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Abstract

Background: Calorie restriction without malnutrition is likely to improve cardiovascular risk factors.
Objectives: The aim of this study was to investigate calorie restriction on markers of cardiometabolic risk in overweight/obese
adults with cardiovascular risk factors.
Methods: In a parallel controlled trial, patients with overweight or obesity and one or more cardiovascular risk factor were
randomized to a modest reduced-calorie diet (75% of the total calculated energy requirements) or control (no calorie restriction)
groups and followed up for two months. Body weight, dietary intake, fasting plasma levels of C-reactive protein (CRP),
monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1),
brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), lipids, and glycemic factors were measured at baseline, and after
two months. The differences were analyzed with analysis of covariance (ANCOVA).
Results: Sixty-six participants (33 in each group) completed the study. Body weight changed in the reduced-calorie diet group (-
3.05 ± 2.65 kg), and blood pressure was improved (systolic -6.96 ± 12.04 and diastolic - 3.90 ± 8.97 mmHg). The reduced-calorie diet
improved plasma ICAM-1 (change from baseline - 0.45 ± 1.99 ng/mL, P = 0.033, ANCOVA), MCP-1 (change from baseline - 0.50 pg/mL, P =
0.011, ANCOVA), low-density lipoprotein cholesterol (change from baseline - 9.35 ± 19.61 mg/dL, P < 0.001, ANCOVA), and triglyceride
(change from baseline -33.66 ± 49.08, P = 0.001, ANCOVA), but BDNF, NPY, and other cardiometabolic factors were not different.
Conclusions: In overweight/obese subjects with cardiovascular risk factors which have been under medical treatment with
risk-reducing medications, a modest weight loss induced by a reduced-calorie diet improved lipid profile, blood pressure, and
reduced ICAM-1 and MCP-1 levels but had no effect on plasma BDNF or glycemic factors.
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1. Background

Obesity is a globally growing public health challenge,
and nearly two out of five adults are currently overweight
or obese (1). The rising prevalence of overweight and
obesity has multiple health and economic impacts
(2). Epidemiological studies have consistently shown
a positive correlation between excess body weight and the
major cardiovascular risk factors and cardiovascular
disease outcomes (3). Obesity is associated with a
higher prevalence of comorbidities such as dyslipidemia,
hypertension, metabolic syndrome, and type 2 diabetes
mellitus (T2DM) (4).

Inflammation may play a critical role in the
pathophysiology of obesity-related comorbidities. Obesity
may result in dysregulation of immunity and creates a
state of chronic low-grade inflammation (5). Furthermore,
it may result in perivascular adipose tissue inflammation,
which may promote insulin resistance in the vasculature
and contribute to endothelial dysfunction (6). Some
of the inflammation mediators, which originated from
inflamed endothelial cells, are the key mediators of
endothelial-leukocyte interactions that contribute to
endothelial dysfunction and promote atherosclerosis
(7). In addition to the known inflammatory mediators,
other molecules, such as brain-derived neurotrophic
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factor (BDNF), may be involved in this process. BDNF is an
abundant neurotrophin originally discovered in the brain.
Besides roles in neurons, accumulating evidence indicates
that BDNF appears to have roles in cardiovascular disease
(8). The brain-derived neurotrophic factor is present in the
systemic circulation, where it is produced by various types
of cells, including activated lymphocytes and monocytes
(9) and vascular endothelial cells (10). Brain-derived
neurotrophic factor and its receptors have been shown to
stimulate angiogenesis and maintain vascular integrity
(11). Furthermore, circulating BDNF has been reported
to be negatively associated with adhesion molecules,
including intercellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1) (12). It also
plays an important role in food intake regulation and
weight control (13).

Calorie restriction with adequate intake of protein and
micronutrients is likely to improve health in overweight
and obese individuals (14) and has been proposed as
a means to improve cardiovascular risk markers (15,
16). Low-grade chronic inflammation may increase
the risk of developing insulin resistance, T2DM, and
cardiovascular disease, and calorie restriction may exert
an anti-inflammatory effect (16). Although the effects of
calorie restriction and weight loss on inflammatory factors
as well as on circulating BDNF have been investigated in
previous research, they mainly concern overweight and
obese healthy subjects, and relatively less research has
been conducted on patients with overweight/obesity with
cardiovascular risk factors which have been under medical
treatment with risk-reducing medications. Furthermore,
the debate on whether calorie restriction can alter the
circulating BDNF level continues, as studies have shown
an increase (17, 18) or a decrease (19) in circulating BDNF.

