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Abstract

Background: Polycystic ovary syndrome (PCOS) and Alzheimer’s disease (AD) are two prevalent and complex conditions characterized by overlapping

features such as metabolic dysfunction, hormonal imbalance, and chronic inflammation. These commonalities raise the possibility of a shared causal pathway.

However, observational studies often face limitations due to confounding factors, complicating causal inference.

Objectives: The present study aimed to explore the causal link between PCOS and AD through Mendelian randomization (MR) analysis.

Methods: We conducted a two-sample MR analysis using summary-level data from two large genome-wide association studies (GWAS). For the exposure,

genetic variants strongly associated with PCOS were obtained from a GWAS meta-analysis involving 10,074 cases and 103,164 controls of European ancestry. For

the outcome, AD data were sourced from a separate GWAS comprising 1,036,225 cases and 90,338 controls, also of European descent. Multiple MR approaches

were employed, with inverse variance weighted (IVW) as the primary method, supported by MR-Egger, weighted median, and weighted mode methods.

Sensitivity analyses were performed to assess the robustness of the findings.

Results: The two-sample MR analysis did not provide evidence for a significant causal effect of genetically predicted PCOS on AD risk. The initial IVW analysis

using all instrumental variables (IVs) yielded an odds ratio (OR) of 0.967 [95% confidence interval (CI): 0.905 - 1.03; P = 0.311]. After removing outlier single

nucleotide polymorphisms (SNPs) based on sensitivity analyses, the refined IVW model showed an OR of 0.93 (95% CI: 0.866 - 1.002; P = 0.057), indicating no

statistically significant association. The results were consistent across various MR methods, and sensitivity tests confirmed the robustness of the findings.

Conclusions: This MR study found no evidence of a significant causal relationship between genetically predicted PCOS and AD. These findings suggest that

genetic predisposition to PCOS does not increase the risk of AD, indicating that previously observed associations in epidemiological studies may not reflect a

causal link. Further studies are needed to explore alternative explanations beyond genetic causality.
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1. Background

Polycystic ovary syndrome (PCOS) is a prevalent

endocrine disorder affecting 4 - 21% of women in their

reproductive years globally. It is characterized by

symptoms such as irregular menstruation, elevated

androgen levels, and impaired ovulation (1-3). Beyond

reproductive challenges, PCOS is associated with

significant metabolic disturbances, including insulin

resistance, obesity, and chronic inflammation, which

can have profound systemic consequences. These

metabolic derangements, along with hormonal
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imbalances, have raised concerns about potential links

between PCOS and neurodegenerative diseases,

particularly Alzheimer’s disease (AD) (4, 5).

Alzheimer’s disease is a neurodegenerative condition

defined by a gradual decline in cognitive abilities,

memory impairment, and the buildup of amyloid-beta

plaques and neurofibrillary tangles in the brain.

Notably, both PCOS and AD share several common risk

factors, including insulin resistance, chronic

inflammation, and oxidative stress. Insulin resistance, a

hallmark of PCOS, can impair insulin signaling in the

brain, contributing to cognitive dysfunction and

exacerbating amyloid-beta deposition (6, 7).

Furthermore, the chronic inflammatory state associated

with PCOS can contribute to neuroinflammation,

further accelerating neurodegeneration.

Recent research suggests a possible association

between PCOS and AD. The metabolic and hormonal

imbalances in PCOS could contribute to

neurodegeneration. Insulin resistance, a hallmark of

PCOS, may worsen amyloid plaque buildup in AD (8, 9).

Androgen excess, high luteinizing hormone (LH)

relative to follicle-stimulating hormone (FSH), and low

vitamin D levels in PCOS might contribute to

neuroinflammation and neuronal loss, processes also

seen in AD (7).

