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Abstract

Background: The control, management, and prevention of driving accidents and risky driving are regarded as concerns for numer-
ous countries, according to the World Health Organization. In this regard, many technologies, such as count stations, are recom-
mended. They count traffic offenses, such as speeding and unsafe distance, hourly and daily, and have different patterns according
to the hour of the day and the location.
Objectives: This study aimed to investigate the risky driving behaviors according to traffic offenses in Iran and estimate their hourly
and spatial patterns using generalized additive models (GAMs) and stochastic partial differential equation methods.
Materials and Methods: There were 2,316 count data stations for one month within March-April 2019. This study estimated the
hourly average of each traffic offense, Pearson’s and Spearman’s correlations, and the energy statistics for testing the bivariate nor-
mal distribution. There are five distributions, such as univariate Poisson, quasi-likelihood Poisson, Gaussian, location-scale Gaus-
sian, and bivariate Gaussian in GAMs, to study the hourly patterns which were compared to the mean squared error (MSE) and
correlation.
Results: The hourly average of total vehicles and number of speeding and unsafe distance offenses per count station had positive
skew distributions with mean values equal to 347± 456, 22.5± 44.2, and 65.9± 150, respectively. The correlation between traffic
offenses in most provinces was significant, not large, and different. The GAM with the bivariate Gaussian distribution had the best
performance according to the MSE and correlation. It revealed three hourly patterns for count predictions; the first was that speed-
ing is higher than unsafe distances; the second was that unsafe distances are higher than speeding; the third was that speeding and
unsafe distances do not have a specific pattern in some hours. The percentage of speeding was higher in the central, northeast, and
southeast regions than in other parts of Iran, and the percentage of unsafe distances was higher for the north, northwest, west, and
some parts of the southwest than in other parts of Iran, respectively.
Conclusions: The hourly pattern of traffic offenses exists and has a complex structure. The spatial pattern of traffic offenses shows
the riskiest points in Iran.
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1. Background

The traffic and speed cameras and count stations near
the roads are some technologies developed to manage,
control, and predict traffic status in different countries.
These devices produce massive datasets hourly and daily,
making them one of the primary resources for discovering

patterns and relationships. For example, there are diverse
indices, including the count of driving offenses and total
vehicles based on their type, which could be considered
(1, 2). According to the global status report on road safety
by the World Health Organization, driving accidents and
risky driving are among the remarkable causes of death
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worldwide (2).
This study investigated the hourly and spatial patterns

of driving offenses using two advanced statistical meth-
ods, respectively. Firstly, the generalized additive model
(GAM) extended the generalized linear model (GLM) idea
by adding the smoothing functions, such as cubic regres-
sion splines for estimating, hypothesis testing, and confi-
dence interval for coefficients. The GAM was enhanced to
capture complex and nonlinear relationships between re-
sponse variables and covariates (3-5). Secondly, the stochas-
tic partial differential equation (SPDE) method is one of the
techniques to study spatial variability with the integrated
nested Laplace approximation (R-INLA) (6).

2. Objectives

The traffic offenses dataset from count stations is a
source for studying driving behaviors in Iran. The speeding
and unsafe-distance indices are the indicators of risky driv-
ing for the control and prevention for which governments
worldwide have different laws (2). Firstly, this study esti-
mated the hourly average of each traffic offense per count
station national-wide and province-wise. It shows how
many traffic offenses occurred on average in each count
station hourly. Secondly, the correlations and bivariate dis-
tribution between speeding and unsafe distance province-
wise offenses were evaluated by Pearson’s and Spearman’s
correlation coefficients and bivariate normal test based on
the energy statistics, respectively. Thirdly, this study mod-
eled the nonlinear relationship between the number of
traffic offenses and the time of a day for each province
with GAMs separately. Finally, this study introduced the
percentage of traffic offenses among all transported vehi-
cles as a key index to study the risky behavior of drivers on
roads and investigated their spatial variability with SPDE.
Moreover, temporal variability for four different ranges of
hours was evaluated.

