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Abstract

The aim of this study was to identify the highly expressed genes in terms of interaction concept in Prolactinoma. The study was
conducted by additional analysis of the available data from the GEO database. The online tool, GEO2R, was used to analyze the
gene expression profile of GSE36314 dataset using the GPL8300 platform. Consequently, a PPI network of up-regulated and down-
regulated genes was constructed and examined to introduce the possible targets with possible therapeutic values. A number of
46 genes were dysregulated in Prolactinoma and their network indicated 15 essential genes via topological analysis. Moreover, the
present study found that the highlighted genes of prolactinoma are involved in two major biological processes including growth
regulation and metabolic function. Thus, the determined genes may be valuable for diagnosis, treatment, and patient follow-up.
However, further studies are essential to validate this conclusion.
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1. Background

Prolactinoma, despite being benign, is accompanied
by many severe clinical manifestations including amen-
orrhea, galactorrhea, and dysgenesis in women and infer-
tility and sexual dysfunction in men (1). Its frequency in
women is higher with the ratio of 10:1 and at around the
age of 20 - 50 years (2). It is the most frequent type of pi-
tuitary adenomas, which accounts for hypersecretion en-
docrinopathy (3). The pituitary is responsible for many reg-
ulatory functions in the human body including growth,
metabolism, and reproduction (4). Evaluating molecu-
lar pathogenesis could enhance the clarification of dis-
ease mechanisms and thus targeting efficacious therapeu-
tic agents (5, 6). By emerging high throughput studies,
more knowledge about prolactinoma has been gained and
a number of candidate biomarkers for clinical approaches
have been identified. These agents can be essential for pre-
diction, prevention, early-stage diagnosis, and treatment
goals. Expression profiling is one of the ways of intro-
ducing some important elements of that specific disease
(7, 8). Protein interaction analysis, on the other hand,
can provide further insight into understanding biomark-
ers’ prominent roles and give more credit to their con-

tributions (9). In other words, it is possible to assign the
most vital ones by considering interaction characteristics
through screening the interactome profile. It can show
which agents are more important regarding the roles in a
network constitution (10). These fundamentals are known
as key participants in the interaction system. Any alter-
ation in these elements may promote the differential in-
teraction profile, which produces altered phenotype (11).
Sometimes, these phenotypes could be a manifestation of
a particular type of disease. Detecting new candidate genes
for various diseases via PPI network analysis can be a useful
medical tool (12). Therefore, we investigated new possible
molecular markers correlated with Prolactinoma in terms
of protein mapping that could be applicable for medical
management of this disease. For this purpose, the interac-
tion pattern of human Prolactinoma samples was selected
and derived from an expression profiling study entitled
“Genomic characterization of human and rat prolactino-
mas” (8).

2. Methods

The seed genes for the protein interaction network
were from a microarray web-available data reported in
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Tong et al. study in 2012 (8) with the following charac-
teristics: the platform of GPL8300, Dataset = GDS4859,
Series Accession: GSE36314, and ID: 200036314. Human
samples of three controls and four Prolactinoma were in-
vestigated and consequently top ranked 250 genes with
fold change (FC) ≥ 2 and p value ≤ 0.05 were indicated
through GEO2R, the online engine of Gene Expression Om-
nibus (GEO) screening (13). Similarly, the GEO2R provides
a specific R formula for conducting the analysis in the R
Studio environment using GEO query and limma R pack-
ages from the Bioconductor project (14). Genes with a dif-
ferential pattern between healthy and Prolactinoma cases
were further evaluated, and those with a gene name were
used as seed genes for interaction network analysis. The
network of the seeds and their neighbors was constructed
by Cytoscape v 3.6.0 and its plug-in String dB (15, 16). Follow-
ing the network restriction, Network Analyzer was used
for centrality examination by considering specific param-
eters (17) including degree and betweenness of centralities
to detect the potential elements of the network integrity.
It is known that the removal of these nodes could pertu-
bate the map organization and consequently, any abnor-
mal phenotype may be accompanied by it (17). Nodes with
the highest amount of the designated centrality param-
eters (degree and betweenness of centrality) are known
as hub-bottlenecks. In fact, hub nodes are those with the
highest value of degree and simultaneously, nodes with
the highest amount of betweenness are considered as bot-
tlenecks (18). The differentially expressed genes and hub-
bottlenecks were chosen for more study namely, gene an-
notation. The ontology analysis assists in the better un-
derstanding of the important biological features of the
designated agents. Here, via the application of Clue GO,
the highlighted biological processes were assigned for our
genes. The statistical criteria for this procedure are de-
scribed in the legends of related tables. Bonferroni step-
down was the used test for p-value correction. In addition,
two-sided (enrichment/depletion) tests based on hyperge-
ometric distribution for terms and groups were selected
(19).

