resonance Imaging 
(MRI) scans. Biological pacemakers are a possible solution 
to these problems, providing a new functioning pacemaker, 
which is entirely biological.

Principles of the Natural Biological Pacemaker

Since biological pacemakers attempt to replicate the heart’s 
natural pacemaker, understanding how the natural pacemak-
er functions is important. Like the other working myocytes, 
SAN cells have various ion channels in their membrane, 
which result in variations of the membrane potential with 
each cycle, known as the action potential. Traditionally, the 
action potential is described with 5 phases (0 to 4) with 4 
representing diastole, the period of rest between cycles when 
the membrane potential stays constant at a negative voltage is 
called the resting membrane potential (Fig 1).

Figure 1: Schematic of Action Potential

Schematic diagram showing action potential in a working 
myocyte without automaticity (top panel) and in a myo-
cyte with automaticity. In Phase 4, the membrane potential 
depends on a balance between inward and outward cur-
rents, which increase or decrease the membrane potential, 
respectively. In cells without automaticity, these currents are 
balanced and the membrane potential remains constant. In 
cells with automaticity, increased inward currents and/or de-
creased outward currents result in gradual increase in mem-
brane potentials.
Pacemaker cells are different from other cells in exhibiting a 
gradual depolarization that is change in membrane potential 
to a less negative value, during phase 4. Once the membrane 
potential reaches a certain critical voltage, it initiates phase 
0, which is depolarization. This is the basis of the property 
of automaticity.  The genesis of this diastolic depolarization 
has been a subject of interest and many hypotheses have 
been placed forth [1-4]. Diastolic depolarization is due to an 
increase of the resting membrane potential during phase 4, 
which may be the result of a decrease in an outward current 
or an increase in an inward current (Fig 1). The dominant hy-

pothesis at present is that diastolic depolarization is due to 
an inward current, which is activated at the hyperpolarized 
voltage during phase 4. Since activation of an inward current 
at lower (hyperpolarized) voltage is contrary to the usual be-
haviour, it was called a “funny” current and is hence known 
as If [5, 6]. As the outward repolarizing K+ current decays, 
this If current results in a net inward movement of positive 
ions resulting in gradual depolarization. Once a threshold 
potential is reached, a new action potential is initiated. The 
If current has also been shown to increase in the presence of 
adrenaline [7], explaining how adrenergic stimulation may 
increase the pacemaker rate. The channels mediating the fun-
ny current are called Hyperpolarization activated Cyclic Nu-
cleotide (HCN) gated ion channels. Four HCN alpha sub-
units have been found in mammals, of these, three (HCN1, 
HCN2 and HCN4) are expressed in various regions of the 
heart. All are expressed to a high degree in the SAN, with 
HCN1 and HCN4 being specifically found in the SAN [8, 
9]. Conversely, a decrease in inward rectifying potassium cur-
rent (Ik1), which is an outward current, can also generate di-
astolic depolarization. This is mediated by ion flow across the 
Kir channels, with the Kir2.1 isoform being dominant in the 
ventricles. The Ik1 is very low in the sinus node and allows 
the inward if current to have significant effect on membrane 
potential. On the other hand, in ventricular myocytes, a 
strong Ik1 current and weak or absent If current leads to inhi-
bition of automaticity. An alternative hypothesis for the gen-
eration of cardiac pacemaker activity implicates oscillations 
in intracellular calcium levels. According to this theory, Ca2+ 
release by Ryanodine receptors during late diastole activates 
a Na-Ca exchanger, which enhances diastolic depolarization 
and hence results in the next action potential [10-12].  In this 
model, adrenergic stimulation increases heart rate by recruiting 
additional Ryanodine receptors for calcium release [13, 14]. 
From the sinus node, the action potential has to propagate to 
the rest of the atrium. This occurs via connections between 
cells, known as gap junctions. These junctions are formed by 
two hemi-channels on the cell membrane of two adjacent 
myocytes [15]. These hemi-channels are called connexons 
and are each comprised of six connexins (Cx). Connexin 
types identified in the heart include Cx40, Cx43, and Cx45. 
These are differentially distributed in various regions of the 
heart, yet Cx43 is the dominant form in the SA nodal region. 
Desmosomes are another form of intercellular connections, 
which do not mediate conduction of ions, yet instead form 
adhesive bonds. They may have a role in signalling in addition 
to providing mechanical strength alone [16]. Recently, it has 
also been recognised that desmosomes may play an import-
ant role in normal pacemaker activity [17]. The significance 
of this in the light of biological pacemakers is yet unknown.

