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Abstract

Background: Vitamin D affects the pancreatic beta cell function and in vitro studies have shown that vitamin D may influence
insulin secretion, apoptosis, and gene regulation. However, the outcomes have differed and there has been uncertainty regarding
the effect of different vitamin D metabolites on insulin secretion.
Objectives: We hypothesized that vitamin D could increase insulin secretion in insulin producing beta cells and investigated the
effect of 25(OH) vitamin D and 1,25(OH)2 vitamin D on insulin secretion.
Methods: The study was conducted in INS1E cells, an established insulinoma cell line from rat. The cells were divided into three
groups; a control group, a group with 1,25(OH)2 vitamin D enriched medium (10 nM), and a group with 25(OH) vitamin D (10 nM)
supplemented medium. After 72 hours of treatment, the cells underwent glucose stimulation at different concentrations (0, 5, 11,
and 22 mM) for 60 minutes.
Results: INS1E cells treated with 1,25(OH)2 vitamin D showed a trend towards increased insulin secretion at all glucose concentra-
tions compared to control cells and at 22 mM glucose, the difference was significant (18.40 +/- 1.97 vs 12.90 +/- 2.22 nmol/L, P < 0.05).
However, pretreatment with 25(OH) vitamin D did not show any significant increase in insulin secretion compared to cells without
vitamin D treatment. There was no difference in insulin secretion in cells not stimulated with glucose.
Conclusions: Treatment with 1,25(OH)2 vitamin D combined with high levels of glucose increased insulin secretion in INS1E cells,
whereas 25(OH) vitamin D had no effect. This suggests that glucose stimulated insulin secretion in INS1E beta cells appears to be
related to the type of vitamin D metabolite treatment.
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1. Background

Diabetes is one of the most prevalent endocrine dis-
eases worldwide, and the number of people with diabetes
has more than doubled over the past 30 years (1). Diabetes
is characterized by beta cell dysfunction and absolute or
relative insulin deficiency due to both genetic and environ-
mental causes (2-6), however, the exact pathophysiologi-
cal mechanism is still not known. Genome wide associa-
tion studies have described around 250 gene regions pre-
disposing to type 2 diabetes (7), of which more than 90%
are genes related to beta cell function (8, 9). Knowledge of
beta cell function is therefore of great importance in un-
derstanding diabetes pathophysiology. Insulin secretion
is tightly regulated by glucose, however, other nutrients
and hormones also affect insulin secretion, including vita-
min D (10). Vitamin D is primarily known for its vital role
in calcium homeostasis, however, many extra-skeletal ef-

fects of vitamin D have become apparent the last years, in-
cluding effects on beta cells (11). Vitamin D is synthesized
endogenously in the skin by UV exposure or derived from
foods and supplements. The major form of vitamin D in
the circulation is 25(OH) vitamin D, which is metabolized
primarily in the kidneys by 1-alpha-hydroxylase to generate
the active form of vitamin D, 1,25(OH)2 vitamin D. 1-alpha-
hydroxylase is also expressed in several extra-renal tissues
in humans including skin, gastrointestinal tract, placenta,
and in the pancreatic beta cells (12, 13). This enables local
production of 1,25(OH)2 vitamin D and permits intracel-
lular regulation of vitamin D levels, also in beta cells (12,
14). 1,25(OH)2 vitamin D performs the majority of its effects
through regulation of gene expression in different tissues
and cells through binding to the nuclear vitamin D recep-
tor (VDR), which acts as a transcription factor (15).

A number of studies have indicated a beneficial role
for vitamin D in pancreatic beta cell function. In vivo
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studies have shown reduced secretion of insulin from pan-
creatic islets in mice suffering from vitamin D deficiency.
The insulin secretion was shown to improve by vitamin D
supplementation (16). Evidence has also been presented
indicating that vitamin D can protect beta cells from cy-
tokine induced apoptosis (16, 17). Microarray studies of
mice islets have identified genes regulated by 1,25(OH)2

