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Abstract

Background: The harmful impact of ovariectomy on myocardial ischemia-reperfusion (M/IR) injury has been established in the
short term.
Objectives: In this study, we aimed to investigate the long-term effects of ovariectomy on M/IR injury.
Methods: Two methods involving dorsolateral skin incisions were used to induce the ovariectomized (OVX) rat model. The rats were
divided into 2 groups: Control and OVX (n = 6). At the end of the study, the hearts were isolated and subjected to global ischemia
using the Langendorff apparatus. Cardiac function indices (CFIs) were recorded, including left ventricular end-diastolic pressure
(LVEDP), peak rates of positive (+dp/dt) and negative (-dp/dt) changes in LV pressure, and LV-developed pressure (LVDP). At the end
of the reperfusion period, the hearts were used to measure the size of the infarct, levels of nitric oxide metabolites (NOx), and mRNA
expression of NO synthase (NOS) enzymes, including endothelial (eNOS), neuronal (nNOS), and inducible (iNOS).
Results: Compared to controls, OVX rats had larger infarct size by 51%, higher LVEDP by 29%, and lower recovery of +dp/dt, –dp/dt,
and LVDP by 29%, 22%, and 35%, respectively. Furthermore, in heart tissue, rats that underwent OVX had significantly higher
concentrations of nitrate, nitrite, and NOx by 79%, 82%, and 83%, respectively. Additionally, these rats had lower mRNA levels of eNOS
by 38% and higher mRNA levels of iNOS by 71%.
Conclusions: The long-term deficiency of estrogen increased the expression of iNOS and decreased the expression of eNOS in the
heart tissue of OVX rats. Imbalanced NOS expressions were associated with exacerbated responses to M/IR injury in OVX rats.
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1. Background

Cardiovascular disease (CVD) is the main cause of
death among women, accounting for 35% of all deaths (1).
Women experience their first coronary heart disease (CHD)
about nine years later than men (2). Also, the risk of CHD is
lower in women than in men (30% vs. 50%) at age 40 (3).
According to a meta-analysis of the cohort, case-control,
and cross-sectional studies, early menopause in women
increases the risk of CHD by about 50% (4). In addition,
according to population-based cohort studies, surgical
menopause increases cardio-metabolic disturbances and
the risk of CVD more than natural menopause (5, 6). These
studies indicate that estrogen deficiency is related to a
higher incidence of CHD, but the causal mechanisms have
not been fully assumed.

The favorable effect of estradiol in heart tissue is partly
mediated by nitric oxide (NO) production. Additionally,

estradiol increases serum levels of NO metabolites (NOx)
in post-menopausal women (7) and NO production in
the cardiovascular system (8). Estrogen deficiency in
post-menopausal women (7) and in ovariectomized (OVX)
rats (9) is associated with NO deficiency, which increases
the myocardial ischemia-reperfusion (M/IR) injury (10). In
animals, ovariectomy frequently increases the inducible
NO synthase (iNOS) and decreases the endothelial NOS
(eNOS) expression in heart tissue (11-13). Reduced eNOS and
neural NOS (nNOS) (14, 15) and increased iNOS expression
(16) exacerbate M/IR injury, whereas the increased eNOS (17)
and reduced iNOS (18) expression decreases M/IR injury in
animal studies.

Detrimental effects of ovariectomy on tolerance to
M/IR injury in rats at short-term (2 (19) to 12 weeks (20))
have been reported. However, the effect of ovariectomy
in the long term has not been reported previously.
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Different effects of short- and long-term ovariectomy
on heart function (21, 22) and iNOS and eNOS expression
and NOx in heart tissue (11, 13) have been reported in
experimental studies. We previously reported that
long-term ovariectomy (11 months) in rats impairs baseline
cardiac function that is correlated with decreased NOx
concentration in heart tissue (13); however, this association
has not been addressed following IR.

2. Objectives

This study aimed to measure the long-term (11 months)
effects of ovariectomy on resistance to M/IR injury in rats
and determine whether all three NOS isoforms affect this
outcome.