2. Objectives

The present study aimed to investigate the effect of
a reduced-calorie diet on plasma inflammatory factors,
metabolic factors, and BDNF in overweight/ obese subjects
with one or more cardiovascular risk factors.

3. Methods

3.1. Study Design and Subjects

The present study was a randomized clinical trial.
Potential participants with cardiovascular risk factors
were recruited through advertisements in regional health
centers. Inclusion criteria were adults who had body mass
index (BMI) > 25 kg/m2, who had no weight-loss diet for

at least three months before participating in the study,
and those who had one or more classical cardiovascular
risk factors, including hypertension, diabetes mellitus
and/or dyslipidemia. The patients’ hypertension and
diabetes were controlled, and their medications had not
changed in the last three months. The participants
were excluded if they had cancer, regularly used insulin,
took antipsychotic, anticonvulsant drugs, or omega-3
supplements, o had creatinine > 1.4 mg/dL, or were in
pregnancy and breastfeeding periods.

The study was performed in compliance with
the Helsinki Declaration, and informed consent was
obtained from the participants. The study protocol
was approved by the Ethics Committee (National
Nutrition and Food Technology Research Institute,
Shahid Beheshti University of Medical Sciences,
Tehran, Iran), and the ethical committee code was
IR.SBMU.NNFTRI.REC.1400.082. This trial was registered at
link: www.irct.ir/ (IRCT20160702028742N11, on 29/01/2022).

The participant was randomly allocated to either the
control or reduced-calorie diet groups according to the
randomization schedule. Stratified block randomization
was used, and the participants were stratified based on
their risk factors (four strata: (1) hypertension +, diabetes +;
(2) hypertension +, diabetes -; (3) hypertension -, diabetes +;
(4) hypertension -, diabetes -). The participants belonging
to each stratum were then randomly assigned 1:1 to either
of the groups by block randomization. A block size of four
within each stratum was used (using computer-generated
random numbers) between the two groups. Persons who
measured laboratory outcomes and the investigators who
analyzed data were blinded to the identity of the subjects
to avoid biases.

In the control group, patients were given simple
dietary advice to reduce salt intake, foods with high
saturated fat content, simple sugars, and foods containing
added simple sugars. In the reduced-calorie diet, the
participants were prescribed a low-calorie diet. For this
purpose, daily weight maintenance energy was estimated
for each participant by Mifflin et al.’s equation (20) and the
level of physical activity. The participants have prescribed
energy intake deficits of 25% of the total calculated energy
requirements. The energy was distributed as ~ 55% from
carbohydrates, ~ 27% from fats, and ~ 18% from proteins,
and the number of servings of each food group that a
participant can consume daily was determined. To provide
adequate micronutrients and protein intake, the inclusion
of low-calorie, nutrient-dense foods such as vegetables,
whole fruits, and legumes, as well as low-fat dairy, poultry,
and lean cuts of meats in the diet, were considered.

All of the participants were asked not to take omega-3
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or antioxidant supplements during the study. One week
after entering the study, the participants were contacted
to answer their questions related to diet. The dietary
intervention lasted for two months. To ensure adherence
to the dietary intervention, the participants were followed
up every two weeks by telephone. The participants were
asked to maintain their current physical activity levels
throughout the study.

3.2. Data Collection

Baseline characteristics, dietary intake, physical
activity level, body weight, blood pressure, and laboratory
findings were collected. Outcomes were determined at
baseline and after two months. Food intake was evaluated
through face-to-face and/or telephone interviews using a
24-hour dietary recall questionnaire completed in three
days (two regular workdays and one day at the weekend) at
the baseline and after two months, and the was analyzed
using the Nutritionist software (version IV, N-Squared
Computing, CA, USA). Physical activity was assessed by
the international physical activity questionnaire (IPAQ)
(21). Body weight was measured by a balance beam
scale in light street clothes. During each visit, after
five minutes of rest, while the participant was seated,
using a digital arm sphygmomanometer (Omron digital
automatic blood pressure monitor HEM-907), two blood
pressure measurements were obtained, and the mean was
calculated.