To further elucidate the causal relationship between

PCOS and AD, robust research methodologies are

needed. Mendelian randomization (MR) is an analytical

approach employed to investigate potential causal

relationships between two unrelated conditions. By

harnessing the principle of random allocation of

genetic variants (alleles) during gamete formation, MR

studies typically utilize data from unrelated individuals,

assuming that genotype and environmental factors are

independent when specific covariates are considered.

The application of MR in exploring the PCOS-AD

connection holds promise for uncovering potential

causal pathways and informing targeted interventions

(10).

2. Objectives

The present study aimed to explore the causal link

between PCOS and AD through MR analysis. By

employing genetic data, we aim to enhance our

understanding of the connection between metabolic-

endocrine disorders and neurodegenerative diseases,

potentially paving the way for future therapeutic

interventions.

3. Methods

3.1. Study Design

This two-sample MR study investigates the causal

impact of PCOS on AD, following the framework

illustrated in Figure 1. The MR analysis is based on three

key assumptions: First, the selected single nucleotide

polymorphisms (SNPs) used as instrumental variables

(IVs) must have a strong association with PCOS. Second,

the IVs should not be linked to any confounding factors

that might affect the relationship between PCOS and AD.

Finally, the influence of the IVs on AD must occur

exclusively through their effect on PCOS, without any

direct association with AD.

The genome-wide association study (GWAS) data for

the exposure were obtained from a recent genome-wide

association meta-analysis of PCOS, encompassing 10,074

cases and 103,164 controls across seven European

cohorts. The diagnosis of PCOS was based on one of the

following: The NIH criteria, requiring

hyperandrogenism (HA) and ovulatory dysfunction

(OD); the Rotterdam criteria, which mandate at least

two of three features — HA, OD, or polycystic ovarian

morphology (POCM); or self-reported questionnaire

data (11). The GWAS data for the outcome were derived

from a genome-wide association meta-analysis of AD,

with 90,338 cases and 1,036,225 controls collated from 13

European cohorts (12). We obtained GWAS summary

statistics of AD and PCOS from Psychiatric Genomics

Consortium (PGC) and University of Cambridge

Repository, respectively. Summary-level data details for

each GWAS are provided in Table 1.

3.2. Instrumental Single Nucleotide Polymorphisms Selection

A GWAS threshold of P < 5 × 10-8 was used to extract

significant related SNPs with PCOS. To minimize

correlations between the selected SNPs, linkage

disequilibrium (LD) clumping was restricted to r2<

0.001 in a clumping distance of 10,000 kb window. The

exposure and outcomes data were harmonized after

clumping to ensure that alleles were aligned, and the

presence of ambiguous and palindromic variants was

investigated. In addition, SNPs with a minor allele

frequency (MAF) of less than 0.01 were excluded, and the

PhenoScanner results were examined to determine

https://brieflands.com/articles/ijem-159124
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Figure 1. The framework of Mendelian randomization (MR) analysis relies on several critical assumptions: A, the genetic variations must have a strong association with
polycystic ovary syndrome (PCOS); B, the genetic variations should not be linked to any known or unknown confounders; and C, the single nucleotide polymorphisms (SNPs)
must influence the risk of AD solely through their effect on PCOS, without involvement in alternative pathways.

Table 1. Summary of Genome-Wide Association Study Datasets Used in the Two-Sample Mendelian Randomization Analysis a

Variables Phenotype Reporting Traits in the Database Source PMID Sample Size Ethnicity

Exposure PCOS PCOS GWAS catalog 30566500 10074 (case), 103,164 (control) European

Outcome AD AD PGC 34493870 1,036,225 (case), 90,338 (control) European

Abbreviations: PCOS, polycystic ovary syndrome; AD, Alzheimer’s disease; GWAS, genome-wide association studies; PGC, Psychiatric Genomics Consortium.

a The table includes phenotype definitions, data sources, sample sizes for cases and controls, and population ancestry.

potential confounders. F-statistics were employed to

evaluate the issue of weak IVs in MR analysis (13),

calculated through = R2 × (N - 2)/1 - R2 in which R2 (2 ×

MAF × Beta2
exp) and N represent the total variance of the

extracted SNPs and sample size, respectively. Finally, IVs

with F > 10 were included in our statistical analysis.