3. Methods

3.1. Animals and Ovariectomized Model Induction

This study used 12 female Wistar rats (6-month-old
weighting 200 - 220 g). Rats were housed in polypropylene
cages (42× 28× 15 cm, 3 rats in each cage) under standard
conditions of 12-h light (7 am to 7 pm) and 12-h dark
(7 pm to 7 am), at 21 ± 2°C, with free access to tap
water and regular food. All experiments followed the
published guidelines for the care and use of laboratory
animals in Iran (23) and were reported following ARRIVE
guidelines (24). The care and use of rats were confirmed
by the Research Institute for Endocrine Sciences (RIES)
Ethics Committee of Shahid Beheshti University of
Medical Sciences (IR.SBMU.ENDOCRINE.REC.1401.115).
In accordance with the principle of the 3Rs (reduce, refine,
replace), we obtained isolated hearts for our experimental
interventional study from a previous study. This allowed
us to reduce the number of animals used in our research.
The previous study investigated the effects of nitrate
administration on carbohydrate metabolism in OVX rats
(25). Therefore, details on the induction and verification
of the OVX model have been described earlier (25). In
brief, to induce the OVX model, two dorsolateral skin
incision methods were used to remove ovaries from
anesthetized rats (sodium pentobarbital at a dose of 60
mg/kg). After surgery, to reduce the risk of self-mutilation
and infection of the skin after suturing, the rats were
housed individually for 7 days, and penicillin was added
to the surgery place to prevent infection (26).

To verify the model, body weight was measured
before and after two months of ovariectomy, and
blood samples were taken from the tail tips of OVX
rats under isoflurane inhalation anesthesia. In addition,
17β-estradiol, progesterone, luteinizing hormone (LH),
and Follicle-stimulating Hormone (FSH) concentrations

in serum were measured at the start of the study and
2 months after ovariectomy. Intra-assay Coefficients
of Variation (CVs) for all assays were < 7%. Kits for
measurements of estradiol (Cat. No. CAN-E-430, sensitivity
10 pg/mL) and progesterone (Cat. No. CAN-P-305;
sensitivity 0.1 ng/mL) were obtained from Diagnostics
Biochem Company (Ontario, Canada) and for LH (Rat LH
ELISA kit, Cat. No. CSB-E12654r; sensitivity 0.15 mIU/mL)
and FSH (Rat FSH ELISA kit, Cat. No. CSB-E06869r;
sensitivity 0.07 mIU/mL) were obtained from Cusabio
Biotech (Wuhan, China) company. The success rate of
induction of the OVX model was 100% in the current study.

3.2. Experimental Design

The experimental design is presented in Figure 1.
After confirming the model, rats were divided into 2
groups: Control and OVX (n = 6 in each group). At the
end of the study (11 months after ovariectomy), hearts
of the anesthetized rats in control and OVX groups
were isolated and exposed to a 35 min global ischemia
and 60 min reperfusion in the Langendorff apparatus.
Cardiac function indices (CFIs) were recorded during the
experiment. At the end of the reperfusion period, the
hearts were used to measure infarct size, levels of NOx, and
mRNA expression of eNOS, nNOS, and iNOS.

3.3. Preparation of Ischemia-Reperfusion Injury Model in
Langendorff-perfused Rat Hearts

For the preparation of the IR injury model, rats
in control and OVX groups were anesthetized with an
intraperitoneal injection of sodium pentobarbital at
a dose of 60 mg/kg, and the hearts were immediately
isolated at the end of the study, immersed in ice-cold
perfusion buffer, the aorta cannulated and connected
to the Langendorff apparatus. Retrograde perfusion
was performed with Krebs-Henseleit solution (KHS),
with a composition of 2.5 mM CaCl2, 118.6 mM NaCl,
1.6 mM MgSO4, 1.2 mM KH2PO4, 4.7 mM KCl, 25 mM
NaHCO3, and 11.1 mM glucose (all from Merck, Darmstadt,
Germany), equilibrated with 95% O2:5% CO2 (pH 7.40).
Isolated hearts from all rats were subjected to 20 min of
stabilization to obtain baseline hemodynamic parameters
and, subsequently, exposed to 30 min of global ischemia
and 60 min of reperfusion. Therefore, the IR injury
model in Langendorff-perfused rat hearts was induced by
blocking the total retrograde perfusion to the heart for 30
min and subsequent reperfusion for 60 min.

