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Abstract

Context: Kisspeptin (KISS1), a recently discovered neuropeptide that acts upstream of gonadotropin-releasing hormone (GnRH)
neurons, is critical for maturation and function of the reproductive axis. This review aimed at providing comprehensive and up-to-
date information on Kisspeptin and its role in female reproduction.
Evidence Acquisition: A literature review was performed using PubMed for all English language articles published between 1999
and 2016.
Results: The kisspeptin system (KISS1/G protein-coupled receptor-54,GPR54) has recently been addressed as an essential gatekeeper
of puberty onset and gonadotropin secretion. Compelling evidence has documented that hypothalamic Kisspeptin mediates
steroid feedback and metabolic cues at different developmental stages throughout lifespan. Furthermore, in pre/postnatally an-
drogenized animal models, which exhibit many of the characteristics of Polycystic Ovarian Syndrome (PCOS), the hypothalamic
expression of KISS1 and GnRH is abnormal, which might lead to multiple tissue abnormalities observed in this disorder.
Conclusions: Kisspeptin, a principal activator of GnRH neurons and the target of endocrine and metabolic cues, is a prerequisite
for the onset of puberty and maintenance of normal reproductive function, as abnormal KISS1/GPR54 system has been reported in
both animal models and patients with certain forms of infertility, e.g. Idiopathic Hypogonadotropic hypogonadism (IHH) and PCOS.
The information suggests that kisspeptin or its receptor represents a potential therapeutic target in the treatment of patients with
fertility disorders.

Keywords: Kisspeptin, GPR54, HPG Axis, Reproduction, Puberty

1. Context

The Hypothalamic-Pituitary-Gonadal (HPG) axis con-
trols all stages of reproduction. The hypothalamus pro-
duces gonadotropin-Releasing Hormone (GnRH), which
travels to the anterior pituitary and stimulates Luteiniz-
ing Hormone (LH) and Follicle-Stimulating Hormone (FSH)
secretion. Slow GnRH pulsatility favors FSH secretion and
fast pulse frequencies support LH secretion (1). Amounts
of these hormones vary widely at different ages and differ-
ent times during the menstrual cycle of females (2, 3). LH
and FSH, in turn control gametogenesis, and steroidogene-
sis. Gonadal steroids, in turn, modify GnRH neuronal func-
tion via negative and positive feedback action (4). It has
recently been revealed that hypothalamic Kisspeptin acts
upstream of GnRH and mediates sex steroid feedback and
metabolic input on the reproductive axis. This neuropep-
tide is required for puberty onset and maintenance of nor-
mal reproductive function, as loss-of-function mutations
of kisspeptin receptor gene (KISS1R) are associated with pu-
bertal failure, e.g. Idiopathic Hypogonadotropic hypogo-
nadism (IHH) (5). In addition, based on data from Poly-
cystic Ovarian Syndrome (PCOS) in animal models and pa-
tients, alterations in Kisspeptin signaling may contribute

to the generation of PCOS phenotype (6). Manipulating
Kisspeptin signaling may provide novel potential thera-
peutic strategies to treat fertility disorders related to both
decreased and increased GnRH signaling. This review sum-
marizes current knowledge available on the physiological
role of Kisspeptin in reproduction and reproductive disor-
ders. Additionally, age-related changes in Kisspeptin sig-
naling are discussed, with a focus on female studies.

2. Evidence Acquisition

This literature review was initiated during September
2015 based on PubMed English articles published between
1999 and 2016. There were no limitations regarding species
and the focus was mostly on studies using female animals.
Relevant search terms were used to identify the articles, in-
cluding Kisspeptin, Hypothalamic-Pituitary-Gonadal axis,
reproduction, and puberty.

