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Abstract

Objectives: This study aimed to provide an overview of prediction models of undiagnosed type 2 diabetes mellitus (U-T2DM) or the
incident T2DM (I-T2DM) using the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) checklist and the prediction model risk of the bias assessment tool (PROBAST).
Data Sources: Both PUBMED and EMBASE databases were searched to guarantee adequate and efficient coverage.
Study Selection: Articles published between December 2011 and October 2019 were considered.
Data Extraction: For each article, information on model development requirements, discrimination measures, calibration, overall
performance, clinical usefulness, overfitting, and risk of bias (ROB) was reported.
Results: The median (interquartile range; IQR) number of the 46 study populations for model development was 5711 (1971 - 27426)
and 2457 (2060 - 6995) individuals for I-T2DM and U-T2DM, respectively. The most common reported predictors were age and body
mass index, and only the Qrisk-2017 study included social factors (e.g., Townsend score). Univariable analysis was reported in 46%
of the studies, and the variable selection procedure was not clear in 17.4% of them. Moreover, internal and external validation was
reported in 43% the studies, while over 63% of them reported calibration. The median (IQR) of AUC for I-T2DM models was 0.78 (0.74
- 0.82); the corresponding value for studies derived before October 2011 was 0.80 (0.77 - 0.83). The highest discrimination index was
reported for Qrisk-2017 with C-statistics of 0.89 for women and 0.87 for men. Low ROB for I-T2DM and U-T2DM was assessed at 18%
and 41%, respectively.
Conclusions: Among prediction models, an intermediate to poor quality was reassessed in several aspects of model development
and validation. Generally, despite its new risk factors or new methodological aspects, the newly developed model did not increase
our capability in screening/predicting T2DM, mainly in the analysis part. It was due to the lack of external validation of the predic-
tion models.
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1. Context

Type 2 diabetes mellitus (T2DM) is a major cause of
blindness, kidney failure, heart attacks, stroke, and death
worldwide (1, 2). The global prevalence (95% CI) of T2DM in
adults aged 20 - 79 years was estimated to be 8.8% (7.2 - 11.3%)
in 2017, and it is estimated that 50% of them are unaware
of their disease. This prevalence is estimated to increase
by 48% in 2045. The total healthcare expenditures for dia-
betes care worldwide were estimated to be $727 billion in
2017 and are expected to increase by 6.7% in 2045 (2). Thus,
it is essential to early identify those at high risk of T2DM.

Prediction models could be useful to estimate the
probability of screening undiagnosed type 2 diabetes mel-
litus (U-T2DM) or predicting newly diagnosed T2DM in the

future (3). Various prediction models have been developed
during the past decades to predict the incident T2DM (I-
T2DM). Well-known examples include the Finnish Diabetes
Risk score (4), the Australian type 2 diabetes risk (5), QRISK
(6), and the Framingham Offspring (FOS) risk (7). The self-
assessment screening score proposed by the American dia-
betes association is included in the 2018 clinical guideline
to detect U-T2DM (1).

A multivariable prediction model is a mathematical
formula that combines several predictors to estimate in-
dividuals’ risk probability. The model-building strategy
needs to be explicitly stated to improve the reporting of the
prediction models. The previous review (8, 9) has shown
that published papers highlight some methodological re-
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quirements. However, prediction models’ design, meth-
ods, and results have been less frequently reported. Most
prediction models are rarely used because of methodolog-
ical issues in model development and poor or unknown in-
ternal and external validity (8, 10).

2. Objectives

The prevalence and incidence of T2DM are increasing,
and since about 50% of patients are unaware of their dis-
ease (2), prediction models could be used to lower the rate
of undiagnosed diabetes. Due to the existing limitations in
the prediction models’ reporting strategies, the transpar-
ent reporting of a 22-item multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) statement
was published in 2015 (11). The risk of bias (ROB) assess-
ment tool in line with the TRIPOD statement was proposed
in 2019. Since these tools did not evaluate previous studies,
we extended previous systematic reviews in the field by fo-
cusing on prediction models’ methodological aspects us-
ing the TRIPOD checklist for T2DM diagnosis or prognosis,
including both previously and newly published articles.

3. Methods

3.1. Data Sources

We followed the critical appraisal and data extrac-
tion for systematic reviews of prediction modeling stud-
ies (CHARMS) standard checklist for diagnostic and prog-
nostic prediction models, tools, or scores of T2DM (11).
For avoiding duplication, only papers published between
December 2011 and October 2019 were considered. Both
PUBMED and EMBASE databases were searched to guaran-
tee adequate and efficient coverage. Articles published
before 2011 were addressed in previously published sys-
tematic reviews (8, 9). We included additional articles
by searching references in the papers following the same
search strategy.