Biological Pacemakers – an introduction

The term “biological pacemaker” refers to cellular compo-
nents that could replace the natural pacemaker cells to pro-
vide electrical stimulation after being implanted or injected 
in specific regions of the heart. A functioning biological 
pacemaker would provide many advantages over electronic 
pacemakers as discussed previously. Biological pacemakers 
would not need to be replaced once they are integrated and 
function. They will not be associated with problems due to 
leads, such as infection and thrombosis or mechanical prob-
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lems, like lead fracture. A biological pacemaker is also ex-
pected to be responsive to autonomic stimuli whereby heart 
rate increases with physiological factors that produce sympa-
thetic stimulation. This would be physiologically superior to 
the rate response functions provided in current pacemakers. 
From the preceding discussion, it is clear that for a functional 
biological pacemaker, a group of cells with the property of 
automaticity is required. This corresponds to a net inward 
current in phase 4, mediated by modulation of inward or out-
ward current. Cells with the requisite characteristics may be 
injected in the heart (cell-based approach) or existing cells in 
the heart may be induced to become pacemakers by modify-
ing their genes (gene-based approach). These cells should be 
connected to the rest of the myocardium by gap junctions for 
the activation to propagate. In addition, it is desirable for the 
automaticity to show autonomic responsiveness so that the 
heart rate would appropriately increase with exercise.

Cell-Based approach

The first successful use of biological pacemakers was report-
ed from Germany. These investigators used transplanted fetal 
canine atrial muscle cells [18]. Implanted in the adult canine 
heart, the cells were demonstrated to survive, integrate and 
drive an escape rhythm after the creation of atrioventricular 
block. Similar results were also shown using human fetal atri-
al myocytes [19]. This approach has been limited by the need 
to obtain the cells from atria of aborted foetuses, which limits 
the quantity that could be attained but also raises significant 
ethical concerns. Embryonic stem cells are derived from an 
early stage pre-implantation embryo. These cells are plurip-
otent, showing the ability to differentiate to any cell type. 
Initial attempts were directed at producing functional SAN 
cells from these stem cells. It was shown that it is possible to 
use CD 166 expression to select SAN precursor cells [20]. 
However, attempts to autologously graft the SAN or inject 
the myocytes failed to provide sustained biological pacemak-
er activity [21, 22]. Instead, human Embryonic Stem Cells 
(hESC) derived myocytes were studied as the source of cells 
for creating biological pacemakers. Various approaches have 
tried to differentiate pluripotent stem cells into spontaneous-
ly beating myocytes [23]. Excitable hESC-derived cardiomy-
ocytes were shown to be capable of functional integration in 
vivo [24], forming gap junctions and providing a sustainable 
biological pacemaker in 50% of pigs with AV block [25] 
When implanted in the guinea pig ventricle, spontaneous 
action potential generation was documented [26]. Howev-
er, ethical issues are involved because the cells are obtained 
from early human embryos. In addition, immuno-reactivity 
with potential for graft-versus-host disease is present. Also, a 
major concern has been the ability of these cells to produce 
tumours [27]. These concerns are bypassed by using adult 
human mesenchymal stem cells or human induced Pluripo-
tent Stem Cells (iPSC).
Human Mesenchymal Stem Cells (hMSC) are multipotent 
stromal cells, which can be isolated from various sources, 
such as the umbilical cord, amniotic fluid, dental pulp, ad-
ipose tissue, etc. Brown adipose tissue has also been found 
to be a good source of mesenchymal stem cells [22]. They 
are a suitable candidate, being relatively immunopriveleged 
and expressing two cardiac gap junction proteins, connexins 
40 and 43 [28]. Once these gap junctions establish electrical 

connection with host cells, an inward current can propagate 
to depolarize them. However, these are electrically quiescent 
and do not have the property of automaticity.  Potapova et 
al. used human Mesenchymal Stem Cells (hMSC), transfect-
ed with a pacemaker gene (mHCN2) by nucleoporation as 
a suitcase to deliver an If-like current to canine ventricular 
myocytes [29]. The spontaneous beating rate increased from 
93 to 161 bpm, showing effective pacemaker activity. In a 
canine model of induced atrioventricular block, Plotnikov 
et al. delivered hMSC-HCN2 cells to the left ventricle [30]. 
The biological pacemaker was shown to be functional during 
a 6-week follow up period with efficiency correlated with 
number of cells injected. Two other experimental studies 
confirmed [31, 32] these findings. As with other approach-
es using stem cells, concerns have been raised about the risk 
of infection, neoplasia, and further differentiation over time 
[33, 34]. Another approach is to not use stem cells, and in-
stead reprogram adult cells to become undifferentiated cells. 
This raises the premise of autologous regenerative therapy 
without the need for immunosuppression. Takahashi et al. 
reprogrammed adult mice fibroblasts by introducing 4 tran-
scription factors into their genome [35]. This technique has 
been extended to human cells [36, 37]. Mandel et al. used 
the patient’s own hair to generate cardiomyocytes from iPSC 
and showed that these cells were spontaneously active with 
intrinsic heart rate variability and ability to respond to iso-
prenaline and carbamylcholine [38].