Venous blood samples were obtained after 10 - 12
h overnight fasting in heparinized tubes, and plasma
was separated by centrifugation and stored at - 80°C for
later biochemical analysis. Plasma total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C),
and triglycerides (TG) were measured in batches by
commercial kits (Pars-Azmoon, Karaj, Iran) by an
automated analyzer (Selectra ProXL, Vital Scientific,
Spankeren, The Netherlands). Plasma low-density
lipoprotein cholesterol (LDL-C) was calculated using
the equation (LDL-C = TC - HDL-C- (TG/5). Plasma levels
of C-reactive protein (CRP) were measured with a kit
(Audit Diagnostics, Cork, Ireland) using an autoanalyzer.
Commercial enzyme-linked immunosorbent assay (ELISA)
kits were used to measure plasma levels of monocyte
chemoattractant protein-1 (MCP-1), BDNF (Biolegend, San
Diego, USA), insulin (Monobind, Inc., Lake Forest, CA, USA),
ICAM-1, VCAM-1, plasminogen activator inhibitor-1 (PAI-1)
and Neuropeptide Y (NPY) (R&D System, Minneapolis,
MN). Homeostatic model assessment of insulin resistance
(HOMA-IR) was calculated using glucose and insulin
values:

HOMA− IR =
Glucose × Insulin

405

3.3. Statistical Analyses

The study sample size was calculated using circulating
BDNF as the main outcome variable. By using mean
and standard deviation (SD) of serum BDNF changes of
men with metabolic syndrome from a previous study (22)
(serum BDNF change from 40.4 ± 7.8 to 46.9 ± 8.9 ng/mL,
P < 0.001) atα= 0.05 with 80% power, 28 participants were
required for each arm. Considering an attrition rate of 20%,
34 participants were required for each group.

Statistical analyses were carried out using SPSS
25.0 (IBM Corp.). Data normality was determined by
Kolmogorov–Smirnov test. Data are expressed as the
means ± SD for normally distributed data and as the
medians (quartiles 1 and 3) for skewed continuous
variables. Between-group comparisons of baseline values
were performed using the chi-square test or independent
t-test (or Mann-Whitney U test for skewed continuous
variables). The per-protocol analysis was performed.
Within-group comparisons were done by paired t-test (or
Wilcoxon test for skewed variables). Group comparisons
for outcome data were performed using analysis of
covariance (ANCOVA) controlling for covariates, and
skewed variables were log-transformed before use. All
tests were two-tailed. P < 0.05 was considered significant.

4. Results

Among 68 patients who were randomized to the
two groups (n = 34 in each group), 33 subjects in the
reduced-calorie diet and 33 subjects in the control group
completed the study (Figure 1). The participants’ baseline
characteristics are presented in Table 1. None of the
patients who completed the study had an inflammatory
or autoimmune disease. About 85% of the patients had
hypertension, and 30% had diabetes mellitus. About 88%
of the patients were taking statins. All patients with T2DM
were taking oral hypoglycemic medications, and none
were receiving exogenous insulin.

Table 2 shows calorie and macronutrient intake at
baseline and month two. At baseline, calorie intake
was not different between the two groups. Although
carbohydrate intake was higher in the reduced-calorie diet
group compared to the control group, the fat intake was
lower. The diet assessment at the end of the study showed
that both carbohydrate and fat intake were lower in the
reduced-calorie diet group than in the control group.