3.2. Study Selection

Observational studies were included to predict U-T2DM
or I-T2DM. We also considered studies based on the inclu-
sion and exclusion criteria:

1) Original English articles were included.
2) Articles on gestational diabetes or type 1 DM were ex-

cluded.
3) Genetic studies, animal studies, validation studies of

previously published models, studies on children or ado-
lescents, studies with a specific population, pre-selected
risk factors, and non-regression models, and articles with

T2DM as a composite outcome with other outcomes (e.g.,
cardiovascular disease: CVD) were excluded.

This review focused on regression-based prediction
models, and other prediction models such as machine
learning models were excluded.

4) Editorial articles, letters, congress abstracts, clinical
trials, meta-analysis, or systematic review articles were also
removed.

5) The study search strategy included T2DM, undiag-
nosed diabetes, risk prediction, prediction models, and
predictive models.

The search strategy is available in Appendix 1 in Supple-
mentary File.

3.3. Data Extraction

Search results from different origins were combined
in a single Endnote library, and duplicate articles were re-
moved electronically and manually. Afterward, two peo-
ple (S. Asgari and D. Khalili) evaluated titles and abstracts
separately and marked potentially related articles for full-
text reading. Disagreements were discussed with a third
reviewer (F. Hadaegh). All the authors screened full-text ar-
ticles. One of the reviewers (S. Asgari) extracted data. Three
independent people (D. Khalili, F. Hosseinpanah, and F.
Hadaegh) monitored the data collection process. Essential
items extracted via a literature study included study type
(case-control or cohort), country, publication year, study
name, sample size, follow-up duration, participant age,
and outcome definition. For model development, model-
ing methods (e.g., logistic regression and survival regres-
sion), variable selection methods (e.g., univariate analysis
and literature review), treatment of continuous risk pre-
dictors (e.g., all categorized, all continue), treatment of
missing data (e.g., imputation and complete case), risk pre-
dictors in the model, discrimination measures (e.g., sen-
sitivity, specificity, positive or negative predictive value,
Youden index, are-under-the-curve: AUC, C-statistics, and
D-statistics), overall performance (e.g., Akaike information
criteria: AIC and Bayesian information criteria: BIC), clini-
cal usefulness (e.g., net benefit) and overfitting (e.g., boot-
strapping) were extracted. Additionally, discrimination
measurements, overall performance, and calibration of
both internal and external validation were evaluated. We
treated prediction models described in a single article as
separate models.

3.4. Risk of Bias Assessment

The prediction studies were critically assessed by the
Prediction Model Risk of Bias Assessment tool (PROBAST),
which was introduced by Wolff et al. in 2019 (12). The risk
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of bias (ROB) tool is categorized into four domains, includ-
ing participants (two questions), predictors (three ques-
tions), outcome (six questions), and analysis (nine ques-
tions). ROB was reported for each article separately to
screen U-T2DM and I-T2DM. The overall judgment was per-
formed as recommended by Wolff et al. (12). ROB was de-
fined low if all the four domains were rated low. ROB was
defined high if at least one (≥ 1) had high ROB. Also, even if
all the domains were defined low, a prediction model with-
out any external validation was judged to have high ROB.
Unclear ROB was defined if at least one domain had unclear
ROB and it was low risk for all the other domains. The ap-
plicability of the prediction models was also assessed, and
the majority of the models regarding risk of bias.

3.5. Descriptive Analysis

We summarized the results using descriptive statistics
for both model development and validation for I-T2DM.
Collins et al. (8) and Noble et al. (9) considered the
same characteristics for previously published reviews. The
present study evaluated 18 out of the 45 studies on risk pre-
diction (Appendix 2 in Supplementary File).

This systematic review was reported in accordance
with the Preferred Reporting Items for systematic reviews
and meta-analyses extension for scoping reviews (PRISMA-
ScR) (13) by removing meta-analysis items. We also con-
sidered the TRIPOD guideline (14) to extract the prediction
models’ required items.

4. Results

4.1. General Study Description

The search string retrieved 464 articles in PubMed and
600 articles in EMBASE. After removing duplicates, our
database search yielded 755 articles. We excluded 667 arti-
cles after checking titles/abstracts and 54 articles after full-
text consideration; the remaining 34 articles met the in-
clusion criteria. A further nine articles were also included
by hand searching reference lists. In total, 24 articles on
I-T2DM (15-38) and 19 articles on U-T2DM screening (39-57)
published between December 2011 and October 2019 were
eligible for the current review (Figure 1). For U-T2DM, two
articles reported separate risk diagnosis models with dif-
ferent populations. Thus, our review assessed 46 risk pre-
diction models from 43 articles.