Table 2 contains detailed information about the SNPs.

3.3. Statistical Analysis

The inverse variance weighted (IVW) method was

employed as the primary analysis, estimating the

weighted regression slope of the SNP-outcome effect on

the SNP-exposure effect under the assumption of a zero

intercept. To address potential pleiotropy and relax the

assumptions of IVW, additional MR methods with

varying model assumptions were utilized, including

weighted median, Mendelian randomization robust

adjusted profile score (MR-RAPS), MR-lasso, Robust IVW,

Mendelian randomization pleiotropy residual sum and

outlier (MR-PRESSO), and leave-one-out analysis (14).

Each of these methods offers unique features that

enhance their applicability. For example, MR-RAPS is

particularly suited for addressing both systematic and

idiosyncratic pleiotropy, making it a robust choice in

scenarios with potential pleiotropic effects (15). Key

features of MR-lasso and Robust IVW include penalizing

the number of candidate SNPs and reducing the

standard error of estimates, respectively.

To further assess the stability and reliability of the

results, additional methods were employed, including

penalized MR-Egger, robust MR-Egger, penalized robust

https://brieflands.com/articles/ijem-159124
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Table 2. Genetic Variants Single Nucleotide Polymorphisms Used as Instrumental Variables for Polycystic Ovary Syndrome in the Mendelian Randomization Analysis a

SNP Effect Allele Other Allele EAF β SE Gene P-Value F Statistic

rs11031005 T C 0.8537 -0.1593 0.0223 FSHB 8.664E-13 51.03

rs11225154 A G 0.0941 0.1787 0.0272 YAP1 5.438E-11 43.16

rs13164856 T C 0.7291 0.1235 0.0193 C5orf56 1.453E-10 40.95

rs1784692 T C 0.8237 0.1438 0.0226 ZBTB16 1.876E-10 40.49

rs1795379 T C 0.2398 -0.1174 0.0195 RP11-114H23.1 1.808E-09 36.25

rs2178575 A G 0.1512 0.1663 0.0219 ERBB4 3.344E-14 57.66

rs2271194 A G 0.4284 -0.0933 0.0168 ERBB3 2.946E-08 30.84

rs7563201 A G 0.4507 -0.1081 0.0172 THADA 3.678E-10 39.49

rs7864171 A C 0.3078 0.1097 0.0197 C9orf3 2.51E-08 31.01

rs9696009 A G 0.0679 0.202 0.0311 DENND1A 7.958E-11 42.19

Abbreviation: SNP, Single nucleotide polymorphism.

a The table includes the effect and other alleles, effect allele frequency, beta coefficients, standard errors, associated genes, P-values for association with polycystic ovarian
syndrome, and F-statistics to evaluate instrument strength (F > 10 indicates strong instrument).

MR-Egger, simple median, penalized weighted median,

simple mode, weighted mode, penalized IVW, penalized

Robust IVW, MR-constrained maximum likelihood (MR-

cML), debiased inverse-variance weighted, and model-

based estimation (MBE). The effect size was expressed as

an odds ratio (OR) with a 95% confidence interval (CI)

(16).

To address heterogeneity in the analysis, several

methods were applied, including Cochran’s Q statistic,

the I2 Index, and Rucker’s Q statistic (17). Funnel plots

were used to visualize the data, while outlier SNPs were

identified using MR-PRESSO and Cook’s distance (18, 19).

Horizontal pleiotropy was assessed through intercept

tests using the MR-Egger method (19). Additionally, the

Phenoscanner database was utilized to identify and

exclude pleiotropic SNPs that were directly associated

with the outcome or confounding variables (20, 21).