At baseline, body weight, BMI, and physical activity
were different between the two groups. After two months,
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Assessed for eligibility (n = 110)   

Excluded (n = 42)    

• Not meeting inclusion criteria 

(n = 25)    

• Declined to participate (n = 17)     

Withdrawal (n = 1)   

•  Lost to follow up (n = 1)   

Randomized (n = 68)  

Control group (n = 34)  Calorie-restricted group (n = 34)   

Withdrawal (n = 1)  

• Refused to continue (n = 1)    

Calorie-restricted group (n = 33)   Control group (n = 33)    

Figure 1. The consort flowchart of the study

body weight significantly decreased in the reduced-calorie
diet (mean change - 3.05 ± 2.65 kg) with no changes in
the control group (mean change 0.10 ± 0.73 kg), and the
between-group difference was statistically significant (P
< 0.001) (Table 3). There were no significant changes in
physical activity levels within or between the two groups.
Calorie restriction and the associated weight loss reduced
both systolic (mean change - 6.96 ± 12.04 mmHg) and
diastolic (mean change - 3.90 ± 8.97 mmHg) blood pressure
in the reduced-calorie group, which were statistically
significant from the control group (P = 0.03 and P = 0.01 for
between-group differences of systolic and diastolic blood
pressure, respectively).

Baseline plasma levels of TC, HDL-C, LDL-C, and

non-HDL-C were significantly lower in the reduced-calorie
diet than in the control group (Table 4). After two months,
calorie restriction reduced plasma LDL-C (mean change
- 9.35 ± 19.61 mg/dL) and TG (mean change - 33.66 ±
49.08 mg/dL), whereas no change in the LDL-C (mean
change - 0.52 ± 26.91 mg/dL) and an increase in TG (mean
change 30.63 ± 50.48) levels were observed in the control
group. Calorie restriction reduced glucose, but there
were no significant post-intervention differences in
glucose and insulin. Plasma levels of NPY increased
in the reduced-calorie diet group, but no between-group
difference was observed after two months. Baseline plasma
levels of BDNF were not significantly different between the
two groups. There was no significant difference in plasma

4 Int J Endocrinol Metab. 2023; 21(2):e135216.



Nasrollahzadeh J et al.

Table 1. Baseline Characteristics of the Participants According to Study Groups a , b

Variables Total (66) Reduced-Calorie Diet (N = 33) Control (N = 33) P-Value

Age (y) 57.9 ± 7.9 59.4 ± 7.9 56.4 ± 7.7 0.12

Sex, male 29 (43.9) 18 (54.5) 11 (33.3) 0.08

History of diabetes mellitus 20 (30.3) 10 (30.3) 10 (30.3) 1.00

History of hypertension 56 (84.8) 28 (84.8) 28 (84.8) 1.00

Current smokers 3 (4.5) 0 (0) 3 (9.1) 0.11

Statin use 57 (88.3) 31 (93.9) 26 (79) 0.07

ACE-I/ARB use 39 (59.1) 22 (66.6) 17 (51.5) 0.21

Beta-blocker use 28 (42.4) 15 (45.4) 14 (42.4) 0.84

Calcium blocker use 10 (15.1) 6 (18.2) 4 (12.1) 0.49

Other hypertension medication use 16 (24.2) 10 (30.3) 6 (18.2) 0.25

Biguanides use 20 (30.3) 10 (30.3) 10 (30.3) 1.00

Sulfonylureas use 7 (10.6) 4 (12.1) 3 (9.1) 0.69

Other oral anti-hyperglycemic drugs use 3 (4.5) 2 (6.0) 1 (3.0) 0.55

Plasma creatinine (mg/dL) 1.16 ± 0.36 1.16 ± 0.48 1.17 ± 0.20 0.882

Body weight (kg) 80.15 ± 12.57 84.84 ± 13.29 75.46 ± 9.95 0.002

BMI (Kg/m2) 29.98 ± 3.75 31.85 ± 4.18 28.17 ± 2.07 < 0.001

Abbreviations: ACE-I, angiotensin-converting-enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index.
a Values are expressed as mean ± SD or No. (%).
b Values were analyzed using an independent t-test or chi-square test.

levels of BDNF between the two groups at the end of the
study (Table 4).

Plasma levels of inflammatory markers and PAI-1 were
not different at baseline, but there were between-group
differences in ICAM-1 (P = 0.03, mean changes of - 0.45 ±
1.99, and 0.40 ± 1.25 ng/mL for the reduced-calorie and
control groups, respectively) and MCP-1 (P = 0.01, mean
changes of - 0.50 (- 11.25, 7.50) and 21.37 (- 1.81, 44.69) pg/mL
for the reduced-calorie and control groups, respectively)
levels after two months. No within or between-group
differences were detected in concentrations of CRP,
VCAM-1, or PAI-1 (Table 4).