Appendices 3 and 4 show basic information of studies
for I-T2DM and U-T2DM, respectively, including publication
year, country, study design, study name, number of events
and sample size (model development), follow-up duration,
participant age, outcome definition, and the Newcastle-
Ottawa scale. I-T2DM models have been developed in nine

countries, while U-T2DM has been developed in 15 coun-
tries (Appendix 12 in Supplementary File). One article de-
scribed the development of three risk models for U-T2DM
screening using three different populations from different
countries (44).

The median (interquartile range; IQR) number of the
study population for model development was 5711 (1971 -
27426) and 2457 (2060 - 6995) individuals for I-T2DM and
U-T2DM, respectively. The most frequent age range in the
reviewed articles for both I-T2DM and U-T2DM was 40 years
and older. Moreover, the median (IQR) number of the inci-
dent case of T2DM was 396 (171 - 1218) whereas the median
(IQR) number of prevalent cases for U-T2DM screening was
207 (144 - 388). In 10 articles (17, 19, 20, 22, 26, 30-32, 35, 38)
on I-T2DM and one article on U-T2DM (51), the study popu-
lation was over 10,000 (Appendices 3 and 4 in Supplemen-
tary File).

4.2. Model Development

A summary and detailed characteristics of model de-
velopment for I-T2DM are reported in Table 1 and Appendix
5 in Supplementary File, respectively. Moreover, the de-
tailed characteristics of model development for U-T2DM
screening are shown in Appendix 6 in Supplementary File.

4.2.1. Outcome Definition

In six of the articles, I-T2DM was defined based on fast-
ing blood sugar (FBS), 2 hour blood sugar (2h-BS), and
Hemoglobin A1c (HbA1c) (19, 20, 25, 26, 32, 36). In the re-
maining studies, the following compounds were consid-
ered for definition of T2DM: FBS and 2h-BS in three of the
studies (18, 23, 37), FBS and HbA1c in six of the studies (21,
27-29, 33, 34), FBS in six of the studies (15, 17, 24, 30, 31, 38),
HbA1c in one of the studies (16), and physician-diagnosed
using electronic health records in two of the studies (22,
35). Moreover, glucose-lowering mediation as another def-
inition for T2DM was included in 14 of the studies (15, 17, 18,
20, 24, 26, 27, 29-34, 38). Almost the same variation in defini-
tion was observed to screen U-T2DM definition (Appendix
4 in Supplementary File).

4.2.2. Treatment of Continuous Variables

The detailed information on the treatment of continu-
ous variables for I-T2DM is reported in Appendix 5 in Sup-
plementary File. Eighteen prediction models categorized
all the continuous risk factors (15, 17, 18, 20, 23, 24, 26-30, 32-
38), four risk factors (16, 22, 25, 31), and two continuous and
categorical risk factor (19, 21). Considering model develop-
ment for U-T2DM screening (Appendix 6 in Supplementary
File), all continuous variables were categorized in 19 mod-
els (39-41, 43-54, 56, 57), and the variables kept continuous
in three models (42, 55).
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464 Records identified through PubMed searching 
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validation studies, other outcome 
modeling, specific population or 
disease, genetic risk prediction model, 
machine learning models 

Regression based modeling (n = 34) 
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Previously published 
reviews (n = 18) 
Till 30/10/2011 

Incident type 2 DM (n = 24) 

Total Incident type 2 DM 
(n = 42) 

Figure 1. The flowchart of study selection between November 2011 and 2019

4.2.3. Missing Strategy

With respect to the prognostic model for I-T2DM, com-
plete case analysis was performed on 13 of the studies (15,
18, 20, 21, 23, 24, 26-29, 32, 34, 38). Only one of the stud-
ies used multiple imputations (22). The strategy of dealing
with missing values was not clear in 10 developed models
(16, 17, 19, 25, 30, 31, 33, 35-37); thus, we assumed that com-
plete case analysis was performed.

Regarding screening U-T2DM, the missing treatment
strategy was not clear in nine models (44-46, 51, 54, 56, 57)
(Appendix 6 in Supplementary File). Complete case analy-
sis was performed on 12 models (16, 41, 42, 47-50, 52, 53, 55,
57), and multiple imputation was reported for one model
(43).

4.2.4. Predictor Selection

Seven of the studies reported using the univariable
analysis to reduce the number of risk predictors (16, 18, 20,
21, 24, 28, 30), and six of the studies included all literature-

based risk factors in multivariate analysis (19, 22, 27, 29, 31,
33). Automatic selection was reported in five of the articles
(32, 35-38), and no information on the model building strat-
egy was found in seven of the articles (15, 17, 19, 23, 25-27).
In the current study, the number of predictors included in
the developed models ranged between 4 - 15 for I-T2DM and
3 - 10 for U-T2DM screening (excluding the article with more
than 40 predictors (35)).