vitamin D, among them genes involved in ion transport,
lipid metabolism, and insulin secretion (17). Previous stud-
ies have reported divergent results on the effect of in-
sulin secretion after treatment with 1,25(OH)2 vitamin D.
Wolden-Kirk et al., did not show an increase in insulin se-
cretion after preincubation of mouse islets with vitamin
D followed by stimulation with high levels of glucose (18),
whereas Jeddi et al., reported that preincubation of rat
islets with vitamin D combined with a high glucose con-
centration increased glucose stimulated insulin secretion
(19). However, the effects of vitamin D combined with glu-
cose stimulation on insulin secretion in beta cells have not
been fully elucidated, especially regarding the difference
of effect between vitamin D metabolites. We have recently
performed a study to determine the effect of 25(OH) vita-
min D and 1,25(OH)2 vitamin D on the proteome of the INS1
cell line. The study showed that 31 proteins were differen-
tially expressed after treatment with 1,25(OH)2 vitamin D,
whereas 25(OH) vitamin D had no such effect (20). Among
the upregulated proteins were proteins implicated in in-
sulin granule motility and insulin exocytosis, suggesting a
positive effect of 1,25(OH)2 vitamin D on insulin secretion
(20) .

2. Objectives

The aim of the present study was to assess whether vi-
tamin D would influence glucose stimulated insulin secre-
tion in INS1E beta cells and whether there is a difference in
the effect of 1,25(OH)2 vitamin D and 25(OH) vitamin D on
insulin secretion.

3. Methods

3.1. Culturing INS1E Cells

We used the well-established rat insulinoma cell line
INS1E and treated the cells with 25(OH) vitamin D and
1,25(OH)2 vitamin D prior to glucose stimulation. INS1E is
a transformed cell line from rat insulinoma often used as
a model for studies of beta cell function and presents an
improved cell line compared to INS1. Studies have shown
stable growth of INS1E cells over two years in culture and
physiological insulin response to glucose, in contrast to
INS1 cells (21).

The cell-line was a kind gift from professor Wollheim
(21). INS1E cells were grown adherently in RPMI medium
(Gibco by Life Technologies, Paisley, UK) with supple-
ments (FBS 10%, Na-pyruvate 0.01 M, HEPES 0.1 µM, peni-
cillin/streptomycin 10 mL and 2-mercaptoetanol 300 µL
per 30 mL RPMI) in a humidified atmosphere at 37°C with
5% CO2. RPMI was changed two to three times per week
and cells sub-cultured to 80% confluence. INS1E cells were
grown for four weeks until stable log phase growth. Cells
(105 per well in 12-well plates) were seeded in RPMI with
supplements. We performed three parallel studies with
triplicates.

3.2. Stimulationwith Glucose After Pre-Treatment with Vitamin
DMetabolites

After four passages, INS1E cells were incubated with
RPMI with 10 nM 25(OH) vitamin D (Sigma-Aldrich, Nether-
lands), RPMI with 10 nM 1,25(OH)2 vitamin D (Sigma-
Aldrich, Israel), or RPMI alone (control cells). The applied
concentrations of 25(OH) vitamin D and 1,25(OH)2 vitamin
D were chosen based on results from previous studies (18,
22). Vitamin D was dissolved in ethanol before the given
amount was added to the medium. The RPMI, with sup-
plements and vitamin D was replenished once during the
72 hours of preincubation. After 72 hours of preincuba-
tion, glucose stimulation was carried out. After gentle re-
moval of RPMI, the cells were incubated with glucose-free
Krebs-Ringer buffer for 60 minutes. Cells were subjected
to stimulation with (1) Krebs-Ringer buffer or Krebs-Ringer
buffer supplemented with (2) 5 mM glucose, (3) 11 mM glu-
cose, or (4) 22 mM glucose in triplicates for 60 minutes. Af-
ter stimulation, the medium was collected immediately to
stop the incubation and centrifuged at 2000 g for 10 min-
utes. The supernatant was kept at -18°C prior to insulin
measurement. The cells were collected by gentle mechan-
ical release, resuspended until homogenous, and counted
in an automated cell-counter (Countess, BioRad). The ex-
periment was performed three times over a period of four
weeks. The average cell numbers for each experiment are
shown in Table 1.

3.3. Insulin Assay RIA Kit

Insulin was measured by a RIA kit (Millipore, Missouri,
U.S.A.), according to manufacturer’s protocol.