3. Materials and Methods

3.1. Population and Dataset

The population of this study was all count data stations
near the interprovincial roads of Iran, which are available
online from Iran Road Maintenance and Transportation
Organization on the website of the Ministry of Roads and
Urban Development (rmto.ir). All days of the first Iranian
month, Farvardin, were considered in this analysis (31 days
within 3/21/2019 to 4/20/2019). The number of individuals
traveling between provinces increases in the first and sec-
ond weeks of this month due to the Iranian New Year holi-
days. The condition of the roads gets back to regularly slow

during the third and fourth weeks of this month. There-
fore, the risky driving behavior of most Iranians could be
estimated in this month.

The count data stations record hourly and daily dif-
ferent indices, such as total vehicles and the number of
speeding and unsafe distance offenses. There were 31 sepa-
rated provincial datasets. The active count stations record
60 minutes an hour, and only 2,316 count data stations re-
main. The count of unsafe distance offenses is the total
number of vehicles with a distance shorter than 2 seconds
between them. The count of speeding is the total number
of vehicles on the road with a speed higher than the speed
control limit (rmto.ir).

3.2. Statistical Analysis

3.2.1. Testing the Multivariate Normal Distribution

In order to study the bivariate distribution of these
two traffic offenses, this study chose the energy test statis-
tics that have the best performance among multivariate
Gaussian distribution tests (7, 8). The observation Z ∈ Rd

has a multivariate Gaussian distribution Nd (0, Id) with the
mean vector of 0 and the variance-covariance matrix Id (9)
as follows:
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For computation, the sample of observation is stan-
dardized based on the mean and correlation matrix. The
obtained test statistic nε n̂,d has limited distributions,
such as nεn,d, with the rejection region on the upper tail.
The nε n̂,d statistics are compared to the repeated energy
statistics by the Monte Carlo sampling and 200 iterations
from standardized normal with the same dimensions.
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3.2.2. Correlation Tests

The correlation between the two random variables Y1

and Y2 or ρ12 was assessed with the maximum likelihood
estimation of the Pearson product-moment correlation co-
efficient if their distribution was bivariate normal. When
the joint distribution of the two random variables was not
multivariate normal, the correlation was evaluated utiliz-
ing Spearman’s Rank correlation coefficient. In this test,
the ranks of Y1 and Y2 are R1 and R2 for calculation, respec-
tively (10).

3.2.3. Generalized Additive Model

The GAM is a GLM with a set of smoothing functions of
covariates. The general form is as follows:

g (µi) = Aiθ + f1 (x1i) + f2 (x2i) + · · ·

whereµi≡ E (Yi) and Yi ~ EF (µi,φ). The response term
is Yi with the exponential family, a mean ofµi, and the scale
parameters of φ. The Ai is related to the parametric part of
the model, and θ represents a vector related to the param-
eters. The fi is the smoothing function of the covariate xk

(4). This study considered and compared the five distribu-
tions of univariate Poisson, univariate quasi-Poisson, uni-
variate Gaussian, univariate location-scale Gaussian, and
bivariate Gaussian for Yi. There are two models for each dis-
tribution, with the response variable in models 1 and 2 be-
ing the number of speeding and unsafe distance offenses,
respectively. The only covariate in the model is the hour of
the day, and the smoothing function f1(x) is a cubic regres-
sion spline with k = 20. The mean squared error (MSE) and
correlation between observations and fitted values are the
criteria for choosing the best model (4, 5).

3.2.4. Spatial Data Analysis

The response variable was the percentage of total
speeding and unsafe distances in the total traffic during
one month for each count station, respectively. The count
station location has some information that accounts for
this model. The Yi refers to the percentage of each traffic
offense at count station si and has a Gaussian distribution
as follows:

Yi ∼ N
(
µi, σ

2) , i
= 1, . . . , 2316

µi = β0 + Z (si)

where Z(.) indicates a spatially structured random ef-
fect with zero-mean Gaussian process and Matérn covari-
ance. The fitting method was the SPDE approach with R-
INLA. The mesh was constructed with different margins
to approximate Yi to a discrete Gaussian Markov random

field. The models predict the lower and upper limits with
95% credible intervals, and the result is a map plot (6). All
the statistical analyses were performed using R 4.0.2 (r-
project.org) with mgcv, energy, geoR, maps, rgdal, map-
tools, sf, viridis, and ggplot2 packages (11-18).