Sensitivity analyses, including leave-one-out and

single SNP MR approaches, were conducted to evaluate

the robustness and reliability of the results (22). In our

study, all statistical analyses were performed in R

software 4.3.1 using 'TwoSampleMR', 'Mendelian

Randomization', 'MRPRESSO', and 'mr.raps' packages (23,

24).

4. Results

As shown in Figure 2, the initial GWAS for PCOS

identified 14 SNPs that passed the genome-wide

significance threshold (P < 5 × 10-8). Following clumping

to ensure independence, 14 SNPs remained. Of these,

four SNPs were identified as palindromic variants and

were checked against the NIH LDproxy database for

potential replacements using European (EUR) ancestry.

However, no suitable replacements were found. After

further screening for pleiotropy using PhenoScanner, 10

SNPs were retained for the MR analyses. The individual F-

statistics for these SNPs ranged from 30.84 to 57.66

(Table 2), indicating sufficient instrument strength. The

full details of the MR analyses and results can be

accessed through the following HTML link:

(https://akbarzadehms.github.io/PCOS-MR/).

The MR analyses showed no evidence of

heterogeneity or horizontal pleiotropy, as indicated by

the MR-Egger intercept P-value of 0.753 and the Q P-

values of 0.272 and 0.207 for IVW and MR-Egger,

respectively. The primary MR analysis using the IVW

method found no significant association between

genetically predicted PCOS and the risk of AD [OR =

0.967, 95% CI (0.905, 1.03); P = 0.311]. The weighted

median, simple mode, and weighted mode methods

yielded similar results.

Sensitivity analyses, including leave-one-out,

studentized residuals, and Cook’s distance, identified

three SNPs (rs9696009, rs2178575, rs1784692) as

potential outliers or influential observations. These

SNPs were excluded from the final analysis. The final

analysis with seven SNPs confirmed the absence of

pleiotropy (MR-Egger intercept P-value = 0.943) and

heterogeneity (Cochran’s Q = 1.57, P = 0.95). The IVW

analysis again showed no significant association

between PCOS and AD risk [OR = 0.93, 95% CI (0.866,

1.002); P = 0.057]. Other MR methods, including MR-

Lasso, penalized IVW, MR-cML, and dIVW, provided

https://brieflands.com/articles/ijem-159124
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Figure 2. Flowchart for selection of genetic instruments for the MR analysis. Polycystic ovary syndrome (PCOS) was used as the exposure and Alzheimer’s disease (AD) as the
outcome. Single nucleotide polymorphisms (SNPs) were filtered based on genome-wide significance, linkage disequilibrium (LD) clumping, allele frequency, and pleiotropy
screening.

consistent results (Figure 3). Funnel plots and leave-one-

out sensitivity analyses further supported the

robustness of these findings (Figure 4A and B).

5. Discussion

This study aimed to investigate the potential causal

relationship between PCOS and AD using a two-sample

MR approach. Our analysis did not identify a statistically

significant causal effect of genetically predicted PCOS on

the risk of AD. This finding suggests that, despite the

shared clinical and metabolic features of these

conditions, common genetic variants associated with

PCOS do not appear to influence the development of AD.

This reinforces the utility of MR in distinguishing

correlation from causation by mitigating confounding

and reverse causality, which often limit the

interpretation of traditional observational studies.

Although our results do not support a direct genetic

link, the complexity of both PCOS and AD invites further

exploration. Numerous observational studies have

reported associations between PCOS-related metabolic

disturbances — such as insulin resistance, systemic

inflammation, and hormonal imbalances — and

https://brieflands.com/articles/ijem-159124
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Figure 3. Estimated causal effects of polycystic ovary syndrome (PCOS) on Alzheimer’s disease (AD) using various Mendelian randomization (MR) methods. Odds ratios (OR) and
95% confidence intervals (CIs) are presented for each method.