3. Results

3.1. History
Kisspeptins are a number of structurally-related ami-

dated peptides, which are derived from the differential
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proteolytic processing of a common precursor of 145
amino acids encoded by the KISS1 gene (7). Kisspeptins op-
erate via binding and activation of the G protein-coupled
receptor, GPR54 (8). Metastin (also termed Kisspeptin 54)
was for the first time identified in 1996 as a tumor metasta-
sis suppressor in melanoma cell lines without affecting tu-
morigenicity (9). In 1999, GPR54 was cloned as an orphan
receptor (not related to KISS1), due to an approximately
40% homology with galanin receptors (10). Two years
later, the connection between kisspeptin54 and GPR54 was
shown for the first time (11), at a time when the biological
function of Kisspeptins was limited to their ability to re-
press tumor invasion (7). Kisspeptin has also been shown
to regulate cell migration in pathological (tumors) and in
physiological (trophoblast invasion in pregnancy) condi-
tions (12). In 2003, inactivating mutations of the GPR54
were found in individuals with hypogonadotropic hypog-
onadism (13-15). So far, many studies have confirmed the
key roles of Kisspeptin in the control of different aspects
of reproduction (16-18).

3.2. KISS1 Gene

Human KISS1 gene maps to chromosome 1q32 and con-
sists of 4 exons, of which only parts of the third and fourth
exons are finally translated to a 145-amino acid precur-
sor peptide (19). This premature peptide is subsequently
cleaved to 54 amino acids in length, which can be trun-
cated to 14, 13, and 10 amino acid sequences. These pep-
tides have the C-terminal region in common, where they
have an Arg-Phe-NH2 motif characteristic of the RF-amide
peptide family. All Kisspeptins exhibit the same affinity for
their corresponding receptor (7, 19). The longest peptide in
mouse and rat is composed of 52 amino acids instead of 54
amino acids in humans (20).

In human placental tissue and cell lines, the KISS1 tran-
scription start site (TSS) is located between -153 bp to -156 bp
upstream of the ATG. There are several promoter elements
and binding sites for transcriptional factors in 5´region of
this site (21). Again, a TSS was detected in the hypothalamic
KISS1 gene of rats, mice, nonhuman primates, and humans.
There is an alternative TSS (TSS2) at the upstream of TSS1 in
rat arcuate nucleus (ARC), creating a longer transcript. In
contrast to TSS1-derived transcripts, the TSS2-derived tran-
script content did not change at puberty and after ovariec-
tomy in female rats. Estrogen has no effect on TSS2-drived
transcript expression, which may be due to a lack of pro-
moter elements and binding sites for transcriptional fac-
tors in TSS2 (22).

In addition, there are GC-rich sites at -188 to -87 of the
human KISS1 promoter for specific protein1 and 3 (Sp1 and
Sp3) binding. These sites are critical for basal and Estra-
diol (E2)-induced KISS1 expression. The Sp1 and Sp3 pro-

teins function together through dimerization. Sp1 trans
activates KISS1 promoter activity, whereas Sp3 functions as
a repressor. A different ratio of Sp1 to Sp3 leads to differ-
ential regulation of Kisspeptin expression. Higher ratios
of Sp1 in AVPV and lower ratios of Sp1 in ARC may mediate
positive and negative E2-induced Kisspeptin expression, re-
spectively. In the absence of E2, Sp1/Sp3 complex binds to
the GC-rich motif and stably stimulates KISS1 expression
(20).

Evidence also showed that the KISS1 gene is controlled
by CCAAT displacement protein (CDP, also known as CUTL1
and CUX1), Ying Yang 1 (YY1), Enhanced at Puberty 1 (EAP1),
and Thyroid Transcription Factor 1 (TTF1). The CUX1 and YY1
are 2 Tumor Suppressor Gene (TSG) transcriptional regula-
tors and TTF1 and Eap1 are 2 non-TSG transcriptional regu-
lators. These 4 transcription factors interact with the KISS1
promoter in vivo and are expressed in Kisspeptin neurons.
The CUX1 has different isoforms (e.g. p110 and p200) and
can either repress or activate gene transcription. It has
been shown that the KISS1 promoter is activated by TTF1 and
CUX1-p200, and repressed by EAP1, YY1, and CUX1-p110. Ta-
ble 1 shows the role of different gene products in KISS1 tran-
scription (21).