3. Results

Human prolactinoma expression profile (available in
the GEO database) was used for interaction analysis in this
study. First, via GEO2R, the samples were defined as groups
of three human normal pituitaries and four human pro-
lactinoma samples. Then, the value distribution of groups
was determined in a way that boxplot assessed whether the
expression values of control and Prolactinoma tissue sam-
ples were comparable in terms of expression pattern via
cross-comparison (Figure 1)
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Figure 1. Boxplot indication of median-centered samples of control and Prolacti-
noma. The blue boxes are the three control samples and the pink ones are Prolacti-
noma samples. The x-axis and y-axis indicate the range of expression values and
biological replications for control and Prolactinoma, respectively. The comparison
shows that the values are median-centered and consequently, the groups are com-
parable regarding the expression values.

The next step is to make the comparison via GEO2R and
detect differentially expressed genes across experimental
conditions (control and human Prolactinoma tissue sam-
ples). GEO2R provides R script that was applied in R stu-
dio for the statistical analysis. Considering the fold change
≥ 2, up-regulated and down-regulated elements are pre-
sented in Tables 1 and 2, respectively. Among 59 genes, 13
are repeated corresponding to verities of the genes. A net-
work of 46 identified genes by String dB plus 50 neighbor
nodes is constructed considering the confidence score cut-
off of 0.5. All the queried genes were retrieved as a com-
plex interacting network. The network consists of over-
all 96 nodes and 1262 edges including a main connected
component and four isolated nodes (three isolated query
nodes; N4BP2L1, DLEU1, DLEU, and PLXNC1from the added
nodes) (Figure 2). The hub-bottlenecks of the main con-
nected component of the network are identified and listed
in Table 3.

Following the centrality analysis, ClueGO performed
gene ontology of the 46 differentially expressed genes and
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Figure 2. Centrality analysis including degree and betweenness of the constructed network (the main connected component) via Network Analyzer. The color changes from
blue to yellow shows the betweenness centrality changes while nodes size alteration indicates degree values.

Table 1. The List of Up-Regulated Genes in Prolactinoma Considering Fold Change
≥ 2 (FC 2 - 3) and P Value ≤ 0.05 (About 10-4)

Row Gene Name Gene Title

1 B2M Beta-2-microglobulin

2 IGSF1 Immunoglobulin superfamily member 1

3 SV2C Synaptic vesicle glycoprotein 2C

4 B2M Beta-2-microglobulin

5 GNAS GNAS complex locus

the hub-bottleneck nodes based on biological processes
(Tables 4 and 5).

4. Discussion

Prolactinoma, while not malignant, can exert vast ad-
verse effects on the human body (20). Molecular studies
can be beneficial for understanding the disease mecha-
nisms of onset and development and possibly reduction
of the complicated side effects by identification of novel

biomarkers. Protein-protein interaction network analysis
is one of which providing essential information related to
novel elements in a systematic interaction (12). Here, the
interaction concept is based on the gene expression pro-
file of a previous study conducted by Tong et al. in 2012 (8).
First, seven samples consisting of three controls and four
prolactinoma biological replications were compared in
terms of expression quality in Figure 1. As can be inferred,
the data are normalized and appropriate for proceeding
the data analysis. The groups were then followed for the ex-
pression comparison and as shown in Tables 1 and 2, there
are some genes considering the designated statistical crite-
ria assigned as up-regulated and down-regulated, respec-
tively. This analysis shows that most of the differentially
expressed genes (92%) are down-regulated. In addition, it
can be inferred that the differentially expressed genes are
mostly involved in regulatory functions including growth,
metabolic, and reproductive matters, which are the main
responsibilities of the pituitary gland (20). Therefore, it is
clear that these functions may be influenced in prolacti-
noma leading to many abnormal features. The next step
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Table 2. The List of Down-Regulated Genes in Prolactinoma Considering Fold
Change ≥ 2 (FC 14 - 130) and P Value ≤ 0.05 (10-12 - 10-3)