3.4. Statistics

None of the parallels were excluded in the calculations.
The cells not stimulated with vitamin D metabolites were
considered as reference cells in each group. All data were
expressed as mean ± SD and analysed using IBM SPSS 23.0.
To calculate P values, a two-tailed student t test was applied.
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Table 1. Average Cell Numbers for Experiments 1 - 3

Control Cells 1,25(OH)2 Vitamin D + 22 mM Glucose 25(OH) Vitamin D + 22 mM Glucose

Experiment 1 7.5 × 105 5.5 × 105 4.5 × 105

Experiment 2 5.8 × 105 6.0 × 105 4.2 × 105

Experiment 3 6.1 × 105 6.8 × 105 6.6 × 105

P values below 0.05 were regarded as statistically signifi-
cant.

4. Results

As shown in Figure 1, there is an increased insulin secre-
tion with increasing levels of glucose in the control cells,
in cells preincubated with 1,25(OH)2 vitamin D, and in the
cells preincubated with 25(OH) vitamin D. The cells treated
with 1,25(OH)2 vitamin D and stimulated with 22 mM glu-
cose showed a 43% increase in insulin secretion compared
to control cells (P = 0.006). Stimulation with 22 mM glu-
cose after preincubation with 25(OH) vitamin D on the con-
trary showed no effect on insulin secretion. Neither treat-
ment with 1,25(OH)2 vitamin D nor 25(OH) vitamin D lead
to changes in insulin secretion in the absence of glucose
stimulation.
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Figure 1. Insulin release in response to treatment with different vitamin D metabo-
lites at different glucose concentrations. Insulin release in response to one hour glu-
cose stimulation at 0, 5, 11, and 22 mM, respectively, after preincubation with vehicle,
25(OH) vitamin D, or 1,25(OH)2 vitamin D for 72 hours. ** P < 0.05 compared to con-
trol (no vitamin D).

The INS1E cells treated with 1,25(OH)2 vitamin D showed
a trend towards increased insulin secretion at all glucose
concentrations. At 5 mM glucose, there was a 32% increase
in the amount of insulin secreted compared to control
cells. At 11 mM glucose, a 28% increase was observed. No sig-
nificant changes were detected when comparing control
cells with those pre-treated with 25(OH) vitamin D for any
glucose concentrations.

The average cell number for each experiment is shown
in Table 1. At 22 mM glucose, the average change in cell

numbers between the control cells and the cells treated
with 1,25(OH)2 vitamin D was -0.36 × 105 cells (-2.0 - 0.7 ×
105 cells). The average change in cell number comparing
control cells and cells treated with 25(OH) vitamin D was
-1.37 × 105 (- 3.0 - 0.5 × 105 cells). Thus, both preincuba-
tion with 25(OH) vitamin D and 1,25(OH)2 vitamin D led to
a slight decrease of cells.

5. Discussion

This study has shown that treatment of INS1E cells with
1,25(OH)2 vitamin D prior to glucose stimulation at high
doses (22 mM) leads to significantly increased insulin se-
cretion compared with control cells. In contrast, prein-
cubation with 25(OH) vitamin D did not alter the glucose
stimulated insulin secretion significantly, regardless of the
glucose concentration. We found no changes in insulin
secretion between the cells preincubated with vitamin D
metabolites or vehicle in the absence of glucose. To our
knowledge, studies on the effect on insulin secretion of dif-
ferent vitamin D metabolites in INS1E cells have not been
carried out before. Yet, these results are in line with several
other studies showing an association between 1,25(OH)2

vitamin D and insulin release from beta cells (19, 22-25).
Billaudel et al. (23), reported that glucose stimulated in-
sulin secretion was reduced in islets from vitamin D de-
ficient rats, whereas incubation with 1,25(OH)2 vitamin D
had a stimulatory effect on insulin response after six hours.
Tanaka et al. (24), showed that insulin secretion was de-
creased in vitamin D deficient rats, but restored to the level
of the controls in rats treated with vitamin D. Bourlon et
al. (25), also reported that insulin secretion was dimin-
ished in islets from vitamin D deficient rats and restored by
1,25(OH)2 vitamin D combined with 16.7 mM glucose stimu-
lation. Consistent with our results, d’Emden et al., showed
a 2.5 fold increase of insulin secretion in response to 10 nM
1,25(OH)2 vitamin D in rat islets; this treatment had to last
for 96 hours for the effect to become evident (22).