Table 1. Regulators of KISS1 Expression

Activators TTF1, CUX1-p200, Sp1, VIP, NKB

Suppressors CUX1-p110, EAP1, YY1, Sp3, Eed, Cbx7, Prolactin

Like most genes, KISS1 may be subjected to mutations
and polymorphisms. Some of these genetic variations
have been recently identified in KISS1 gene. There are
several reports showing the role for KISS1 mutations in
the precocious puberty phenotype. Central Precocious
Puberty is caused by the premature reactivation of the
hypothalamic-pituitary-gonadal axis. Two KISS1 mutations,
p.P74S and p.H90D, were identified as genetic causes of
Central Precocious Puberty (CPP). The proline in position
74 is highly conserved among species and located in the
amino-terminal region of Kisspeptin, within a PEST se-
quence. The p.P74S variant was detected in the heterozy-
gous state in a male with very early pubertal development
and was associated with higher Kisspeptin resistance to
degradation, leading to an increased Kisspeptin bioavail-
ability. The p.H90D variant was identified in the homozy-
gous state in 2 unrelated females with CPP. The histidine in
position 90 is not conserved and is located in the amino-
terminal region of the Kisspeptin. This variant did not
show increased bioactivity or resistance to degradation
(23). Studies in China and Korea showed that p.P110T al-
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lele frequency was lower in females with CPP than in the
controls (24). In another study in IRAN a novel variant,
c.T148A, was reported within the coding regions of KISS1
gene (25). The c.G645CA mutation in the G-rich sequence
located within the 3´-Untranslated Region (UTR) of the
human KISS1 gene was also associated with CPP. Polymor-
phisms within the 3´-UTR of KISS1 influence its expression
level through the regulation of the pre-mRNA 3 ´end pro-
cessing (26).

Furthermore, a homozygous mutation, N115K, was
found in 4 affected family members with IHH. The as-
paragine in position 115 residue is conserved among all
species and this replacement is predicted to damage pro-
tein function (27).

Polymorphisms in the promoter region may also im-
pact KISS1 gene transcription. In the Guanzhong goats, the
g.G1384A mutation in the KISS1 promoter was associated
with litter size. The 1384A allele had greater Kiss1 mRNA lev-
els than the 1384G allele in homozygous individuals and
was predicted to change methylation and transcription
factor-binding sites. Several other Single Nucleotide Poly-
morphisms (SNPs) in the goat KISS1 gene were also associ-
ated with litter size, suggesting the KISS1 gene as an excel-
lent candidate for reproductive traits in livestock (28).

3.3. Kisspeptin in the Hypothalamus

3.3.1. Kisspeptin and Gender Differentiation

In mammals the anatomy and physiology of the neu-
roendocrine reproductive axis differs between the gen-
ders. There are also differences in various developmental
stages of the animal’s life, which indicates different up-
stream pathways, including Kisspeptin system, converg-
ing upon GnRH neurons (29). The Kisspeptin system is
apparently critical for brain gender differentiation, acting
through the regulation of postnatal T secretion.

Distribution of Kisspeptin neurons in the hypothala-
mus varies between species. In mammals there are 2 ma-
jor regions of these neurons; a rostral one in the Pre-Optic
Area (POA) and a caudal one in the arcuate nucleus, with
proportionally more Kisspeptin neurons in the ARC than
in the POA region (4, 30). In rodents, the POA regions are
concentrated in the Anteroventral Periventricular Nucleus
(AVPV). Anatomical differences between genders have been
reported in the hypothalamus of some species, e.g. the rat
AVPV is sexually dimorphic, with a greater number of KISS1
neurons in females compared to males (30). Like most sex
differences in the brain, this sexual dimorphism is likely
caused during the perinatal critical period by exposure to
testosterone (or its metabolites) (31). Recent evidence has
demonstrated that gonadectomy of male and female rats
increased Kiss1 mRNA expression in the hypothalamus, and

sex steroid replacement reversed this effect (30, 32). It has
also been shown that KISS1 neurons express sex steroid re-
ceptors and are regulated by gonadal sex steroids, mediat-
ing the effects of estrogen on GnRH neurons; GnRH secre-
tion is regulated by gonadal sex steroid feedbacks whereas
GnRH neurons do not express the corresponding recep-
tors. In female rodents, the AVPV mediates E2 positive
feedback, causing occurrence of pre-ovulatory GnRH/LH
surge. Circadian cues also impinge upon AVPA, whereby
KISS1 neurons in the AVPV receiving hormonal and tempo-
ral signals give rise to timely LH surge (30).