4.2.5. The Statistical Model for Prediction

Most prognostic models for I-T2DM were developed us-
ing Cox (n = 15) (15-20, 22, 28, 30-33, 36-38) and logistic re-
gression (n = 8) (21, 23, 25-27, 29, 34, 35) using enter, au-
tomatic forward selection, backward elimination, or step-
wise procedure. The sub-distribution hazard model was re-
ported in one of the studies (24). As expected, all diagnostic
models for U-T2DM screening used the logistic model for
data analysis.
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Table 1. Model Development Characteristics for the Current and Previous Reviews for incident Type 2 Diabetes Mellitus

Updated Review
(Current Review = 24)

Previous Reviews Collins et al. (8) and Noble et al.
(9) (Risk Prediction Modelsa = 18)

Treatment of continuous variables

All kept continuous 4 3

All categorized 18 11

Some continuous and some categorized 2 4

No information - -

Treatment of missing data

Complete case 13 4

Imputation 1 1

No information 10 12

Predictor selection

Stepwise, forward, backward, automatic algorithm selection 4 3

Univariate analysis 7 2

Literature review 6 3

No information 7 10

The statistical model for prediction

Logistic regression 8 10

Cox regression 15 6

Subdistribution hazard model 1 2

Type of model

Lab-based 13 5

Office-based 3 7

Both 8 6

Sex-specific model 2 4

Overfitting correction 7 3

The presentation as a risk score 19 16

aOnly original development English articles without genetic concentration.

4.2.6. Overfitting in Prediction Models

For the I-T2DM model development, overfitting was
controlled for seven of the studies (Table 1), and for U-T2DM,
overfitting was controlled for 12 models (Appendix 6 in
Supplementary File). Bootstrapping was the most used
strategy to control overfitting in I-T2DM and U-T2DM.

4.2.7. Extra Information on Model Development

Thirteen of the studies generated only laboratory-
based (invasive) risk prediction models (16, 17, 19, 20, 24,
28-32, 35, 37, 38) for I-T2DM, while an office-based (non-
invasive) risk method using demographic and clinical
measurements (e.g. sex and BMI) was reported in four of
the studies (25, 27, 34). Eight of the studies reported both
invasive and non-invasive prediction models (15, 18, 21-23,
26, 32, 36) (Table 2). For U-T2DM, 18 models were based

solely on office-based measurements, three models were
developed according to lab measurements, and only one of
the studies reported both invasive and non-invasive mod-
els (Appendix 6 in Supplementary File).

Body mass index and age were the two most commonly
used variables in model development regarding screening
U-T2DM and predicting newly diagnosed T2DM (Figure 2).
Sex was adjusted in 11 of the studies, and only two of the
studies (19, 22) developed sex-specific models. For I-T2DM,
the interaction between variables was checked in three of
the studies (15, 22, 23). However, two of the studies (37, 52)
on U-T2DM screening focused on interaction terms.

4.3. Model Validation

A summary and detailed characteristics of model val-
idation for developing I-T2DM are reported in Table 3 and
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Figure 2. The number of model predictors for incident and undiagnosed type 2 diabetes mellitus between November 2011 and 2019. BMI, body mass index; FBS, fasting blood
sugar; HbA1c, hemoglobin A1c; FHDM, family history of diabetes; WC, waist circumference; WHR, waist to height ratio; Others, gestational diabetes, C-reactive protein levels,
statin, atypical antipsychotics, corticosteroids, antipsychotic, learning disability, body mass index, Townsend score, CVD, schizophrenia or bipolar affective disorder, learning
disability, balanitis or vulvitis, osmotic symptoms.

Appendix 7 in Supplementary File, respectively. Moreover,
the detailed characteristics of model validation for U-T2DM
screening are shown in Appendix 8 in Supplementary File.

4.3.1. Internal and External Validation

Fifteen out of the 24 development studies for I-T2DM re-
ported internal validation (15, 16, 20, 22-24, 26, 27, 29-32, 35,
36, 38), 9 studies reported development and validation (n
= 9), cross-validation (n = 5), and bootstrapping (n = 1). Five
of the studies conducted external validation (18, 19, 21, 34,
35) (Table 3 and Appendix 7 in Supplementary File). Eight
models (40, 42, 45, 47, 50, 52, 53, 55) reported internal val-
idation for U-T2DM screening, and external validation was
performed for 11 out of the total introduced models (39-43,
46, 48, 51, 52, 54, 56) (Table 2 and Appendix 8 in Supplemen-
tary File).