5. Discussion

The results of the current study in overweight/obese
subjects with one or more cardiovascular risk factors
showed that modest calorie restriction for two months
was associated with modest body weight reduction as
well as improvements in plasma lipids, ICAM-1, and MCP-1.
No significant changes were observed in plasma levels of
BDNF, PAI-1, NPY, and glycemic markers.

At baseline, the weight and BMI of the patients
in the reduced-calorie diet group were higher than
the control group. This issue was probably one of the

reasons for the higher baseline level of blood pressure
and insulin resistance (HOMA-IR) in this group compared
to the control group. Weight reduction in the calorie
restriction group reduced blood pressure, plasma TC, TG,
LDL-C, TC/HDL-C, and non-HDL-C. These findings were not
unexpected because previous studies have consistently
shown interventions that reduce body weight, including
low-calorie diets, are well-established strategies to lower
blood pressure and improve lipid profile (15). The baseline
levels of TC and LDL-C were lower in the participants
of the calorie restriction group, which may be partly
due to the fact that more subjects from this group
were treated with statins. In addition to weight loss, a
lower calorie intake from fat in the reduced-calorie diet
group compared to the control group may also have
contributed to the lower baseline plasma LDL-C levels.
Lower fat compared with higher fat diets may have a
better effect on LDL-C levels (23). Regarding glycemic
factors, although a within-group decrease in plasma
glucose and HOMA-IR were observed by modest weight
loss in the reduced-calorie group, no between-group
differences were observed. We also performed analyses
examining whether effects differed for those with and
without diabetes; however, no significant effects were
observed (data not shown). Subjects in the reduced-calorie
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Table 2. Dietary Intake of the Participants at the Baseline and After Two Months a , b

Intake Reduced-Calorie Diet (N = 33) Control (N = 33) P-Value

Energy (Kcal)

Baseline 1819.78 ± 638.96 1824.58 ± 163.845 0.967

After 2 months 1510.55 ± 529.10 1813.22 ± 149.455 0.003

Carbohydrate (g)

Baseline 260.19 ± 100.34 221.08 ± 39.06 0.041

After 2 months 210.52 ± 81.41 213.01 ± 31.74 0.871

Carbohydrate %

Baseline 57.59 ± 9.65 48.73 ± 8.82 0.001

After 2 months 56.16 ± 9.33 47.25 ± 7.67 0.001

Protein (g)

Baseline 77.15 ± 27.09 80.73 ± 28.09 0.601

After 2 months 68.39 ± 30.10 76.33 ± 24.31 0.243

Protein %

Baseline 16.96 ± 12.38 17.59 ± 5.64 0.790

After 2 months 17.83 ± 4.47 16.74 ± 4.79 0.340

Fat (g)

Baseline 52.36 ± 18.38 72.94 ± 16.81 0.001

After 2 months 43.86 ± 18.44 72.87 ± 17.32 0.001

Fat %

Baseline 25.90 ± 15.78 35.81 ± 6.44 0.002

After 2 months 26.12 ± 7.85 36.00 ± 7.02 0.001

SFA (g)

Baseline 13.74 ± 7.48 16.15 ± 5.28 0.136

After 2 months 13.23 ± 6.44 16.31 ± 3.74 0.022

SFA %

Baseline 7.30 ± 3.92 7.94 ± 2.42 0.432

After 2 months 7.80 ± 3.11 8.10 ± 1.79 0.629

Fiber (g)

Baseline 17.59 ± 9.74 16.28 ± 6.23 0.515

After 2 months 16.19 ± 8.91 15.84 ± 5.60 0.851

Abbreviation: SFA, saturated fatty acid.
a Values are expressed as mean ± SD.
b Values were analyzed using an independent t-test.

diet group had a relatively higher carbohydrate diet,
which may have accounted for the lack of significant
differences in glycemic factors. In a study of overweight
or obese adults with T2DM, a low-calorie diet with lower
carbohydrates (45% energy from carbohydrates) had
lower mean glucose concentration and HbA1c than
the low-calorie, high-carbohydrate diet (60% energy
from carbohydrates) (24). However, contrary to the
results of this study, in another study, a hypocaloric,

high-carbohydrate diet (53% of energy as carbohydrates)
compared to a hypocaloric, low-carbohydrate diet has
resulted in comparable weight loss and improvement in
glycemic control in patients with diabetes; however, the
effects on glycemic variability indices were greater in the
low-carbohydrate group (25).