4. Results

Table 1 shows the results of descriptive statistics and p-
values for the bivariate normal test based on the energy
statistics and correlation coefficients. Diverse factors were
associated with driving offenses, among which only the
time of day as a spline function was considered in this
study. Table 2 shows the results of fitting 1) univariate GAM
with quasi-Poisson distribution and 2) bivariate Gaussian
GAM (other models, including univariate Poisson, univari-
ate Gaussian, and univariate location-scale Gaussian, in Ap-
pendix 1). These two models had the best performance
among their Poisson-related and Gaussian-related families
according to the MSE and correlation indices.

Figure 1 shows the predicted responses for the bivari-
ate Gaussian model in Sistan and Baluchestan, and Gilan
provinces, Iran. The patterns of these two plots were in
contradiction. All figures for both univariate quasi-Poisson
and bivariate Gaussian GAM models are presented in the
appendix (Appendix 2). Figure 2 illustrates the predicted
percentage of speeding and unsafe distance offenses with
their spatial patterns in Iran. The two plots had a different
pattern that indicated the percentage of speeding is higher
in the central, northeast, and southeast regions than in
other parts of Iran. The predicted percentage of speed-
ing was higher than unsafe distance, indicating that speed-
ing is high in Iran. The predicted percentage of unsafe
distance with a range of 20 - 40% was higher for north,
northwest, west, and some parts of southwest than other
parts of Iran. These plots were produced with the triangu-
lated mesh method. The other mesh method is available
for comparison in Appendix 3.

The temporal and hourly patterns of the predicted per-
centage for traffic offenses are available in Appendix 4.1 and
Appendix 4.2, respectively. There were four intervals of 6
hours, including 0 - 5, 6 - 11, 12 - 17, and 18 - 23. According to
Appendix 4.1, the predicted percentage of speeding was the
highest at 0 - 5. On the other hand, Appendix 4.2 shows that
the predicted percentage of unsafe distance was the lowest
at 0 - 5 and had the highest value at 12 - 17 (Appendix 4.1 and
Appendix 4.2).

5. Discussion

The speed limit and speeding fines for intercity high-
ways are different in European countries and Iran. As il-
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Table 1. Descriptive Statistics a

Provinces
Number of Count

Stations

Hourly Average per Station (SD) P-Value of
Bivariate Normal

Test b

Correlation

Speeding Unsafe Distance Pearson Spearman

Ardebil 64 12.2 (12.3) 33.3 (29.2) < 0.05 0.16 (< 0.05) 0.29 (< 0.05)

Isfahan 120 26.5 (35.4) 30.3 (50.2) > 0.05 0.26 (< 0.05) 0.50 (< 0.05)

Alborz 40 99.4 (197.6) 320.8 (555.8) < 0.05 0.32 (< 0.05) 0.49 (< 0.05)

Ilam 48 5.5 (5.7) 14.5 (17.4) > 0.05 0.21 (< 0.05) 0.46 (< 0.05)

West Azarbayjan 90 17.9 (19.2) 40 (28.6) < 0.05 0.25 (< 0.05) 0.46 (< 0.05)

East Azarbayjan 82 15.4 (23.5) 18.2 (63.6) < 0.05 -0.01 (0.11) 0.08 (< 0.05)

Bushehr 52 16.9 (14.8) 53.5 (68) < 0.05 0.26 (< 0.05) 0.30 (< 0.05)

Tehran 103 49.5 (79.3) 259.6 (334.7) < 0.05 0.27 (< 0.05) 0.41 (< 0.05)

Chaharmahal and
Bakhtiari

62 23.7 (24.8) 26 (21.3) > 0.05 0.46 (< 0.05) 0.49 (< 0.05)