4.3.2. Model Performance

With the aim of predicting newly diagnosed T2DM, all
the studies reported at least one measure of predictive per-
formance, with 20 of the studies reporting the area under
the receiver curve (AUC) (15, 17, 18, 20, 21, 23, 24, 26-38), eight
of the studies reporting C-statistics (15-17, 19, 24, 28, 29),
and one of the studies reporting discrimination with D-
statistics (15). Nineteen of the studies reported calibration,
with the Hosmer-Lemeshow goodness of fit test in 11 of the
studies (17, 18, 21, 23, 26, 27, 29, 31, 34, 36, 37), the observed-
predicted plot in nine of the studies (16, 19, 22, 24, 26, 28,
32, 36, 38), and the observed-predicted ratio in one of the
studies (30). Moreover, 15 of the studies reported classifica-
tion analysis, and four of the studies reported the overall

performance measure.
All the introduced models reported AUC for U-T2DM

screening (39-57), 10 of the studies (39, 40, 43, 47-50, 52, 53)
reported calibration, and three of the models (42, 47, 55)
reported overall performance measurements. The median
(IQR) value of AUC or C-statistics was 0.78 (0.74-0.82) for I-
T2DM, while the median (IQR) value of AUC was 0.77 (0.74-
0.81) for U-T2DM screening.

4.4. Other Considerations

4.4.1. Risk of Bias Assessment

The PROBAST recommendations for ROB assessment
were presented for both I-T2DM (Appendix 9 in Supplemen-
tary File) and U-T2DM screening (Appendix 10 in Supple-
mentary File) models. All the studies used an appropriate
data source. The overall judgment of ROB assessment is
shown in Figure 3. Low ROB was noted in three domains
of participants, predictors, and outcomes for both I-T2DM
and U-T2DM. Forty-two percent of the prediction models
were observed to have high ROB for I-T2DM, which was 18.2%
for U-T2DM. ROB was generally high or unclear for I-T2DM
and low or unclear (82%) for U-T2DM.

4.4.2. Citation Rate

The median duration from the publication date for the
prognostic models was 3 years with the 2.35 citation rate
per year. Further, the median duration from the publica-
tion date for the U-T2DM screening models was 4 years with
the 2.26 citation per year (Appendix 11 in Supplementary
File).
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Figure 3. The overall judgment of risk of bias (ROB) for incident and undiagnosed type 2 diabetes mellitus between November 2011 and 2019
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Table 2. Model Development and Validation Characteristics of Undiagnosed Type 2
Diabetes Mellitus (N = 19 Studies and 22 Models)

Numbers

Model Performance Measures

Discrimination measures

C statistics/AUC 22

D statistic -

Sensitivity/specificity 19

Othersa 12

Calibration

Calibration plot 3

Hosmer-Lemeshow test 7

Brier score -

Observed-predicted ratio -

Overfitting 12

Overall performance measures:

R2 -

AIC, BIC 2

Clinical usefulness 1

The performance as risk score 20

Model Development Measures

Validation

Apparent 15

Internal validation 8

External validation 11

Type of model

Invasive 3

Non-invasive 18

Both 1

Sex-specific model 2

Treatment of missing

Complete case 12

Imputation 1

No information 9

Statistical model for prediction

Logistic regression 22

Cox regression -

Survival analysis -

aPPV, NPV, LR+, LR-.

5. Discussion

To the best of our knowledge, this was the first system-
atic review to report requirements for major prediction

models to predict I-T2DM or screen U-T2DM using the TRI-
POD and PROBAST checklist. Our systematic review yielded
45 published studies between December 2011 and October
2019 reporting all aspects of developing and validating pre-
diction models according to the CHARMS checklist. Ac-
cording to the PROBAST assessment tool introduced based
on the TRIPOD statement, the majority of the prediction
models were observed to have high or unclear risk for I-
T2DM but low or unclear risk for U-T2DM.

5.1. Study Design for Model Development

A variable selection strategy is a challenging part
of prediction modeling. Several approaches are recom-
mended, including pre-specified literature-based variable
selection, univariable analysis, and automatic variable se-
lection (forward selection, backward elimination, or step-
wise). In our review, univariable analysis (29%) was the
most commonly used method to build a statistical model.
However, in the previously published reviews, literature-
based and automatic variable selection approaches were
the most reported ones (16.7%). Thirty-two percent of the
studies in our review (55.5% of the previously published re-
views) failed to report any information regarding variable
selection strategies.

One of the problems in developing multivariable pre-
diction models is to treat continuous variables and exam-
ine whether they are categorized or kept continuous. With
categorizing continuous variables, important information
might be lost, and we may lose power to detect real associ-
ation (3). There is a firm opinion that continuous variables
should be kept continuous, and in case of a non-linear as-
sociation, other statistical methods (e.g., splines) are rec-
ommended (58). Nevertheless, researchers prefer to cat-
egorize continuous variables because it is more applica-
ble in clinical decision-making (59). In our review, 75% of
the studies on I-T2DMcategorized all variables and; In the
previously published articles 61% of articles categorized all
variables.