Gene-Based approaches

An alternative to cell-based techniques discussed already is to 
use genes delivered, usually using a viral vector, for the myo-
cytes to induce the development of pacemaker activity. This 
was first described by John Hopkins University in 2002 [39]. 
An initial approach was overexpression of beta adrenergic re-
ceptors [40]. This produced an increase in sinus rate by 20%. 
However, this approach was limited because a functional 
pacemaker is still required to respond to the adrenergic stim-
ulation. This approach also increases the risk of tachyarrhyth-
mias and hence was abandoned. The two main approaches 
are the use of genes that inhibit Kir2.1 or genes that express 
HCN channels, which mediate the dominant inward and 
outward currents, respectively. The Kir2 gene encodes the 
Ik1 potassium current. Expression of a dominant negative 
subunit reduced the outward current. This converted a quies-
cent ventricular preparation with no automaticity to one with 
spontaneous depolarization [41]. However, this approach 
had to be abandoned because it led to the appearance of a 
prolonged QT similar to the phenotype of Andersen Tawil 
syndrome with an increased risk of dangerous ventricular 
arrhythmias. Overexpression of genes encoding HCN chan-
nels that mediate the inward depolarizing current If [42] is 
more attractive because increasing If current would not have 
a significant effect on action potential duration. Furthermore, 
HCN2 is specifically preferred because of its intermediate ac-
tion kinetics and strong response to cyclic AMP producing a 
response to sympathetic stimulation [43].
Qu et al. reported increased spontaneous beating rate in 
neonatal rat ventricular myocytes infected with adenoviral 
HCN2. Increased escape rate was demonstrated by injection 
of adenovirus carrying HCN2 in canine left atrium [44] and 
in the canine left bundle branch [34]. In a canine model of 
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atrioventricular block, implanted with a pacemaker set at a 
rate of 45 beats per minute, requirement of pacing was re-
duced after injection of the wild-type HCN2 [45]. Another 
group showed reduction of pacing requirement in a porcine 
model of sick sinus syndrome with a pacemaker set at 60 
beats per minute. HCN1 was overexpressed in the guinea pig 
ventricle, after which sinus node was ablated using radiofre-
quency energy. Large If current with activation kinetics mim-
icking sinus node was detected [46]. A different approach has 
been utilized employing Adenylate Cyclase type VI gene de-
livered with adenoviruses.  When injected in the left ventricle 
in pigs, this produced an escape rhythm denoting pacemaker 
activity [47].
Co-expression of two genes together, typically HCN with an-
other gene has increased the efficacy of the biological pace-
maker. Combination of HCN2 with adenylate cyclase gene 
[48] or with Kir gene [49] has been examined and resulted 
in improved outcomes. A more favourable response was 
obtained by expressing HCN2 with SkM1. Expressing this 
combination in adenoviruses and injection in the left bundle 
branch in dogs indicated an adequate resting rate and good 
response to autonomic stimulation [50]. Most studies using 
gene transfer use Adenoviruses as vectors. Adenovirus-based 
protein expression, however, is not expected to last beyond 
four weeks. Lentivirus as a vector can result in long-lasting 
changes, but has been associated with a risk of neoplasia. It is 
likely that in the future, improved understanding of host-vec-
tor interactions may allow safe use of lentivirus vectors [51]. 
Tbx is a gene that is important for SAN specification during 
early development. Kapoor et al. used Tbx 18 loaded ade-
novirus to reprogram rodent ventricular myocytes in spon-
taneously active cells similar to sino-atrial nodal cells [52]. 
Persistence of pacemaker activity was shown up to 6 to 8 
weeks after gene transfer. This is at present a promising possi-
bility for gene therapy using transient viral vectors to become 
a permanent pacemaker therapy, yet large animal studies are 
required.

Current Status and Concerns

As it stands now, the technology of biological pacemakers is 
still in its very early stages. Only a few animal experiments 
have been performed and there is no data on the long term 
stability of pacing function and no studies have been done 
in humans. The therapeutic approaches available at present 
also offer single site pacing only and this does not provide 
atrioventricular synchrony. There are also concerns regarding 
the risk of infection and neoplasia. Despite these limitations, 
with technological improvements, biological pacemakers ap-
pear to be destined to replace electronic pacemakers in the 
future for the treatment of patients with slow heart rates. 
The development of biological pacemakers is a relatively new 
field, yet progress has been rapid and a few different viable ap-
proaches have been developed. Most of these approaches still 
have limitations in different forms that have precluded trans-
fer to clinical practice, yet methods are being developed to 
overcome these limitations. Although electronic pacemakers 
are currently available for the treatment of patients with slow 
heart rates, there is no doubt that the emergence of effective 
biological pacemakers will provide a better solution for many 
of these patients. Seeing the rate of progress in this field, one 
cannot feel anything but certain that this day is not far off.
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