In contrast to AVPV, the arcuate nucleus shows no dif-
ferences between males and females. The expression of
KISS1 in this region is inhibited by steroids, implying that
these neurons have a role in the negative feedback regula-
tion of gonadotropin secretion; however, in sheep the ARC
is sexually dimorphic. Moreover, recent studies in mice,
goats, sheep, and bovine demonstrate that ARC KISS1 neu-
rons also express neurokinin B (NKB) and dynorphin; all
these are referred to as KNDy neurons. These 3 neuropep-
tides may work together to regulate the pulsatile release
of GnRH. It has been suggested that these 2 populations
of KISS1 neurons are turned on during the GnRH surge,
yet only ARC KISS1 neurons are activated during tonic or
basal secretion of GnRH (33). Recent data has shown that
Kisspeptin and dynorphin, within the KNDy neurons, con-
trol GnRH release during the menstrual cycle and medi-
ate negative feedback of progesterone on GnRH neurons in
bovine (9).

3.3.2. Kisspeptin and Puberty

Puberty is initiated through strengthening of excita-
tory cues and diminishing of inhibitory signs over GnRH
neurons, creating a constant increase in pulsatile release
of GnRH from hypothalamus. Increased GnRH pulsing
activates the downstream elements causing a rise in go-
nadotropins and sex hormones, gametogenesis, secondary
sex characteristics, and rapid growth that lead to the
achievement of fertility (5). Timing of puberty onset is
determined by genetic and environmental factors as well
as gene-environment interactions, and is effectively dif-
ferent between males and females. It has been shown
that puberty will not occur without proper interaction of
Kisspeptins and their corresponding receptor, e.g. inacti-
vating mutations of GPR54 gene in hypogonadotropic hy-
pogonadism subjects (13-15).

Endogenous Kisspeptin rhythmicity and sensitivity to
it increases at the time of puberty; in primates and rats,
an increase in both the number of KISS1 neurons and the
content of Kiss1 mRNA has been reported during juvenile-
pubertal transition (29, 34, 35). Lomniczi et al. recently
showed that increased methylation of Polycomb group
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(PcG) genes (KISS1 silencers) before puberty, evicted PcG
proteins from the KISS1 promoter. This occurrence along
with activating histone H3 modifications enhanced KISS1
expression (Figure 1) (36). Furthermore, epigenetic regula-
tion of the KISS1 gene is reported to be involved in estrogen-
positive feedback to generate GnRH/gonadotropin surge
(37).

3.4. Kisspeptin in the Pituitary

Evidence for distribution of KISS1 and GPR54 contain-
ing cells in the pituitary is inconsistent (5, 32, 38-40). In
vitro studies of rat pituitary cells and of primary cell cul-
tures derived from ovine, bovine, and porcine pituitaries,
have described minor stimulatory effects of Kisspeptin on
LH. For example, it was shown that KISS1 and GPR54 were
expressed in rat gonadotrophs, which was differentially
regulated by steroids. In females, KISS1 expression was up-
regulated by E2, while GPR54 expression was upregulated
by GnRH and down-regulated by chronic exposure to E2
(41). In accordance with this study, molecular analysis of
Kisspeptin signaling in mice showed that Kisspeptin in-
duces LHβ and FSHβ gene expression, and this induction
is protein kinase C dependent and mediated by the imme-
diate early genes (39). In addition, modest stimulatory ef-
fects of Kisspeptin on LH and GH secretion were reported
in gonadotrophs and somatotrophs of peripubertal male
and female rats (38). Evidence against this argument was
documented by other reports. On the other hand, al-
though intravenous (IV) administration of kisspeptin-10
activated LH release, pre-treatment with a GnRH-R antag-
onist blocked this effect (32). Similarly, in sheep, in which
the hypothalamus and pituitary were surgically discon-
nected, IV administration of Kisspeptin failed to induce
LH secretion (42). These may suggest that gonadotropes
are not direct targets of Kisspeptin in vivo. Compelling ev-
idence showed that co-administration of Kisspeptin and
GnRH increased LH release (43). It should be noted that
the direct stimulatory effects of Kisspeptin on pituitary
and gonadotropin release are below that of GnRH, and the
main stimulatory effect of Kisspeptin on gonadotrophin
release is mediated via the hypothalamus.