5.2. Missing Data Strategy

Missing data is a serious problem in epidemiological
and clinical studies as it can reduce statistical power and
efficiency. A common way to manage missing data is to
use listwise methods, also known as complete case analy-
sis. Although this strategy is straightforward and easy to
use, it decreases statistical analysis power and thus it is not
recommended. Multiple imputation (MI) is a superior ap-
proach to minimize the missing information effect. MI can
increase study precision and result in robust statistics (60).
Single imputation (SI) may be a good alternative for predic-
tion models despite its limitations, such as uncertainty un-
derestimation. Since point estimation, and not variability,

8 Int J Endocrinol Metab. 2021; 19(3):e109206.
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Table 3. Model Validation Characteristics for the Current and Previous Reviews for incident Type 2 DM

Updated Review
(Current Review = 24)

Previous Reviews Collins et al. (8) and Noble et al.
(9) (Risk Prediction Modelsa = 18)

Validation

Apparent 10 11

Internalb 15 7

Bootstrapping 1 2

Random split sample 9 4

Cross validation 5 1

Jack-knifing - -

External 5 12

Performance measures

Overall

R2 3 1

AIC, BIC 2 2

Brier statistics 1 -

Discrimination 25 18

AUC 20 15

C-statistics 8 2

D-statistics 1 2

Calibrationc 19 14

Calibration plot 9 3

Hosmer-Lemeshow test 11 8

Barrier score - 2

Observed-predicted ratio 1 1

No information 5 -

Classification

NRI/IDI 5 1

Sensitivity/specificity 15 15

Othersd 5 6

Clinical usefulness 1 -

Abbreviations: AUC, area under the curve; HL, Hosmer-Lemeshow; IDI, integrated discrimination improvement; NRI, net reclassification index.
aOnly English articles without genetic concentration
bArticles reporting several validation methods
cArticles reporting several calibration measurements
dPositive/negative predictive values, NPV, Youden index

is our primary interest in the prediction models, statisti-
cians advise SI because it is easy to implement and since a
score based on rounded coefficients gives almost the same
result as MI (3). As acknowledged by Steyerberg (3) “MI may,
therefore, have only minor advantages over SI for model
prediction” (2009, clinical prediction models, Part III, sec-
tion 7, page 133). In our review, 54% of the studies (44% of
the previously published reviews) followed complete case
analysis and only one of the studies reported MI. However,

the method used to resolve the missing data issue was not
reported for I-T2DM in 42% of the studies; this was 66.7% of
the previously published reviews.

5.3. Statistical Models

Multivariable regression models such as logistic re-
gression or Cox proportional hazards regression com-
monly use statistical methods for deriving prediction
models. We used the same strategy in our study with
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the difference that researchers have recently paid atten-
tion to family regression survival. Each of these statisti-
cal approaches has its own assumptions and limitations
that may reduce generalizability. The usual approach in
driving prediction models is to use all available data and
population risk factors to compute risk scores using only
one measurement, known as “global predictive models”.
Patient-specific predictive models, introduced as “person-
alized prediction models”, are an alternative approach that
use each individual’s dynamic information to derive more
relevant models. In recent years, time-varying regression
models are becoming more common (61-63).

5.4. Overfitting in Model Development

Both model and parameter uncertainty result in oc-
curring overfitting, indicating that the prediction models
are not valid for the new society. Bootstrapping is recom-
mended by using a rule of thumb of 10 cases per predictor
or reporting optimism-corrected performance (3). Of the
studies included in this review, 29% had overfitting correc-
tion, while this rate was 16.7% in the previously published
articles for I-T2DM.

5.5. Model Performance

The next crucial step after model development is to
quantify model performance. There are three types of per-
formance: (1) apparent validation (using the same data set
as the model developed for reporting validation); (2) inter-
nal validation such as split sampling, cross-validation, or
bootstrapping methods; and (3) external validation (using
completely different data). More than half of the studies in
the current review for I-T2DM reported internal validation,
while this rate was 38.9% in the previously published arti-
cles. In the current review, 21% of the studies reported ex-
ternal validation, while this rate was 48% in the previously
published articles.

Reporting overall performance (e.g., AIC/BIC and R2)
with discrimination ability between events and non-
events (e.g., AUC, C-index, sensitivity, and specificity) is in-
formative and somehow necessary in model evaluation. In
the current and previously published reviews, all the arti-
cles reported at least one discrimination aspect. Overall
performance was reported only in four of the articles for
I-T2DM. Moreover, demonstrating the calibration method
(e.g., the Hosmer-Lemeshow test and the calibration plot),
especially for a binary outcome, is informative and shows
the agreement level between observed and predicted out-
comes. More than 75% of the selected articles in the cur-
rent and previously published reviews reported calibra-
tion measurements for I-T2DM.