Baseline NPY levels were higher in the reduced-calorie
diet group than in the control group, which may be related
to their higher body weight. It has been shown that obese
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Table 3. Body Weight, Physical Activity, and Blood Pressure of the Participants a , b

Variables Reduced-Calorie Diet (N = 33) Control (N = 33) P-Value

Weight (Kg) < 0.001 c

Baseline 84.84 ± 13.29 75.46 ± 9.95 †

After 2 months 81.78 ± 13.04 ** 75.56 ± 9.69

Change from baseline - 3.05 ± 2.65 0.10 ± 0.73

BMI (Kg/m2) < 0.001 c

Baseline 31.85 ± 4.18 28.17 ± 2.07 †

After 2 months 30.70 ± 4.07 ** 28.22 ± 1.98

Change from baseline - 1.15 ± 0.96 0.04 ± 0.27

Physical activity (MET- hr/d) 0.091 c

Baseline 22.44 ± 4.44 24.52 ± 3.03 †

After 2 months 22.49 ± 4.33 24.63 ± 3.22

Change from baseline 0.04 ± 6.46 0.11 ± 1.60

Systolic BP (mmHg) 0.036 d

Baseline 134.42 ± 18.32 127.54 ± 9.85

After 2 months 127.45 ± 16.34 ** 126.18 ± 8.27

Change from baseline - 6.96 ± 12.04 - 1.36 ± 3.87

Diastolic BP (mmHg) 0.012 d

Baseline 80.75 ± 12.88 77.57 ± 9.37

After 2 months 76.84 ± 10.30 * 78.85 ± 7.63

Change from baseline - 3.90 ± 8.97 1.27 ± 3.64

Abbreviations: BMI, body mass index; BP, blood pressure.
a Values are expressed as mean ± SD.
b Significantly different from baseline using paired t-test or Wilcoxon test (** P = 0.01, * P = 0.05). †: Significant difference between baseline values using independent
t-test or Mann-Whitney U test.
c Values were analyzed using the ANCOVA test with baseline values of each variable.
d Values were analyzed using ANCOVA adjusted for baseline values of each variable, BMI, and physical activity as covariates.

adults have higher serum NPY levels than normal-weight
adults (26). In the present study, calorie restriction
increased NPY levels with no between-group differences.
NPY is a potent orexigenic peptide that stimulates food
intake (preferentially carbohydrate intake) and delays
satiety with increased motivation to eat (27).

We could not detect a difference in plasma BDNF
levels between the two groups, and weight reduction
in the calorie restriction group did not change
plasma BDNF levels. Despite frequent reports on the
associations between body weight and circulating BDNF,
a meta-analysis has found no association between BDNF
levels and obesity (28). Our finding is in contrast to
the findings in other human studies, which reported
an increase in circulating BDNF after calorie-restriction
induced-weight loss (17). Furthermore, serum BDNF
level was increased following weight reduction through
lifestyle modification in obese non-diabetic patients with

schizophrenia (18). In contrast, reduced circulating BDNF
levels have been reported following a very low-energy
diet-induced weight loss (19). The lack of change in plasma
BDNF in the current study is consistent with the finding
of a study in which serum BDNF levels remained stable
after one year of weight loss therapy in children and
adolescents with obesity (29). The effect of diet-induced
weight loss on plasma BDNF may be transient. Mohorko
et al., in an uncontrolled intervention on obese adults,
studied the effect of weight loss induced by a ketogenic
diet on metabolic profile, including serum BDNF levels,
and found that BDNF concentrations increased two weeks
after starting the ketogenic diet but returned to baseline
values in the eighth week (30).