3.4. Assessment of Hemodynamic Parameters

For the measurement of CFI, including left ventricular
end-diastolic pressure (LVEDP), LV developed pressure
(LVDP), and peak rate of positive (+dp/dt) and negative
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Figure 1. Experimental design. OVX ovariectomized

(-dp/dt) changes in LV pressure during stabilization (20
min), global ischemia (35 min), and reperfusion (60 min)
periods, a latex balloon was inserted into the left ventricle,
and LVEDP was adjusted at 5-10 mm Hg in all hearts by
filling water in the latex balloon. Also, LVEDP, LVDP, and ±
dp/dt were digitalized by a data acquisition system (Power
Lab, AD instrument, Australia).

3.5. Assessment of Heart Nitric Oxide Metabolites

At the end of the study, heart tissues (0.1 g) were
homogenized in 0.5 mL phosphate-buffered saline.
After centrifuging 10,000 g for 10 min, the modified
Griess method measured NOx in all homogenates. To
deproteinize homogenates, zinc sulfate (10 µL, 15 mg/mL)
and NaOH (10 µL, 3.72 M) were added to each homogenate,
and supernatants were centrifuged at 10,000 g for 10
min. To measure NOx concentrations, 0.1 mL of vanadium
trichloride (8 mg/mL in 1 M HCl) and then 0.05 mL
N-(1-naphthyl) ethylenediamine (0.1% in ddH2O) and 0.05
mL of sulfanilamide (2% in 5% HCl) were added to the
deproteinize homogenates. Samples were then incubated
for 30 min at 37°C, and the optical density was read at 540
nm. Nitrite was measured similarly, except that HCl (1 M)
was added to the samples to replace vanadium trichloride.
The nitrate concentration was determined by subtracting
nitrite from NOx concentrations in all samples. The
Bradford method measured the protein concentration in
the samples, and NOx levels were reported per mg protein.
Intra-assay CVs of NOx and nitrite in heart tissue were 2.8%
and 3.3%, respectively.

3.6. Measurement of Infarct Size

The Triphenyl Tetrazolium Chloride (TTC) method was
used to measure infarct size in isolated hearts. In brief,
the iced hearts were sliced thinly, incubated in TTC (1%
in phosphate buffer solution, 37°C for 10 min), and fixed
in formalin (10% for one day) to detect viability from the
necrotic areas. The sections were photographed, analyzed
by Image J software, and represented as a percentage of the
total area.

3.7. Measurement of mRNA Expression

The primer sequences of the target and reference
genes are presented in Table 1. The TRIzol reagent
(Invitrogen, USA) was used for RNA extraction from hearts.
To synthesize and amplify cDNA, the cDNA synthesis kit
(SMOBiO Technology, Taiwan) and Amplicon SYBR Green
Master Mix in a real-time PCR machine (Rotor-Gene 6000,
Corbett, Life Science, Australia) were used, respectively.

3.8. Statistical Analyses

Data analysis was done by the GraphPad Prism
software (Version 8), except for mRNA expressions,
which are reported as relative fold changes using the
REST software. The paired t-test was used to compare the
serum estradiol and progesterone concentrations, LH and
FSH, heart NO metabolites, and infarct size. To compare
the CFI in control and OVX rats at different time points of
reperfusion, two-way mixed (between-within) ANOVA was
used, followed by the Bonferroni post-hoc test. Relative
expressions of NOS enzymes were analyzed based on their
cycle thresholds versus ß-actin using the REST software.
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Table 1. Sequences of Primers for Target Genes

Name Sequence (5´-3´) Gene Bank Accession No. Size of Product (bp)

