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A B S T R A C T

Background: In insulin-resistance animal models, insulin uptake from the periphery 
to the brain is impaired. Although brain insulin is not involved in glucose transfer to 
the neurons, it is required for neuron survival and function, mediated by binding to 
insulin receptors. Furthermore, an insulin homologue called insulin-like growth fac-
tor (IGF-I), which is abundantly expressed in mature neurons and acts in parallel with 
insulin in the brain, has the ability to bind to the insulin receptor and trigger the sig-
nal transduction pathway. 
Objectives: Although reduced levels of brain insulin and serum IGF-I have been re-
ported during insulin resistance, no data is available on IGF-I levels in the brain. In 
this study, we sought to investigate if the expression of IGF-I is also altered in brains of 
insulin-resistant rats.
Materials and Methods: Wistar rats were given 10% fructose in their drinking water for 
up to 4 months to induce insulin resistance. The rats were then killed and perfused 
with PFA 4%; then, there brains were excised, sectioned, and examined for immunore-
activity of IGF-I. 
Results: Our results showed an increased intensity of IGF-I in most brain areas of the 
insulin-resistant rats. 
Conclusions: Altogether, an increased expression of IGF-I in the brain could be a com-
pensatory mechanism and substitute for low levels or lack of insulin in the brains of 
insulin-resistant animals.
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1. Background

Increasing evidence indicates that brain insulin plays 
important roles in metabolism and food uptake (1, 2). 
Most brain insulin is derived from the pancreas, through 
a receptor mediated transfer (3, 4). In insulin-resistant 
rats, insulin uptake and therefore its level is reduced in 
brain (3-5). It is generally accepted that insulin resistance 
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  Implication for health policy/practice/research/medical education: 
IGF-I signaling could be regarded as a complementary pathway for insulin in brain to prevent disruption in metabolism and survival 
of neurons in brain. Targeting specific signaling molecules activated in response to increased level of IGF-I in insulin resistant brain 
would have clinical impacts on treatment of the insulin resistance.
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is a result of altered receptor-mediated signal transduc-
tion (6). Although brain insulin is not involved in glu-
cose uptake by neurons, it affects neuron survival and 
function. The effects of insulin and insulin-like growth 
factor (IGF-I) in the brain are receptor mediated (3, 4) . 
Mutant mice for insulin receptors are obese, nontoler-
ant to glucose, and insulin resistant (7, 8). Unlike insulin 
which is either not synthesized or present at low levels, 
IGF-I is expressed in almost all areas of the adult brain (8). 
Altogether, with respect to the role of insulin in regula-
tion of energy and metabolism (9) in the brain and high 
energy demands for formation and function of neurons 
and their synapses, a homologue and ubiquitous substi-
tute for insulin is required. This substitute should fulfill 
autocrine and paracrine actions of insulin in energy con-
sumption (10) as well as low levels of insulin in insulin 
resistance (11).

2. Objectives

 In this study, we have therefore sought to examine if 
brain IGF-I is altered in insulin-resistant rats and can be 
regarded as a substitute for insulin.

3. Materials and methods
3.1. Induction of insulin resistance

Male Wistar rats (200–250 gr) were purchased from 
the Pasteur institute. The animals were weighed, placed 
in separate cages, and divided in to control and experi-
mental groups (n = 8). The experimental rats were fed 
with fructose in their drinking water (10%), and the con-
trol rats were given normal water. Both groups were fed 
with normal chow. To determine the insulin resistance, 
the levels of glucose, triglycerides, and insulin were 
measured every 2 weeks. Following 4 months of fructose 
treatment, there was a significant increase in the serum 
level of triglycerides (P < 0.05) but a decrease in the level 
of insulin (P < 0.05).

3.2. Measurements of serum glucose, triglyceride, and 
insulin levels

Parsazmun kit was used to measure the levels of glu-
cose and triglycerides at 496 nm, and DRG diagnostic kit 
for that of insulin at 450 nm. The regression equation 
was obtained from the absorbance values against differ-
ent concentrations of the standard samples. Using the 
obtained equation, concentrations of the samples were 
calculated. 

3.3. Perfusion

Using 2% chloral hydrate, the animals were deeply an-
aesthetized and perfused by buffer phosphate followed 
by glutaraldehyde/paraformaldehyde (500 ml). The 
skulls were opened, the brains were taken out and post-
fixed in the same fixative for another 24 hours. For cryo-
sectioning, brains had to be kept for 2 weeks in sucrose 

Figure 1. The average level of glucose in fructose fed rats was not signifi-
cantly changed after 4 months compared to that in the control rats.

(30%) with formalin (10%), and for long-term preserva-
tion, sucrose (30%) containing sodium azide (0.05%) at 
4°C was used.

3.4. Immunohistochemistry

Prior to cryosectioning, the brains were soaked in OCT 
compound, sectioned at 40 nm and mounted on poly-
L-lysine–coated slides. After being completely dried, 
sections were soaked in PBS and incubated in sodium 
borohydride (0.1%) followed by periodic acid (0.1%) for 
10 minutes to reduce the background. For signal inten-
sification, sections were then incubated in citrate buffer 
(in a 96°C water bath) for 40 minutes. After blocking in 
skimmed milk for 2 hours, sections were incubated with 
IGF-I antibody (cell signaling, USA) overnight at 4°C. fol-
lowing incubations with biotinylated secondary anti-
body for 2 hours at room temperature, HRP-streptavidin 
for 1 hour at room temperature, the reaction was devel-
oped and visualized by DAB chromogen. 