Row Gene Name Gene Title

1 GH1 Growth hormone 1

2 POMC Proopiomelanocortin

3 TSHB Thyroid stimulating hormone beta

4 GH2 Growth hormone 2

5 RBP4 Retinol binding protein 4

6 DLK1 Delta-like non-canonical Notch ligand 1

7 GH2 Growth hormone 2

8 IGFBP5 Insulin-like growth factor binding protein 5

9 GH2 Growth hormone 2

10 FSHB Follicle stimulating hormone beta subunit

11 IGFBP5 Insulin-like growth factor binding protein 5

12 CRYAB Crystallin alpha B

13 SAT1 Spermidine/spermine N1-acetyltransferase 1

14 CEBPD CCAAT/enhancer binding protein delta

15 HBB Hemoglobin subunit beta

16 GH1 Growth hormone 1

17 CSHL1 Chorionic somatomammotropin hormone-like 1

18 CSH2 Chorionic somatomammotropin hormone 2

19 CSH1 Chorionic somatomammotropin hormone 1

20 PTN Pleiotrophin

21 IGFBP3 Insulin-like growth factor binding protein 3

22 NEFM Neurofilament, medium polypeptide

23 CGB2 Chorionic gonadotropin beta subunit 2

24 CGB1 Chorionic gonadotropin beta subunit 1

25 CGB8 Chorionic gonadotropin beta subunit 8

26 CGB7 Chorionic gonadotropin beta subunit 7

27 CGB5 Chorionic gonadotropin beta subunit 5

28 CGB3 Chorionic gonadotropin beta subunit 3

29 N4BP2L1 NEDD4 binding protein 2 like 1

30 SRGN Serglycin

31 CDH1 Cadherin 1

32 PTPN13 Protein tyrosine phosphatase, non-receptor type 13

33 WFDC2 WAP four-disulfide core domain 2

34 TGFBR3 Transforming growth factor beta receptor 3

35 SV2B Ssynaptic vesicle glycoprotein 2B

36 ADD3 Adducin 3

37 TBL1X Transducin (beta)-like 1X-linked

38 ALDH2 Aldehyde dehydrogenase 2 family (mitochondrial)

39 NR3C1 Nuclear receptor subfamily 3 group C member 1

40 GSTP1 Glutathione S-transferase pi 1

41 ITPR1 Inositol 1,4,5-trisphosphate receptor type 1

42 GHRHR Growth hormone releasing hormone receptor

43 CGB2 Chorionic gonadotropin beta subunit 2

44 CGB1 Chorionic gonadotropin beta subunit 1

45 CGB8 Chorionic gonadotropin beta subunit 8

46 CGB7 Chorionic gonadotropin beta subunit 7

47 CGB5 Chorionic gonadotropin beta subunit 5

48 CGB3 Chorionic gonadotropin beta subunit 3

49 ACTG1 Actin gamma 1

50 ACTB Actin beta

51 ITPR1 Inositol 1,4,5-trisphosphate receptor type 1

52 DLEU1 Deleted in lymphocytic leukemia 1

53 GSTP1 Glutathione S-transferase pi 1

54 PLXNC1 Plexin C1

was to examine differentially expressed genes as an inter-
actome scale, as presented in Figure 2. In this network,
there are some genes with additional properties known as

central genes. These central elements are listed in table
3 and among them, only POMC is from differentially ex-
pressed genes. There is evidence that it is corresponding
to the increased level of POMC in pituitary adenoma rela-
tive to the normal pituitary. The effect of POMC on alpha-
melanocyte stimulating hormone leads to the regulation
of melanin production (21). As indicated in our study, there
is a chance that some of the central nodes are not among
the query ones (22). As shown in table 3, the most central
genes are identified among the added genes, implying the
ability of network method to introduce some new thera-
peutic candidates related to differential genes playing a
major role in interaction system. The significant roles of
such highlighted genes on the integrity of the network are
corresponding to their possible high impact on the pathol-
ogy of the disease. For example, the presence of coagula-
tion factor 2 as a central gene may indicate the blood co-
agulation process changes in Prolactinoma, in which the
Hypercoagulable state was previously reported in Prolacti-
noma (23). Furthermore, other central genes are mostly
metabolic and growth-related regulators, which directly
or indirectly are related to the pituitary gland. Parathyroid
hormone, insulin, glucagon, growth hormone-releasing
hormone, insulin-like growth factor 1, and follicle stimulat-
ing hormone receptor, which comprise 40% of all central
nodes, are mediated by the pituitary gland (24-27).