3.5. Kisspeptin in the Ovary

3.5.1. Kisspeptin and Ovulation

The GnRH plays a central role in the reproductive sys-
tem via stimulating the production of both LH and FSH,
with slow GnRH pulsatility (< 1 pulse per 2 to 3 hours) fa-
voring FSH secretion and fast pulse frequencies (> 1 pulse
per hour) supporting LH secretion. Frequency of GnRH
pulses varies throughout the menstrual cycle, thereby

controlling the differential production of pituitary go-
nadotropins (1). The GnRH secretion is directly or indi-
rectly modulated by many cues. Gonadal steroid feedback
generally reduces GnRH, except at the time of the pre-
ovulatory LH surge. Increased estrogen levels at the end of
the follicular phase, besides activated progesterone recep-
tors, activate KISS1 neurons in the AVPV thereby increasing
GnRH pulse frequency and amplitude, leading to the LH
surge and ovulation (30). Following ovulation, with rise in
progesterone levels, GnRH pulse frequency slows, increas-
ing FSH production.

Continuous expression of Kiss1 mRNAs is reported in
the rat ovary, fluctuating during the estrous cycle, with a
rise in the afternoon of proestrus; this could be blocked
by administration of GnRH antagonist, preventing the
pre-ovulatory LH surge. This occurrence can be brought
back by human chorionic gonadotropin treatment, show-
ing the timely ovarian expression of Kiss1 by means of LH
surge, suggesting that locally expressed Kisspeptin may be
partly responsible for the control of ovulation. In addition,
GPR54 mRNAs were detected at low levels in rat ovary, al-
though they did not show a stage-specific pattern of ex-
pression (16). Similarly, KISS1 and Gpr54 mRNAs were de-
tected in ovarian tissue of humans, monkeys and Siberian
hamsters as well as cultured granulosa lutein cells, and
also the expression of GPR54 in fish ovary. The relevance of
the local KISS1/ GPR54 system may imply the positive con-
tribution of this system in the regulation of ovarian func-
tion (33, 34). Considering the LH-dependent expression
of many matrix metalloproteinases (MMPs) in the ovary,
KISS1/GPR54 may partly support reproductive functioning
through regulating MMP activity (44). Exposure of female
Siberian hamsters to short photoperiods reduced KISS1 ex-
pression in the ovaries, and exposure to long day increased
KISS1 and GPR54 protein levels. This photoperiod was asso-
ciated with an increase in KISS1 and GPR54 and had a rela-
tionship with ovarian function restoration; the experience
also indicated the possible role of KISS1/GPR54 in ovulation
and/or recovery of ovarian function (44, 45).

In addition preovulatory LH surge increased Brain-
Derived Neurotrophic Factor (BDNF) in granulose cells,
which with Kisspeptin signaling drives oocyte survival
through the phosphatidylinositol 3-kinase/AKT (PI3K/AKT)
pathway (46). In vitro analysis also showed that Kisspeptin
treatment increased both basal and human chorionic go-
nadotropin (hCG)-stimulated progesterone secretion from
cultured luteal cells, but not E2 production (Figure 2) (47).