4. Results
4.1. Triglyceride but not glucose is increased in insulin 
resistant rats

Glucose and triglyceride measurements in serum-
were performed in both treated and control groups ev-
ery month. The average level of serum glucose did not 
change significantly after 4 months (Figure 1; 391 ± 70 mg/
dl in the fructose-fed rats compared with 140 ± 120 mg/
dl in the control rats). The level of triglyceride, however, 
increased significantly after 4 months (Figure 2; 48 ± 8.5 
mg/dl in the fructose-fed rats compared with 26 ± 2.2 mg/
dl in the control rats; P < 0.05).  

4.2. Insulin in increased in insulin resistant rats

Serum level of insulin was assayed by using a rat-insu-
lin Elisa kit (DRG diagnostics). The results showed asig-
nificant increase in the level of insulin in fructose-fed 
animals (Figure 3; 0.88 ± 0.1 mg/dl in fructose fed rats 
compared to 0.25 ± 0.2 mg/dl in control rats; P < 0.02). 
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point should be considered as a critical point to reduce 
both the time and efforts in triglyceride and insulin mea-
sur ments. The latency of 4 months also has been docu-
mented elsewhere (14, 16). Moroz and colleagues who 
have used high fat diet in obese mice, introduced mea-
surments of insulin concentration as a reliable indicator 
which increased with a latency of 16 weeks(16).

5.2. Increased expression of IGF-I in insulin-resistant 
brain as a compensatory mechanism

Reports have shown that despite the essential role of 
brain insulin in controlling peripheral metabolism, food 
intake, and body weight, it is not involved in glucose 
uptake by neurons. In mutant mice lacking insulin re-
ceptors in the brain, studies found that control of food 
intake and metabolism was disturbed and resulted in in-
sulin resistance (1, 2). Insulin resistance witch disturbs in-
sulin transfer from the liver to the brain, impairs neuron 
function and survival and therefore memory and learn-
ing (16). IGF-I as a homologue for insulin has been shown 
to act in parallel with insulin (9). In this study therefore, 
we sought to examine if IGF-I level has also been changed 
in insulin resistant brain. According to our findings, the 
level of IGF-I significantly increased in different brain ar-
eas of rats fed with fructose in their drinking water 10% 
for at least 4 months. Similarly, Moroz and colleagues 

Purkinje cells Brain stem Hippocampus Thalamus

IGF-I (1) F++           C+ F++         C+ F++        C+ F++        C+   

IGF-I (2) F++           C+ F++         C+ F++        C+ F++        C+

IGF-I (3) F++           C+ F++         C+ F++        C+ F++        C+

IGF-I (4) F++           C+ F++         C+   F+          C+ F+          C+

IGF-I (5) F++           C+ F++         C+ F+          C++ F+++      C+   

P value < .05 < .05 < .05 < .05

Table 1.  A comparison between intensities of IGF-I ir in different brain areas in the fructose-fed (F) and control rats (C).

4.3. Immunoreactivity of IGF-I is increased in insulin-
resistant brains

The intensity of IGF-I immunoreactivity in different 
brain areas in the fructose-fed rats was compared with 
that in the control rats and categorized as: low (+), mod-
erate (++) and intense (+++). Analysis of the comparisons 
was performed by Mann-Whitney and Kruskal-Wallis 
statistical method (Table 1). The results show that IGF-I 
ir in different areas of the brain, such as the brain stem, 
cerebellum, hippocampus, and thalamus increased sig-
nificantly (P < 0.05) in the fructose-fed rats (Figure 4: a–g) 
compared to the control rats (Figure 4: b–h). 

5. Discussion
5.1. Fructose diet induces insulin resistance

Fructose syrups, as the most commonly used sweetener 
in food products, result in increased uptake of daily car-
bohydrates and therefore increase the chance of insulin 
resistance and metabolic disturbances (12, 13). Based on 
both animal and human studies (12-15), we used fructose 
10% in drinking water of adult rats to induce an animal 
model for insulin resistance. Our measurements of tri-
glyceride and insulin levels indicated that the levels of 
both increased significantly after 4 months. This time 

Figure 2. The average level of triglycerides in the serum was significantly 
increased after 4 months in the fructose-fed rats compared to that in the 
control rats.

* Indicates signficantly different (P<0.05).

Figure 3. Logarithmic graph of the standard curve drawn for the absorb-
ance values against different concentrations of insulin (µU/ml) at 450 nm. 
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Figure 4. Photomicrographs of IGF-I immunostained sections from the fructose-fed rats (a = Purkinje cells of cerebellum, c = brain stem, e = hippocampus, g = 
thalamus) and the control rats (b = Purkinje cells of cerebllum, d = brain stem, f = hippocampus, h = thalamus). A significant increase was observed in the IGF-I ir 
in different areas of the insulin-resistant brains. 1 cm bar = 90 μm
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(16) have also shown that in mice fed with high fat food, 
IGF-I mRNA is significantly increased in brain. Since IGF-I 
acts through insulin receptors and triggers the intracel-
lular pathways, one may conclude that the increased 
brain IGF-I compensates for the reduced insulin levels 
in insulin-resistant brain. Furthermore, the increased 
IGF-I may also compensate for the reduced level of IGF-I 
in serum and peripheral tissues in diabetes type II(17, 18). 
Indeed, the regulatory feedback mechanism driven by 
peripheral IGF-I to control brain IGF-I level has also been 
documented by Torres alleman (19). Altogether, IGF-I sig-
naling could be regarded as a complementary pathway 
for insulin in the brain to prevent disruption in metab-
olism and survival of neurons in the brain. In patients 
with diabetes type III or Alzheimer’s disease, the IGF-I 
signaling pathway is impaired even at the early stages of 
the disease (20, 21), resulting in dramatic changes in the 
brain. Future studies on signaling molecules activated in 
response to the increased levels of IGF-I in insulin-resis-
tant brains would lead to a better understanding of the 
complex dynamic of insulin resistance.
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