South Khorasan 72 20.5 (16.4) 13.9 (12.7) > 0.05 0.51 (< 0.05) 0.61 (< 0.05)

Razavi Khorasan 131 19.6 (31.5) 70 (133.9) < 0.05 0.30 (< 0.05) 0.48 (< 0.05)

North Khorasan 47 12.6 (17.4) 32.5 (27.5) > 0.05 0.33 (< 0.05) 0.26 (< 0.05)

Khuzestan 104 14.5 (17.8) 34.7 (31.2) > 0.05 0.16 (< 0.05) 0.41 (< 0.05)

Zanjan 74 7.3 (8.7) 40.5 (52.5) > 0.05 0.38 (< 0.05) 0.48 (< 0.05)

Semnan 54 43.9 (49.3) 33.1 (36.2) > 0.05 0.58 (< 0.05) 0.69 (< 0.05)

Sistan and
Balouchestan

70 26.2 (24) 1.2 (1.3) > 0.05 0.50 (< 0.05) 0.44 (< 0.05)

Fars 126 33.7 (46.1) 74 (110.9) > 0.05 0.21 (< 0.05) 0.35 (< 0.05)

Qazvin 57 14.8 (25.1) 171.5 (268.2) > 0.05 0.25 (< 0.05) 0.50 (< 0.05)

Qom 76 49 (74) 82.4 (124.3) > 0.05 0.16 (< 0.05) 0.20 (< 0.05)

Kordestan 52 7.6 (9.9) 26.9 (28) < 0.05 0.30 (< 0.05) 0.37 (< 0.05)

Kerman 107 13.4 (13.4) 19.6 (17.2) < 0.05 0.27 (< 0.05) 0.33 (< 0.05)

Kermanshah 72 9.8 (12.1) 42.2 (47.9) < 0.05 0.32 (< 0.05) 0.52 (< 0.05)

Kohkilouye and
Boyerahmad

28 7.1 (8.5) 24.6 (19.7) < 0.05 0.34 (< 0.05) 0.50 (< 0.05)

Golestan 52 13.1 (24.6) 78.5 (109.9) < 0.05 0.00 (0.65) 0.29 (< 0.05)

Gilan 84 9.8 (15) 193 (179.2) < 0.05 0.09 (< 0.05) 0.30 (< 0.05)

Lorestan 62 11.7 (12.5) 28.7 (31.8) < 0.05 0.38 (< 0.05) 0.49 (< 0.05)

Mazandaran 102 23.7 (34.7) 111.6 (164) > 0.05 0.13 (< 0.05) 0.32 (< 0.05)

Markazi 64 30.6 (29.7) 56.7 (64.2) < 0.05 0.36 (< 0.05) 0.47 (< 0.05)

Hormozgan 72 27.5 (31.7) 37.4 (37.9) < 0.05 0.49 (< 0.05) 0.48 (< 0.05)

Hamedan 71 15.3 (20.3) 44.4 (74.9) > 0.05 0.47 (< 0.05) 0.69 (< 0.05)

Yazd 78 19.6 (32.6) 19.8 (40.8) < 0.05 0.58 (< 0.05) 0.53 (< 0.05)

Abbreviation: SD, standard deviation.
aThe hourly average per station of offenses, the P-value for the normality test of the joint normal distribution of speeding and unsafe distance, the correlation between
speeding and unsafe distance with Pearson and Spearman, and their P-Values by provinces of Iran.
b Based on the energy statistics.

lustrated in Figure 3, Norway has the highest speeding
fines (€711), and the Czech Republic has the lowest speeding
fines (€19) among other countries, respectively. In some
countries, the speeding limits are different based on the

two lanes or other roads (Norway), winter and other sea-
sons (Sweden and Finland), rainy and other weather con-
ditions (Luxembourg and Italy), and free speed (Germany).
The traffic fines for speeding in Iran within 2021 - 2022 is
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Table 2. Mean Squared Error and Correlation Between Observed Values and Predicted Values by Provinces in Three Generalized Additive Models