Neuronal NOS NM_052799 126

F AATCTCAGGTCGGCCATCAC

R ATCCCCCAAGGTAGAGCCAT

Endothelial NOS NM_021838.2 100

F TGACCCTCACCGATACAACA

R CGGGTGTCTAGATCCATGC

Inducible NOS NM_012611 93

F TGGCCTCCCTCTGGAAAGA

R GGTGGTCCATGATGGTCACAT

ß-actin NM_031144.3 100

F CGTCCACCTGCTAGTACAAC

R CGACGACTAGCTCAGCGATA

Abbreviation: NOS, nitric oxide synthase.

Two-sided P-values < 0.05 were considered statistically
significant.

4. Results

4.1. Verification of Model

Two months after ovariectomy, OVX rats, at month
0, had significantly (P < 0.001) higher body weights by
21% (248.5 ± 6.2 vs. 205.0 ± 2.5 g) and lower serum
concentrations of progesterone and estradiol by 76% (13.2
± 2.6 vs. 56.8 ± 8.4 ng/mL) and 91% (8.2 ± 1.3 vs. 91.4 ± 16.7
pg/mL), respectively. In addition, OVX rats, at month 0, had
significantly higher (P < 0.001) serum concentrations of
LH by 38.6 folds (57.9 ± 15.7 vs. 1.5 ± 0.3 mIU/mL) and FSH
by 6.3 folds (266.0 ± 70.7 vs. 42.4 ± 4.8 mIU/mL).

4.2. Response to Myocardial Ischemia-Reperfusion Injury

Isolated hearts from OVX rats showed higher
sensitivity to M/IR injury (P < 0.001), as indicated by
increased LVEDP by 29% and decreased recovery of +dp/dt,
–dp/dt, and LVDP by 29%, 22%, and 35%, respectively (Figure
2). In addition, according to Figure 3, OVX rats had
significantly larger (P < 0.001) infarct size by 51% at the
end of the experiment.

4.3. Nitric Oxide Metabolites Concentration and Nitric Oxide
Synthase Expression

As shown in Figure 4, isolated hearts from OVX rats
at the end of reperfusion had significantly higher (P <
0.001) nitrate, nitrite, and NOx concentration by 79%,
82%, and 83%, respectively. These changes in NOx levels
are associated with reduced mRNA levels of eNOS by 38%

and increased mRNA levels of iNOS by 71%. In addition,
long-term ovariectomy had no effect on mRNA levels of
nNOS following IR.

5. Discussion

The current study showed the detrimental effects
of long-term ovariectomy against M/IR injury as
characterized by the reduced recovery of LVDP, ± dp/dt,
and increased LVEDP and infarct size. These detrimental
effects of long-term ovariectomy are associated with
decreasing eNOS and increasing iNOS expression in heart
tissue.

In the current study, two months after ovariectomy,
serum concentrations of estradiol and progesterone
decreased, and LH and FSH increased, all confirming
the induction of the OVX rat model (26). In addition, in
OVX rats, we observed a bodyweight increase that aligns
with previous reports (26). After ovariectomy, estrogen
deficiency increases body weight by increasing visceral
obesity (27), redistributes body fats from the peripheral to
the abdominal regions (28), increasing adipocyte size (25),
and decreasing energy expenditure without changing
food intake (29, 30).

In this study, hearts from OVX rats showed less
tolerance against M/IR injury, as indicated by the reduced
recovery of LVDP, ± dp/dt, and increased LVEDP. To the best
of our knowledge, no studies have reported the effects
of long-term OVX on CFI following exposure to ischemia.
Previous studies have shown the detrimental short-term
(2 (19), 3 (31), 4 (32), 5 (32), 6 (33), and 12 weeks (20))
effects of ovariectomy against M/IR injury in rats. In
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Figure 2. Recovery of cardiac function indices in control and OVX rats (n = 6 per group). LVEDP (A), LVDP (B), +dp/dt (C), –dp/dt (D). Inset shows the area under the curves (AUC).

addition, similar to our results, increased infarct size by
45-75% have been reported 4 (32), 5 (21), and 12 (20) weeks
after OVX. Our data extend this effect to 11 months in
OVX rats. It has been reported that estrogen deficiency
exacerbates response to M/IR injury, at least partly by
increasing myocardial oxidative stress (34). In support of
this, studies have reported that levels of malondialdehyde
and reactive oxygen species increased while levels of
reduced glutathione decreased in the heart tissue of OVX
rats after exposure to ischemia (20, 21).