Figure 4. Diagnostic plots for assessing pleiotropy and robustness in MR analysis. A, funnel plot showing the distribution of individual SNP causal effect estimates; B, leave-one-
out analysis indicating the influence of each SNP on the overall inverse variance weighted (IVW) estimate.

cognitive dysfunction or dementia. For instance, insulin

resistance, a hallmark of PCOS, has been implicated in

impaired brain glucose metabolism and amyloid-β
accumulation. Similarly, hormonal changes, such as

elevated androgens or altered LH/FSH ratios, may

influence neuroinflammatory pathways and synaptic

plasticity. However, the absence of a genetic association

in our MR analysis indicates that such mechanisms, if

contributory, are likely driven by environmental or

https://brieflands.com/articles/ijem-159124
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epigenetic factors rather than inherited genetic

variation.

Mendelian randomization evaluates whether genetic

variants associated with the exposure influence the

outcome through the exposure. A positive association

implies that altering the exposure (PCOS) would

causally affect the outcome (AD), not that shared genetic

variants directly link the two conditions. Mendelian

randomization isolates the exposure’s effect from

confounding environmental factors (e.g., diet, lifestyle)

by leveraging genetic instruments. If MR shows no

association (as in the PCOS-AD study), it suggests

observed epidemiological links are likely driven by non-

genetic mechanisms (e.g., environmental factors,

epigenetic changes).

Several studies have explored this link, examining

the intricate interplay of hormonal and metabolic

factors in both conditions. For instance, a cohort study

utilizing data from the CARDIA Women’s study

demonstrated that women with PCOS exhibited poorer

cognitive performance and reduced white matter

integrity compared to those without PCOS, suggesting a

possible association between PCOS and early brain

health changes (25). Further investigations have

revealed alterations in AD-related plasma proteins in

women with PCOS, mirroring those observed in

individuals with type 2 diabetes and strengthening the

potential link between PCOS, T2D, and AD risk (26).

Several shared risk factors provide a biological basis

for a potential connection between PCOS and AD.

Hormonal imbalances, particularly an elevated LH/FSH

ratio in PCOS, have been linked to Aβ accumulation and

reduced BDNF in the brain, both of which can impact

cognitive function. Metabolic disruptions, such as

insulin resistance, a hallmark of PCOS, can impair

hippocampal function, while free fatty acids contribute

to inflammation and Aβ deposition, further connecting

metabolic dysfunction to AD pathology. These findings

are further corroborated by a retrospective cohort study,

which reported a higher prevalence of dementia among

women with PCOS compared to age-matched controls (7,

27).

However, it is crucial to recognize that PCOS may not

only contribute to AD risk but also exert protective

effects. Estrogen, a key hormone often dysregulated in

PCOS, is well-recognized for its neuroprotective

properties and its role in synaptic plasticity. Estrogen

has been shown to inhibit beta-amyloid accumulation

and activate genes associated with AD pathology,

suggesting a potential protective effect against AD

development (28, 29).

While the role of progesterone is complex,

potentially both enhancing estrogen’s neuroprotective

effects and counteracting its ability to prevent beta-

amyloid buildup, androgens like testosterone can be

converted to estrogen in the brain, potentially

contributing to a neuroprotective environment. This

intricate interplay of sex hormones and their effects on

the brain may contribute to the lack of a clear causal

link between PCOS and AD observed in our study (30-33).

Beyond the complexities introduced by sex

hormones, other potential pathways might explain the

relationship between PCOS and AD. Chronic

hyperinsulinemia, a common feature in PCOS, can

impair insulin signaling in the brain, leading to

diminished glucose uptake, adversely affecting

neuronal function, and promoting the production of

amyloid-beta, a hallmark protein of AD (34).

Additionally, the chronic, low-grade inflammation often

observed in PCOS can trigger neuroinflammation,

compromise the blood-brain barrier, and contribute to

neuronal damage, potentially accelerating the

progression of AD.

Hormonal imbalances in PCOS, particularly elevated

androgens and LH, may exert neurotoxic effects, disrupt

neurotransmitter systems, and impair synaptic

plasticity, potentially contributing to cognitive decline.