Clinical approaches indicate that impaired metabolic
condition including serum glucose, cholesterol, and
triglycerides occur in Prolactinoma patients (20). In this
respect, some functional correlations between differen-
tial genes and central ones are present to play roles in
Prolactinoma metabolic profile. For instance, insulin
and insulin-like growth factor (IGF1) as one of the highly
ranked central nodes in our network constitution are
related to insulin-like growth factor binding proteins (IGF-
BPs), which belong to the down-regulated genes category.
In this regard, insulin is reported to be responsible for
inhibiting IGFBP-1 and IGFBP-2 (28). On the other hand, as
mentioned earlier, one of the altered metabolites is serum
fasting glucose of these patients (20), which could justify
the linkage and importance of our identified central genes
namely IGF1 and INS in Prolactinoma metabolic changes.
This network indicates that how one part of the focused
interactions could be responsible for Prolactinoma risk.
Consequently, our screening method discriminated data
effectively to provide a better molecular aspect of prolacti-
noma.

To achieve a better resolution of these prominent
genes and the differentially expressed genes, their associ-
ated biological processes were also examined. As shown
in tables 4 and 5, metabolic and growth regulation are the
most highlighted processes of the hub-bottleneck and dif-
ferentially expressed genes and possibly the outermost dis-
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Table 3. The List of Hub-Bottlenecks of the Main Connected Component of the Network of Differentially Expressed Genesa

Row Display Name Description Degree BC

1 POMC Proopiomelanocortin 57 0.02

2 F2 Coagulation factor II (thrombin) 54 0.07

3 GCG Glucagon 54 0.02

4 PTH Parathyroid hormone 53 0.02

5 INS Insulin 52 0.08

6 AKT1 V-akt murine thymoma viral oncogene homolog 1 51 0.02

7 MAPK3 Mitogen-activated protein kinase 3 50 0.03

8 AVP Arginine vasopressin 49 0.04

9 MAPK1 Mitogen-activated protein kinase 1 48 0.04

10 GHRH Growth hormone releasing hormone 45 0.02

11 IGF1 Insulin-like growth factor 1 (somatomedin C) 44 0.02

12 CGA Glycoprotein hormones, alpha polypeptide 42 0.04

13 ALB Albumin 42 0.02

14 FSHR Follicle stimulating hormone receptor 42 0.02

15 BRD2 Bromodomain containing 2 41 0.05

aThe top 20% of the nodes (18 genes) based on degree value were selected as hub nodes and in a similar manner, the bottleneck nodes were identified. Common genes
of the hub and bottleneck nodes (about 83%) were selected as hub-bottleneck genes. The genes are ordered by their degree value

Table 4. The Related Term Groups (Biological Processes) to Differentially Expressed
Genesa

R Term Group Terms / Total Terms, %

1 Positive regulation of insulin-like growth
factor receptor signaling pathway

50

2 Response to growth hormone 30

3 Platelet aggregation 13

4 Peptide hormone processing 7

aStatistical criteria are as follows: Genes per term: 3, genes per term percent: 4,
Kappa score: 0.5, Corrected P-value < 0.05, Grouping level: Min = 2, Max = 8 for
term grouping.

Table 5. The Related Term Groups (Biological Processes) to the 15 Central Genes Are
Presenteda

R Term Group Terms / Total Terms, %

1 Regulation of glycogen metabolic process 40

2 Regulation of phosphatidylinositol 3-kinase
signaling

30

3 Positive regulation of nucleotide metabolic
process

15

4 Phosphatidylinositol 3-kinase signaling 10

5 Killing of cell in other organisms 5

aStatistical criteria are as follows: Genes per term: 3, genes per term percent: 4,
Kappa score: 0.5, Corrected P-value < 0.05, Grouping level: Min = 2, Max = 8 for
term grouping.

rupted ones. The main features of biological processes re-
lated to differentially expressed genes are characterized as
growth courses (Table 4) while based on the content of
Table 5, the identified central nodes are mostly involved
in metabolic pathways. Both metabolic and growth pro-
cesses change grossly in cancer, which were also changed
based on our findings in Prolactinoma. While there are
many differential genes corresponding to prolactinoma
pathogenesis, here we highlighted the crucial ones in
terms of interaction pattern. As indicated above, our find-
ing is consistent with previous investigations into prolacti-
noma. It is suggested focusing more on our introduced
panel of central genes to get a better notion of their feasi-
ble participation in Prolactinoma pathogenesis.

4.1. Conclusion
The study declares that vast metabolic processes and

growth functions are modified in Prolactinoma. The cen-
tral genes that were introduced as a candidate biomarker
panel in our study may be useful for clinical approaches in-
cluding patient follow-up, diagnosing, and drug targeting
for Prolactinoma. In this respect, conducting experimen-
tal assessments as the validation test is appreciated to ex-
amine their potential application in clinical fields.
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