Among the inflammatory biomarkers measured in
the present study, ICAM-1 and MCP-1 concentrations were
lower after calorie restriction but not that of VCAM-1 and
CRP. The ICAM-1 is an adhesion molecule for leukocytes
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on vascular endothelial tissue. This may indicate that the
effect of modest weight loss on vascular inflammation
is greater than its effects on systemic inflammation. The
lack of change in VCAM-1 level despite the reduction in
ICAM-1 level may be related to the biological effect of
weight loss on endothelial cells. Obesity may cause an
increase in shedding; thus, an increase in the circulating
level of microparticles from different sources and weight
loss is likely to be effective in reducing their level (31).
It has been shown that microparticles interact with
endothelial cells and increase the expression of ICAM-1
but not VCAM-1 (32). The observed decrease in ICAM-1,
but not VCAM-1 concentration in the present study, is
in line with the results of other diet-induced weight
loss (33). In agreement, weight loss induced by caloric
restriction has reduced circulating ICAM-1 (34). On
the other hand, weight gain has increased circulating
ICAM-1 level (35). Monocyte chemoattractant protein-1 is a
pro-inflammatory chemokine produced by macrophages,
endothelial cells, as well as adipocytes (7). Consistent
with our findings, a low-calorie diet combined with
lifestyle modification has prevented an increase in serum
MCP-1 levels in women with metabolic syndrome (36).
Furthermore, in a study within the PREDIMED-Plus
trial, a 12-month intensive lifestyle intervention with
an energy-restricted mediterranean diet produced weight
loss and improved cardiovascular risk markers, including
MCP-1, but not CRP in overweight/obese older adults with
metabolic syndrome (37).

We did not observe a significant change in PAI-1 levels
following weight loss in the calorie-reduced group. This
effect is in contrast to the findings in other studies (31).
The reason for this discrepancy may be related to the lower
weight loss in this study since previous studies in which
weight loss was associated with a decrease in PAI-1 had a
greater weight reduction (31).

The present study had some limitations; therefore, it
should be interpreted cautiously. This was a short-term
trial of two months, and the study would have benefited if
continued for a longer duration to assess long-term effects.
Furthermore, the sample size was relatively small, and the
power may be inadequate to detect subtle effects. The
strength of the present study is that it was conducted in
free-living adults in their usual living environment with a
pragmatic reduced-calorie diet.

5.1. Conclusions

Modest weight loss induced by a reduced-calorie diet
improved lipid profile, blood pressure, and reduced ICAM-1
and MCP-1 levels but did not affect glycemic factors and
BDNF in overweight/obese adults with cardiovascular risk

factors who have been under medical treatment with
risk-reducing medications. By improving cardiovascular
risk factors, the benefits of low-calorie-induced weight loss
go beyond the success of weight loss. By ameliorating
some pro-inflammatory factors, it may also affect other
clinical conditions in which a higher BMI may contribute
to disease course and activity. Further studies may help
to better elucidate the possible role of BDNF in vascular
inflammation in healthy subjects as well as in patients
with cardiovascular disease.
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Table 4. Plasma Levels of Cardiometabolic Factors in the Participant of the Calorie Restriction and Control Groups at the Baseline and After Two Months a , b