3.5.2. Kisspeptin and Pregnancy

Dramatic increase in Kisspeptin concentration was
also seen in human plasma during pregnancy, which was
mainly produced in the placenta. On the other hand, his-
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Figure 1. Onset of Puberty in Female Rats

At around the time of pubertal onset, decreased expression of PcG proteins by DNA methylation along with histone 3 modifications increase Kiss1 mRNA expression resulting
in elevated kisspeptin levels; this rise is accompanied by increased sensitivity to it and number of KISS1 neurons as well as enhancement of GPR54 signaling efficiency and ex-
pressio Abbreviations: PcG;Polycomb group, H3K9/14ac; Histon H3 acetylated at lysines 9/14, H3K4me3; Histon H3 trimethylated at lysine 4, H3K27me3; Histon H3 tri-methylated
at lysine 27, E2; Estradiol.

tochemical analysis showed that Kiss1 mRNA is localized in
syncytiotrophoblast; both these data together suggest the
possible role of Kisspeptin in the regulation of trophoblast
invasion. The highest expression levels of Kiss1 and Kiss1R
mRNAs in trophoblast cells correspond with the maxi-
mum trophoblast invasion, when the aggressive process
should be effectively regulated. Furthermore, in rodents
the highest expression of both KISS1 and KISS1R was seen in
the placenta. Studies have shown that Kisspeptin appears
to control trophoblast migration via down-regulating the
activity of some MMPs (12).

Kiss1 and Kiss1R mRNAs have also been detected in the

vascular system, including human aorta, coronary artery
and umbilical vein, as well as in the placenta, pituitary, pe-
ripheral blood leukocytes, kidney, and pancreas (33, 48).

3.6. Kisspeptin and Lactation

There is a temporal increase in plasma oxytocin lev-
els following IV administration of Kisspeptin 10 in female
rats; nevertheless intra-cerebroventricular (icv) injection
of Kisspeptin 10 did not effect circulating oxytocin lev-
els. On the other hand, the disintegration of vagal affer-
ent input blunted the release of oxytocin; all this evidence
together was the basis of the hypothesis that Kisspeptin
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Figure 2. Kisspeptin (KP) Expression in the Ovary Mainly Occurs in the Granulosa Cells (GC) in Response to Preovulatory LH Surge

LH surge also induces the expression of the full length NTRK2 receptor, which with kisspeptin signaling drives oocyte survival through the PI3K/AKT pathway. In addition,
kisspeptin stimulates steroid secretion by theca (TC) and luteal cells (LC).

10 acts as a hormone (rather than a neuropeptide) on
peripheral targets and indirectly activates oxytocin neu-
rons. Recently, it has been shown that central Kisspeptin
10 administration excited oxytocin neurons at the end of
pregnancy and during lactation, indicating the required

Kisspeptin-induced secretion of oxytocin for parturition
and lactation. Increased plasma Kisspeptin during preg-
nancy might hence accelerate oxytocin release, yet oxy-
tocin receptor expression and oxytocin sensitivity remain
low prior to childbirth (49).
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However, data has shown that prolactin administra-
tion in mice drastically suppressed Kisspeptin expression
in the hypothalamus, thereby decreasing GnRH release.
Again, using bromocriptine, as prolactin suppressor, was
associated with significant increased Kiss1 mRNA expres-
sion in the rostral periventricular area of the third ventri-
cle (RP3V) of mice. In addition, rats showed reduced ex-
pression of Kiss1 mRNA in the hypothalamus and LH se-
cretion during lactation, due to which the estrous cycle
was shut down. Indeed, in almost all mammals, lactation
causes a period of infertility providing successful growth
and survival of the offspring, and appropriate suppression
of Kisspeptin expression contributes to lactational anovu-
lation (50, 51).

3.7. Kisspeptin and Aging

Age-related changes in Kisspeptin signaling differ be-
tween rats and primates. In middle-aged rats decrease in
Kisspeptin signaling precedes ovarian failure and E2 levels
remain the same until they increase in persistent estrous
rats (52, 53). In humans and monkeys postmenopausal in-
crease in hypothalamic Kisspeptin levels appears to occur
after ovarian failure and loss of E2 feedback, which could
be related to the final stage of reproductive senescence in
rats (persistent anestrus or persistent diestrus) and low E2
levels (52-55).