These findings collectively underscore the complex

interplay of hormonal imbalances, metabolic

disruptions, and inflammation in both PCOS and AD (7,

35, 36).

It is important to acknowledge that the impact of

these factors on AD risk may be further modulated by

the heterogeneity of PCOS and the presence of

comorbidities. Women with PCOS who experience

severe insulin resistance or obesity may be at an

increased risk for AD compared to those with milder

metabolic dysfunction. Furthermore, the presence of

other comorbidities commonly associated with PCOS,

such as cardiovascular disease or depression, may

obscure the relationship between PCOS and AD (7, 8, 37-

39).

Several studies have reported an elevated risk of AD

in individuals with PCOS, particularly in

postmenopausal women. This increased risk may be

attributed to the disruption of the hypothalamic-

https://brieflands.com/articles/ijem-159124
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pituitary-gonadal (HPG) axis. The HPG axis is essential

for regulating reproductive hormones and is intricately

linked to the hepatic biosynthesis of gonadal hormones,

which can significantly influence brain health and

susceptibility to neurodegenerative diseases (7, 40). In

contrast, several studies have reported no significant

association between PCOS and AD. This discrepancy may

be attributed to several factors. The design of the studies

themselves could significantly influence the outcomes;

for instance, cross-sectional studies, which provide a

snapshot in time, fail to capture the long-term effects of

PCOS on cognitive function. Additionally, studies with

smaller sample sizes may lack the statistical power

necessary to detect subtle relationships between the

two conditions. Variability in the assessment methods

for cognitive function across studies can also contribute

to inconsistencies; for example, self-reported cognitive

decline may be less reliable than standardized

neuropsychological tests (7, 25-27). Moreover, the

specific phenotype of PCOS and the presence of

comorbidities may significantly influence its impact on

AD (7).

Our study adds to the growing body of literature

suggesting that PCOS and AD may share common risk

factors without necessarily sharing a causal genetic

pathway. This underscores the need for integrative

approaches combining genetic, epigenetic,

environmental, and clinical data to fully understand the

relationship between metabolic and neurodegenerative

conditions. The primary strength of the present

Mendelian study lies in its robust statistical approach.

We employed advanced statistical techniques, including

IVW, weighted median, and MR-Robust adjusted profile

score (MR-RAPS), to verify the robustness of the results.

Tests for pleiotropy and heterogeneity were conducted

to evaluate the validity of the genetic instruments,

which enhance the reliability of our findings by

minimizing potential confounding factors.

Nonetheless, several limitations should be

acknowledged. The GWAS data were predominantly

derived from individuals of European ancestry, limiting

the generalizability of our findings to other

populations. Additionally, PCOS is a heterogeneous

condition with multiple phenotypes that may have

distinct underlying mechanisms and variable

associations with AD. Our analysis did not stratify by

PCOS phenotype or consider potential modifying factors

such as obesity, comorbidities (e.g., depression or

cardiovascular disease), or reproductive history. Lastly,

MR can only assess lifetime genetic predisposition and

cannot account for acquired or environmental

influences that may mediate the PCOS-AD relationship.

Future research may benefit from phenotype-specific

genetic analyses, inclusion of diverse populations, and

the integration of longitudinal, epigenetic, and

metabolomic data. Such studies could help elucidate

the non-genetic mechanisms that may underlie the

epidemiological association between PCOS and AD.

5.1. Conclusions

This MR study found no evidence of a causal

relationship between genetically predicted PCOS and

the risk of AD. These findings suggest that shared

genetic predisposition is unlikely to be a primary driver

of the observed epidemiological associations between

PCOS and AD reported in previous studies. While non-

genetic factors may still play a role in this association,

our results emphasize the importance of distinguishing

correlation from causation and highlight the need for

further research using alternative approaches to explore

non-genetic mechanisms.
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