Provinces

Univariate Quasi-Poisson Bivariate Gaussian

MSE COR MSE COR

Speeding Unsafe
Distance

Speeding Unsafe
Distance

Speeding Unsafe
Distance

Speeding Unsafe
Distance

Ardebil 431.58 5585.6 0.26 0.37 313.039 3886.618 0.2655 0.4164

Isfahan 4234.72 9435.8 0.25 0.24 3305.632 7955.29 0.2588 0.2578

Alborz 100001.65 741558.34 0.11 0.22 86774.854 576048.427 0.1071 0.2286

Ilam 115.86 2336.48 0.28 0.24 84.528 1887.848 0.2714 0.253

West
Azarbayjan

1083.11 2514.08 0.23 0.3 1544.517 12434.603 0.2564 0.2809

East
Azarbayjan

1943.81 15195.81 0.25 0.26 839.992 1988.403 0.2496 0.3423

Bushehr 779.4 14589.36 0.22 0.29 540.01 10785.777 0.2256 0.3195

Tehran 15866.28 354773.14 0.17 0.3 12766.231 242816.189 0.1775 0.3289

Chaharmahal
and
Bakhtiari

1664.66 2716.23 0.3 0.41 1105.088 1737.031 0.3112 0.4543

South
Khorasan

1319.27 1133.26 0.33 0.32 834.305 873.05 0.3386 0.3355

Razavi
Khorasan

2241.12 50497.25 0.18 0.22 1682.416 40515.689 0.1797 0.2487

North
Khorasan

936.37 5419.72 0.16 0.38 767.099 3592.478 0.1647 0.4066

Khuzestan 978.81 6959.98 0.2 0.33 737.537 4672.25 0.1983 0.3649

Zanjan 229.03 19909.58 0.18 0.24 193.617 17284.791 0.1796 0.2557

Semnan 10017.67 11546.95 0.25 0.24 7481.894 9765.432 0.2607 0.2609

Sistan and
Balouches-
tan

2478.86 12.47 0.34 0.3 1363.401 10.218 0.3528 0.3227

Fars 5385.19 39761.19 0.21 0.27 4162.456 31543.184 0.2155 0.2845

Qazvin 2263.28 360868.29 0.14 0.24 1600.491 244795.473 0.1557 0.218

Qom 16924.48 61534.78 0.23 0.27 13419.011 49202.503 0.2369 0.2833

Kordestan 235.64 3365.31 0.17 0.38 197.928 2299.921 0.1735 0.4272

Kerman 659.95 2465.71 0.26 0.34 419.746 1635.215 0.2572 0.3666

Kermanshah 744.38 11365.21 0.17 0.32 665.794 8546.778 0.1719 0.3573

Kohkilouye
and
Boyerahmad

339.82 5697.06 0.25 0.4 238.177 3585.047 0.2614 0.4133

Golestan 1439.64 35333.35 0.18 0.33 1237.653 24184.02 0.1821 0.3728

Gilan 508.84 143528.05 0.14 0.37 439.298 88628.456 0.1437 0.4038

Lorestan 483.89 6004.13 0.24 0.31 365.061 4710.623 0.2407 0.3312

Mazandaran 4042.83 77117.08 0.14 0.31 3398.741 55020.8 0.1454 0.3335

Markazi 3435.27 24601.29 0.28 0.3 2382.4 19328.955 0.2917 0.3174

Hormozgan 3159.51 8827.06 0.22 0.29 2209.037 6432.453 0.2174 0.2983

Hamedan 1741.22 22891.93 0.23 0.27 1362.917 18492.39 0.2293 0.2981

Yazd 2615.35 7838.14 0.16 0.18 2153.476 7174.672 0.1643 0.1896

Abbreviations: MSE, mean squared error; COR, correlation.

Int J High Risk Behav Addict. 2022; 11(3):e118376. 5



Fayaz M et al.