In 2015, Jeddi et al., reported that preincubation of rat
islets for 24 or 48 hours with 1,25(OH)2 vitamin D increased
glucose stimulated insulin secretion at high levels of glu-
cose (16.7 mM), however, no effects on insulin secretion at
low glucose levels were found (19).
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Contrary to our results, Wolden-Kirk et al., reported
no significant changes in insulin secretion after treatment
with 1,25(OH)2 vitamin D on mice islets (18). In this study,
preincubation with active vitamin D lasted for 24 hours
and the glucose levels were either 3 mM or 30 mM. It might
be possible that the difference in length of preincubation
with vitamin D, the chosen glucose concentrations, and
the use of mice islets in this experiment led to the observed
differences between their study and ours.

The mechanisms of the effects of vitamin D on glu-
cose stimulated insulin secretion in beta cells are not com-
pletely understood and both direct and indirect mecha-
nisms have been suggested. Bourlon et al., demonstrated
in their study that 1,25(OH)2 vitamin D could activate the de
novo biosynthesis of insulin in rat islets and suggested this
could be caused by increased rate of conversion of proin-
sulin to insulin (25). They also showed that vitamin D re-
quired 48 hours in culture to increase insulin secretion
from beta cells, which could indicate a genomic effect of
vitamin D in beta cells (25). Another study from Bourlon et
al. (26), showed that 1,25(OH)2 vitamin D might have a mod-
ulatory role on insulin release from beta cells via the cyclic
AMP pathway in rat, suggesting also non-genomic effects
of vitamin D on insulin release. Vitamin D may stimulate
a second messenger system that includes phospholipase C
and G-protein receptors, which leads to increased calcium
influx and increased intracellular glucose within the beta
cells, causing insulin secretion (27). In addition, simula-
tion of vitamin D receptor by 1,25(OH)2 vitamin D might
diminish the dedifferentiation in beta cells seen in type 2
diabetes (10).

In the present study, treatment with 25(OH) vitamin D,
in contrast to 1,25(OH)2 vitamin D, did not alter the insulin
secretion significantly. This may suggest that the conver-
sion of 25(OH) vitamin D into 1,25(OH)2 vitamin D is insuffi-
cient in INS1E cells. Our recent proteomic study carried out
on INS1 cells to clarify the difference between 25(OH) vita-
min D and 1,25(OH)2 vitamin D showed that only treatment
with 1,25(OH)2 vitamin D significantly changed the expres-
sion of numerous proteins, including proteins that may af-
fect insulin secretion. On the contrary no effect was seen
on the protein expression for 25(OH) vitamin D (20). This
is in line with our present study and supports the hypoth-
esis that there will be a difference in the effects of different
vitamin D metabolites on insulin secretion. The 1-alpha-
hydroxylase protein was not detected in the study by Pepaj
et al., indicating that this enzyme may not be expressed in
INS1 cells, though additional studies are necessary to con-
firm these results (20).

INS1E cells are widely used as a model for pancreatic
beta cells due to their stability in culture and their well-
preserved glucose-induced insulin secretion within the

physiological range (21, 28). However, it must be taken
into consideration that the origin is a transformed cell
line from the rat and will differ from islets regarding both
function and mechanisms. INS1E cells lack the surround-
ing alpha and delta cells that normally reside in the pan-
creas. These are very important for the function of the beta
cells and thus, for the secretion of insulin (29). Another
limitation of the study is that the cells were preincubated
with only 10 nM vitamin D metabolites. Future studies
could possibly elucidate whether prolonged treatment of
1,25(OH)2 vitamin D, at even lower concentrations, would
also increase glucose stimulated insulin secretion.

Vitamin D could potentially influence the number of
INS1E cells in culture by increasing mitosis (30) or the apop-
totic rate (31) and thereby, modify insulin secretion solely
due to cell numbers. In order to avoid this bias, the cells
were counted before and after treatment with vitamin D
metabolites. The cell numbers remained stable through-
out the study. A modest reduction of cell numbers was seen
in the treated cells compared to the control cells.

In conclusion, the effect of preincubation of INS1E cells
with vitamin D on insulin secretion appears to depend
both on the vitamin D metabolite and glucose concentra-
tion. Only 1,25(OH)2 vitamin D increased insulin secretion,
whereas 25(OH) vitamin D had no such effect. Future stud-
ies could clarify this observed difference and elucidate the
possible mechanisms for the effect of 1,25(OH)2 vitamin D
on glucose stimulated insulin secretion in beta cells.
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