Variables Reduced-Calorie Diet (N=33) Control (N=33) P-Value c

TC (mg/dL) < 0.001

Baseline 144.12 ± 32.47 181.81 ± 30.98 †

After 2 months 127.30 ± 22.77** 185.96 ± 33.49

Change from baseline -16.81 ± 25.67 4.15 ± 31.65

LDL-C (mg/dL) < 0.001

Baseline 72.92 ± 24.73 109.36 ± 26.12 †

After 2 months 63.56 ± 17.40 * 108.84 ± 27.38

Change from baseline - 9.35 ± 19.61 - 0.52 ± 26.91

HDL-C (mg/dL) 0.114

Baseline 40.84 ± 8.70 46.90 ± 9.10 †

After 2 months 40.15 ± 7.09 45.45 ± 9.26

Change from baseline - 0.69 ± 5.37 - 1.45 ± 5.32

TC/HDL-C < 0.001

Baseline 3.60 ± 0.85 3.96 ± 0.79

After 2 months 3.23 ± 0.66 ** 4.20 ± 0.89

Change from baseline - 0.37 ± 0.56 0.23 ± 0.75

Non-HDL-C (mg/dL) < 0.001

Baseline 103.24 ± 29.31 134.90 ± 28.10 †

After 2 months 87.15 ± 20.65 ** 140.51 ± 31.81

Change from baseline - 16.09 ± 23.20 5.60 ± 30.94

TG (mg/dL) 0.001

Baseline 151.48 ± 67.16 127.72 ± 44.63

After 2 months 117.81 ± 44.89 ** 158.36 ± 62.76 **

Change from baseline - 33.66 ± 49.08 30.63 ± 50.48

Glucose (mg/dL) 0.890 d

Baseline 100.00 (86.50, 117.50) 81.00 (73.50, 88.00) †

After 2 months 95.00 (84.00, 107.50) * 81.00 (73.50, 92.00)

Change from baseline - 7.00 (- 11.00, 1.50) 2.00 (- 3.50, 9.00)

Insulin (µIU/mL) 0.729

Baseline 9.65 ± 4.34 8.03 ± 4.17

After 2 months 8.69 ± 3.67 8.40 ± 4.18

Change from baseline - 0.96±3.28 0.37.4.21

HOMA-IR 0.727

Baseline 2.57 ± 1.24 1.64 ± 0.96 †

After 2 months 2.21 ± 1.15 1.71 ± 0.86

Change from baseline - 0.35 ± 1.10 0.07 ± 0.98

NPY (ng/mL) 0.409 d

Baseline 8.01 (5.84, 9.85) 5.37 (3.99, 7.02) †
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After 2 months 8.54 (5.65, 11.14) * 5.79 (4.94, 6.40)

Change from baseline 0.53 (- 0.08, 0.90) 0.41 (- 0.45, 0.50)

BDNF (pg/mL) 0.739

Baseline 1892.87 ± 1811.57 2303.45 ± 1242.71

After 2 months 1944.63 ± 1698.99 2011.67 ± 1248.85

Change from baseline 51.75 ± 1377.26 - 291.78 ± 1687.05

CRP (mg/L) 0.603

Baseline 2.81 ± 2.12 2.33 ± 1.02

After 2 months 2.46 ± 1.57 2.33 ± 1.04

Change from baseline - 0.35 ± 1.89 - 0.01 ± 1.12

MCP-1 (pg/mL) 0.011 d

Baseline 81.55 (74.80, 112.55) 76.85 (63.31, 125.46)

After 2 months 79.00 (71.30, 105.30) 109.97 (65.99, 157.69) **

Change from baseline - 0.50 (- 11.25, 7.50) 21.37 (- 1.81, 44.69)

ICAM-1 (ng/mL) 0.030

Baseline 18.16 ± 2.87 18.33 ± 2.80

After 2 months 17.71 ± 3.39 18.73 ± 2.84

Change from baseline - 0.45 ± 1.99 0.40 ± 1.25

VCAM-1 (ng/mL) 0.996

Baseline 26.40 ± 0.83 26.39 ± 1.85

After 2 months 26.59 ± 0.79 26.60 ± 1.96

Change from baseline 0.19 ± 1.08 0.21 ± 1.47

PAI-1 (ng/mL) 0.799 d

Baseline 2.73 (1.42, 5.51) 2.92 (0.70, 6.79)

After 2 months 3.07 (0.85, 5.61) 2.09 (0.58, 6.06)

Change from baseline - 0.41 (- 1.34, 0.87) - 0.21 (- 1.88, 0.65)

Abbreviations: BDNF, brain-derived neurotrophic factor; BP, blood pressure; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic
model assessment for insulin resistance; ICAM-1, intercellular adhesion molecule 1; LDL-C, low-density lipoprotein cholesterol; MCP-1, monocyte chemoattractant
protein-1; NPY, neuropeptide Y; PAI-1, plasminogen activator inhibitor-1; TC, total cholesterol; TG, triglyceride.
a Values are expressed as mean ± SD or median (quartile 1, quartile 3).
b Significantly different from baseline using paired t-test or Wilcoxon test (** P = 0.01, * P = 0.05). †: Significant difference between baseline values using independent
t-test or Mann-Whitney U test.
c Values were analyzed using ANCOVA adjusted for baseline values of each variable, BMI, and physical activity as covariates.
d Logarithmical transformation was done before ANCOVA.
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