5.6. Strategies for Model Improvement

We focused on model development and validation re-
quirements. However, some other model improvement
strategies, such as improving statistical methods, consid-
ering interaction terms, and considering non-linear asso-
ciations, are also recommended. Some epidemiologists
advised to estimate prediction models including relevant
interaction terms in addition to the main effects. A lit-
erature review may help us select the proper interaction.
However, it should be noted that interaction terms in the
prediction models do not necessarily increase model per-
formance. Moreover, because of the therapeutic improve-
ment of medicine or disease-related definition, predictors’
effect may change over time. For example, predictors’ ef-
fect for T2DM development is noted to decrease with ag-
ing. The older population is more affected by other types
of disease; thus, considering “age × predictors” in the pre-
diction models may be useful. In the current review, only
one of the studies reported age interaction (22). Further
biological and pre-specified relevant interactions such as
‘SEX×predictors’ are also recommended.

5.7. Sex-specific Prediction Models

Evidence shows that gender differences are impor-
tant in many diseases, particularly non-communicable dis-
eases (64, 65). According to the 2019 IDF Atlas in 2019,
there were 17 million more men diagnosed as having T2DM
than women (66). Of the studies included in this re-
view, sex-specific prediction models were reported only in
two (8%); this number was four (22.2%) among the previ-
ously published reviews on I-T2DM. Varieties in endocrine
(e.g., biology and sex-hormones), as well as in behavioral
(e.g., lifestyle and socioeconomic status), cultural, envi-
ronmental, and epidemiological context, Indicates the dif-
ference between male and females. For example, over-
weight/obesity is the major risk factor of T2DM in both gen-
ders, with the difference that men are overweight/obese in
their younger age whereas women are overweight/obese in
their middle age. Also, diabetes-related comorbidities dif-
fer in men and women and require specific management
strategies (65, 67, 68). A systematic review showed that mi-
crovascular complications were higher among men with
T2DM, while CVD morbidity and mortality, as well as psy-
chological problems, were higher among women with
T2DM (69). Despite the importance to consider sex differ-
ences in awareness, diagnosis, treatment, prediction, and
prevention strategies, few studies have focused on the is-
sue (69). In the current study, we observed a downward
trend of sex-specific models (8%) compared to the previ-
ously published articles for I-T2DM, although not signifi-
cant (22.2%).
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5.8. Age-specific Prediction Models

The global prevalence of T2DM is expected to rise from
9.3% to 10.2% between 2019 and 2030 (70). Even though
most of this increase has been reported in the middle-aged
and elderly population, several studies showed a decrease
in the age of diagnosis (71-73). In the current review, the
prediction models were mostly developed in the middle-
aged and older population, and only two studies recruited
a younger population for I-T2DM (15, 30). Previous reviews
show that the early onset of T2DM is a serious concern
in various ethnic groups and is strongly associated with
the development of micro/macrovascular complications.
A better understanding of potential risk factors and a pos-
sible disease mechanism of the early onset of T2DM in the
young population could be helpful in controlling future
complications of the disease on individuals and the health-
care system (73, 74).

5.9. Role of Non-traditional Risk Factors in Prediction Models

Besides biological factors, psychological disorders are
also responsible for increased blood glucose. Epidemiolog-
ical studies implicate that psychological factors, socioeco-
nomic status, poverty, education level, occupational stress,
and sleep disorders are related to a higher risk of T2DM (75,
76). In our review, over 90% of the studies did not use these
factors, and only one of the studies used a depression score
(22) and sleep apnea (35). For example, low education is re-
lated to a higher risk of diabetes among Australian women
(76), while higher education increases I-T2DM among Ira-
nian men (77). Adding psychological factors may improve
the fit of models predicting or screening T2DM, as even
shown in QRISK 2017 (22). Evidence supports the existence
of a two-way relationship between T2DM and poverty, with
T2DM increasing the risk of falling into poverty, especially
in men, and poverty is associated with a higher risk of I-
T2DM along with inequality of diabetes care (78, 79). How-
ever, using simple and reliable covariates is the main point
of prediction models. Clinicians recommend improving
these models with even subjective measurements.

Two systematic reviews (80, 81) suggested that the pres-
ence of endocrine-disrupting chemicals (EDCs) in the envi-
ronment, such as bisphenol A, phthalates, and persistent
organic pollutants or dioxins, may also be associated with
I-T2DM. Plastic bottles, metal cans, toys, and many other
manufacturer products are considered EDCs. They impair
the normal activity of hormones and cause a wide range
of adverse events. Several epidemiological studies evalu-
ated the association between EDCs such as air pollution
(82) and T2DM. However, the causality and a whole mix-
ture of toxicants as well as duration of being at risk in the
human study have not been demonstrated yet (80). Re-
cently, scientists have shown that both nitrogen dioxide

(NO2) as a measure of traffic-exposure and annual concen-
trations of particular matter < 2.5 µm (PM 2.5) as a mea-
sure of both traffic-related and transported particles, are
statistically associated with a quick decline in the whole-
body insulin sensitivity and a faster increase in BMI among
children aged 8 - 15 years (83, 84). However, the roles of air
pollution and endocrine disrupters have not been yet con-
sidered in studies including the current one, despite the
high prevalence of air pollution in some countries (33-39).