Compared to young animals, in middle-aged female
rats, Kiss1 expression is reduced at the time of LH surge
while central Kisspeptin infusion recovers LH release am-
plitude. On the other hand, GnRH neurons in young and
reproductively healthy female hamsters expressed more
cFos gene, (as an indicator of GnRH neuronal activity) on
the afternoon of proestrus compared to their middle-aged
counterparts; there was however no difference in the to-
tal number of GnRH-immunoreactive neurons between
the 2 groups (52). Furthermore, the Vasoactive Intestinal
Polypeptide (VIP) mRNA, yet not (arginine vasopressin) AVP
mRNA, is attenuated in the suprachiasmatic nucleus (SCN)
of middle-aged female hamsters; suppression of VIP signal-
ing by direct infusion of VIP antisense oligonucleotides or
antiserum into the SCN in young cycling female hamsters
speeds up the decline in neural circuits, underlying ovula-
tory functioning. These findings suggest that age-related
decline in reproductive competence may result, in part,
from alterations in circadian signaling to the Kisspeptin
system (56).

3.8. Epigenetic Regulation of Kisspeptin

Although KISS1 gene is expressed in both central and pe-
ripheral tissues, the mechanisms that determine the tem-
poral and local expression of KISS1 gene are not well under-
stood. Alterations in the expression of KISS1 may contribute

to sexual differentiation, puberty onset, and progression
in females. The KISS1 in the AVPV is expressed to a greater
degree in females than males, which is responsible for the
female-specific GnRH/LH surge (57). As mentioned earlier,
sexual dimorphism in AVPV KISS1 gene expression seems to
be caused during the prenatal critical period by exposure
to testosterone. Several mechanisms may be involved in
sexual differences in KISS1 expression in the AVPV, includ-
ing epigenetic mechanisms (36).

Postnatal inhibition of histone deacetylase increased
the number of AVPV KISS1 neurons in both male and fe-
male mice, yet, did not alter the AVPV KISS1 gender differ-
ence. This finding may indicate histone deacetylation con-
tribution in some aspects of KISS1 neuron development in
the AVPV (57). In addition, significant gender difference
was seen in the CpG methylation degree of the KISS1 gene,
mainly in the promoter region, with higher methylation
levels in females than males. On the other hand, several
of this sexually dimorphic KISS1 CpGs were in or near bind-
ing sites for transcriptional repressors. Thus, higher DNA
methylation in females may decrease transcriptional re-
pressor binding, leading to higher KISS1 expression. How-
ever, more studies are needed to address the mechanisms
involved in sexual differentiation of the AVPV KISS1 system
(57).

The ARC KISS1 neurons are considered to be involved in
pubertal elevated GnRH/gonadotropin release, although
several other studies have failed to identify major puber-
tal Kisspeptin increases in this region. Studies in prepu-
bertal female rats have shown that PcG proteins, Eed, and
Cbx7, are associated with the KISS1 promoter in the ARC. At
the late juvenile stage, increased methylation of Eed and
Cbx7 promoters reduced their expression, thus PcG pro-
teins are evicted from the KISS1 promoter. This loss is ac-
companied by activating chromatin modifications at the
promoter (Histon H3 acetylated at lysines 9/14, H3K9/14ac,
Histon H3 trimethylated at lysine 4 H3K4me3, and perhaps
histone demethylation) and KISS1 expression increases. It
has been reported that DNA methylation inhibition pre-
vented Kiss1 increase in the ARC KISS1 neurons and delayed
puberty (36).

Furthermore, analysis of the KISS1 promoter region in
the AVPV of rodents showed an activating histone H3 mod-
ification and H3K9/14 acetylation, induced by E2 at the time
of the preovulatory gonadotropin surge. Estradiol also in-
creases ERα binding to the KISS1 promoter in the AVPV at
this time. It is likely that the estrogen-ERα complex on the
KISS1 promoter region induces formation of a chromatin
loop between the promoter and 3′downstream regions of
the KISS1 gene, which has been shown to act as an enhancer.
However, further studies are needed to explain the molec-
ular mechanisms controlling E2-induced AVPV KISS1 gene