In the current study, hearts from OVX rats
had significantly higher nitrate, nitrite, and NOx
concentrations by 79%, 82%, and 83%, respectively. In
line with our study, NOx levels in the coronary effluent of
rats, as an indicator of NO production in isolated hearts,

increased in the OVX rat after 40 days of ovariectomy
(35). In addition, our results showed that long-term
ovariectomy decreased eNOS by 38% and increased iNOS by
71%, while it did not affect mRNA levels of nNOS following
IR. In line with our results, lower eNOS (21), higher iNOS
(21, 35), and unchanged nNOS (35) have been reported in
OVX rats. Inconsistent with our results, unchanged iNOS
and eNOS expressions 4 (11), 8 (12), and 7 (35) weeks after
surgery have been reported in the heart tissue of OVX
rats. This disagreement might be because of the different
periods of OVX. It has been reported that OVX did not affect
iNOS and eNOS levels after 6 - 8 weeks (11, 12, 35); however, a
major change was detected after 4 weeks (21, 35). Estradiol
increased NO bioavailability in the cardiovascular system
by increasing mRNA and protein expression of eNOS
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Figure 3. Myocardial infarct size in control and OVX rats (n = 6 per group)

(5). It has been reported that increased expression and
activity of eNOS in the aorta of hypertensive rats have
been observed after estradiol receptors activation (6). In
addition, after menopause, estradiol’s antioxidant activity
decreased, further decreasing NO bioavailability in the
cardiovascular system (7).

Nitric oxide is recognized as a double-edged sword
in heart tissue. It is attributed to eNOS at low levels
and has protective effects against M/IR, while at high
levels, it is attributed to iNOS and has detrimental effects
against M/IR (36, 37). During ischemia, NO in the heart
is predominantly derived from iNOS; thus, its inhibition
(18) protects, whereas its overexpression exacerbates
M/IR injury (16, 38). Also, iNOS-derived NO contributes
to M/IR injury by reducing eNOS expression (39) and

increasing peroxynitrite formation (40). In addition, the
downregulation of eNOS exacerbates the heart’s response
to ischemia (41). Therefore, decreased NO bioavailability
and increased oxidative stress could impair response to
M/IR injury in OVX rats.

5.1. Limitations, Strengths, and Suggestions

As the strengths of the present work, we evaluated
the contribution of all NOS enzymes in response to M/IR
injury in OVX rats. Furthermore, the OVX rat model used
in the present study shows menopause features observed
in women after surgical menopause (26). This study has
some limitations. It did not address possible mechanisms
responsible for the changes in NOS enzyme expressions in
OVX rats; several parameters may affect it, including
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Figure 4. Heart levels of nitrate, nitrite, and nitric oxide (NO) metabolites (A, B, and C) and NO synthase enzymes (endothelial, inducible, and neural NOS) expressions (D, E,
and F) following ischemia-reperfusion in control and OVX rats (n = 6 per group).
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decreased sex hormones and blood pressure. Also,
pharmacological interventions were not used to check the
contribution of NOS enzymes to the detrimental effects
of ovariectomy on cardiac function in rats. Finally, we
used the isolated heart in the Langendorff apparatus that
does not fully reflect hormonal and neuronal regulation
affecting the heart’s response to IR injury (42).

5.2. Conclusions

Long-term estrogen deficiency increased iNOS
expression and decreased eNOS expression in the heart
tissue of OVX rats. Imbalanced NOS expressions were
related to deteriorated responses to M/IR injury in OVX
rats.
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