5.10. Ethnicity in Prediction Models

Evidence is accumulating on the significance of spe-
cific ethnic groups at the increased risk of T2DM. Accord-
ing to the IDF report, the Middle East and African countries
have the highest age-standardized prevalence of T2DM,
and the number of people with T2DM is expected to in-
crease by 94% and 143% between 2019 and 2045 in these re-
gions, respectively. Globally, the lower increasing rate of
prevelance is estimated in the European ethnicity by 15%
(70). Several risk prediction models have been developed
for U-T2DM prognosis or screening worldwide (8). How-
ever, the significance of country-based models is still con-
troversial. In the current review, over 70% of the prediction
models for I-T2DM were derived in the East Asian countries
(17, 29-31, 36, 38). While in the previously published articles,
more than 50% of the prediction models were developed
in the American and European populations (6, 7, 85-93). By
comparing the risk prediction models’ performance in the
current review and the previously published articles, a sim-
ilar median discrimination index (0.78 for the current re-
view and 0.8 for the previously published reviews) with al-
most similar predictors was observed, irrespective of the
geographical location. Our findings are supported by the
studies of Tanamas (94) and Rosella et al. (95). Tanamas
et al. (94) examined several T2DM prediction models in
two cohort studies: AusDiab and Mauritian south popula-
tion survey. The discrimination power was reported to be
higher in the mixed population. They found that ethnic-
ity did not improve model performance. Their findings are
in line with the previous study (95) considering that eth-
nicity information did not improve the discrimination and
accuracy of the prediction models. They emphasized that
the similarity of ethnicity or diabetes risk could not deter-
mine the appropriate model performance in another pop-
ulation. This could be due to the fact that ethnicity is af-
fected by other diabetes risk factors including a family his-
tory of diabetes, BMI, physical activity, and diet. According
to the discussion above, compared to development of new
models, external validation and calibration of the existing
models are preferred and cost-neutral (96).
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5.11. External Validation ad Recalibration on Prediction Models

To the best of our knowledge, none of the studies in the
current review was externally validated in an independent
study. However, some previously developed models were
externally validated and recalibrated several times by in-
dependent researchers (4, 7, 91, 97). Masconi et al. (98) in-
vestigated the external validation and recalibration of di-
abetes risk prediction models in their systematic review
of 94 articles, including 70 models and 236 validations on
T2DM. The most commonly validated model for I-T2DM was
FOS (7) (10.1%), followed by the San Antonio risk model (91)
(9.5%). For U-T2DM screening, the Finish diabetes risk score
(4) (14.8%) was the most frequently validated prediction
model, followed by the Rotterdam model 1 (97) (12.5%). Re-
calibration was performed on 22.9% of the validation mod-
els in the validation study for I-T2DM.

5.12. Strengths and Limitations

The strength of this study is that it was reported in ac-
cordance with the PRISMA-ScR checklist. This review also
included a comprehensive report of model development
(e.g., the outcome definition, variable selection, statistical
analysis, and treatment of continuous variables) and vali-
dation (e.g., calibration and net benefit) requirements ac-
cording to the TRIPOD guideline. Study quality control and
ROB assessment were also reported using the Newcastle-
Ottawa scale and the PROBAST checklist. Our study is very
informative since previously published articles examined
in previous systematic reviews were also evaluated and
compared with the currently selected articles based on the
TRIPOD prediction model guideline. However, there are
also some limitations. Firstly, only English articles were in-
cluded and thus we may have missed some articles. Sec-
ondly, we decided to exclude Genetic risk prediction or
non-regression based models (e.g., neural networks or de-
cision tree) due to their different nature.

6. Conclusions

Among prediction models of I-T2DM progression or
U-T2DM screening between December 2011 and October
2019, we observed intermediate to poor quality were as-
sessed in several aspects of model development and valida-
tion, mainly from the analysis part. It poses the question
whether we could rely on the current prediction models
or we should develop new models. Another major concern
is that a newly developed model can be easily disregarded
if it has no added value for health policymakers or clini-
cians. Using pre-specific risk factors or traditional statisti-
cal approaches is similar to the existing prediction mod-
els; for example, the mean (SD) of AUC has been 0.78 (0.06)

in the last twenty years. It may be required to develop per-
sonalized comprehensive prediction models by consider-
ing additional risk factors so that the prediction models’
performance could be improved more effectively. It has
been shown that time-varying prediction models can out-
perform global models (63). External validation and recal-
ibration could help us tailor the available prediction mod-
els to local populations, which is a better option than de-
veloping a new model.
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