Int J Endocrinol Metab. 2017; 15(3):e44337. 7

http://endometabol.com


Zeydabadi Nejad S et al.

expression (37).
In contrast, E2 decreases H3K9/14 acetylation at the

KISS1 promoter in the ARC and does not increase ERα bind-
ing to this region at the preovulatory period. In addition,
ovariectomy increased histone H3K9/14 acetylation in the
KISS1 promoter region and gene expression in the ARC and
E2 treatment abolished this effect. It is possible that in the
absence of estrogen some chromatin loops form between
the promoter region and the 5′ upstream enhancer (an
ARC-specific enhancer) of the KISS1 gene. In contrast, KISS1
promoter DNA methylation did not change in the AVPV and
ARC, indicating that DNA methylation may have no role in
KISS1 promoter regulation (37, 57).

3.9. Kisspeptin and Reproductive Disorders

In the past few years, loss-of-function mutations of
KISS1 and KISS1-R have been reported in patients with IHH
(13-15, 27). IHH is associated with reduced GnRH signaling
and low circulating gonadotropin levels, which leads to
the impairment of pubertal maturation and reproductive
function (27).

In addition, hypothalamic KISS1 expression is reduced
(masculinization of the AVPV population) in animal mod-
els of PCOS, exposed to excess androgen during critical pe-
riods of early life (30, 58, 59). In line with the current data,
neonatal gonadectomy of male rats resulted in elevated
Kiss1 mRNAs and hence, feminization in the AVPV popula-
tion (30, 60, 61) On the other hand, animal models of PCOS
have increased levels of Kiss1 mRNA in peripheral tissues
such as the ovaries and fat (62). Moreover, high plasma
levels of Kisspeptin have been reported in PCOS patients,
which may reflect its relationship to pathological condi-
tions in ovaries (63, 64). However, GnRH neuron activity
and LH secretion enhances in pre and/or post-natally an-
drogenized animal models, regardless of reduced KISS1 ex-
pression (62).

Pathological conditions, such as PCOS, are associ-
ated with abnormal pulsatile GnRH secretion. In PCOS,
the GnRH pacemaker becomes less responsive to ovarian
steroid negative feedback (particularly progesterone) due
to elevated androgen levels, leading to increased LH secre-
tion and perturbed LH-FSH ratios (62, 65). Since hypothala-
mic KISS1 neurons relay gonadal steroid regulation on the
HPG axis, hypothalamic Kiss1 mRNA levels are abnormal in
PCOS subjects. Again, ovarian Kisspeptin alterations may
contribute to the ovarian phenotype of PCOS (6, 62).

On the other hand, recent studies have suggested
that peripheral infusion of Kisspeptin stimulates go-
nadotropin release in healthy subjects, and in individ-
uals with IHH, hypothalamic amenorrhea (HA), and
anovulation (66). Therefore, the Kisspeptin and its ago-
nists/antagonists may provide a potential treatment for

disorders of reproduction, characterized by both low and
high GnRH pulsatility (67, 68).

4. Conclusions

In summary, recent studies has clearly demonstrated
involvement of the KISS1/GPR54 system in the physiology
and pathophysiology of the HPG axis. Kisspeptin is a very
potent stimulator of GnRH secretion and mediates neg-
ative and positive feedback effects of sex steroids on the
brain (68). Two major populations of KISS1-expressing neu-
rons located at the POA and ARC have been detected in the
mammalian hypothalamus (30). Kisspeptin has been im-
plicated in the regulation of puberty onset, ovarian func-
tion, trophoblast invasion, fertility regulation, parturition,
and lactation. Thus, it may offer a potential treatment for
reproductive disorders, characterized by low or high go-
nadotropins, such as IHH, HA, and PCOS. Current medi-
cations for female infertility disorders often include hor-
mone replacement (estrogen, progestin, FSH, and LH) to
help menstrual regulation and ovulation and/or in vitro
fertilization (most commonly using hCG). However, more
research is needed to further explore if Kisspeptin could re-
place or be used in conjunction with current gold-standard
therapies, in the treatment of reproductive disorders.
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