Figure 1. Estimated number of speeding (blue) and unsafe distance (red) offenses in A, Gilan; and B, Sistan and Balouchestan, Iran

2,100,000 Iranian Rial (IR) (equivalently about €44.30 if €1
= 47,377 IRR (i.e., official governmental NIMA, the Central
Bank of the Islamic Republic of Iran exchange rate) and
about €6.72 if €1 = 312,480 IRR (i.e., unofficial open market
exchange rate) in Q1 2022). Nevertheless, this comparison
of speeding fines is simple and naive according to the dif-
ferent purchasing power parity and gross domestic prod-

uct between countries; therefore, it is suggested to com-
pare them to new indices, such as Big Mac Index, in future
studies (19). The Figure 3 dataset is made from speedingeu-
rope.com and rahvar120.ir datasets.

A significant relationship has been reported between
road traffic accidents (RTA) and time (e.g., the time of the
day) in Yazd, Iran, during the New Year holidays and sum-
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Figure 2. Mean prediction of A, speeding; and B, unsafe distance rates (within 0 (yellow) and 1 (red))

Int J High Risk Behav Addict. 2022; 11(3):e118376. 7
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Figure 3. Bar chart (green) of highway speed limit (km/h) and line chart (red) of speeding traffic fines (euro) by countries

mer (20). It has been the other study for these holidays
in the six most populous provinces of Iran, namely Fars,
Khorasan Razavi, Tehran, Isfahan, Kerman, and Khuzestan,
within 2011 - 2015, indicating that Fars and Khorasan Razavi,
with attractive tourist sites, have different high RTA among
others (21). The mortality rate due to traffic accidents is
higher in Iran at midnight and summer (22, 23) and in
spring and summer in Shiraz (24) than in other times. The
present study showed that the speeding rate was higher
from midnight to early morning throughout Iran. This
finding might be due to the existence of black spots with
low and not uniform lighting on the roads (25). It also sug-
gests that risky driving, not darkness, is the main reason
for accidents (26). However, there are some exceptions; for
example, in the south of Iran (27) and Yasuj (28), the rate
of accidents during the day is higher than at night. The
provinces in the south of Iran are located in the warmest
region in the country, with an average daily high temper-
ature. The high rate of accidents during the day in these
provinces might be due to heat stress on drivers. A simi-
lar finding was reported in a study in Saudi Arabia (29) and
high ambient temperatures in Spain (30). The percentage
of RTA in Fars, Isfahan, Ilam, and the southeast region of
Iran has a nonlinear trend in 24 hours with different peaks
of speeding and unsafe distance (26, 31-34).

The rate of unsafe distance offense is almost high in
Kermanshah, Iran, and it can be added as a new risk factor
of RDA in this province (35). The highest rate of mortality
for drivers, passengers, and pedestrians has been reported
during 13:00 - 18:00 in the west of Iran (36), 18:00 - 20:00 in
Mashhad (37), and 16:00 - 18:00 in the southeast of Iran (38).
The findings of other studies showed that most of the col-
lisions occurred in the early hours of the night. A part of
these collisions is due to poor visibility. Inadequate visibil-

ity has a key role in crashes involving pedestrians, motor-
cyclists, cyclists, and drivers (39). Moreover, crashes at dark
hours cause severe injuries (40, 41). According to the find-
ings of a meta-analysis study, the odds ratio of mortality in
dark-hour crashes is 53% higher than in day-hour crashes
(42). Consequently, traffic offenses might have a relation-
ship with RTA-related mortality. In this regard, this study
suggests adding traffic offenses statistics to the Iranian In-
tegrated Road Traffic Injury Registry (43, 44) and RTA stud-
ies. The other risk factors are the spatial variations of traffic
offenses and accidents, seatbelt and helmet status, gender,
age group (45), and climatic conditions, such as fog in the
north of Iran (46).

The traffic fines and risky driving in Iran are studied
in different ways, including the relationship between the
number of traffic offenses and fuel costs within 2011 - 2019
(47), the relationship between increasing traffic fines poli-
cies and the road traffic law enforcement (48), the preva-
lence and determination of speeding in Iran (49), the com-
parison study of traffic fines in Iran and other countries
(50), risky driving fined by police in 2006 and 2007 in
Tehran (51), the effect of cameras on speeding behavior of
taxi drivers in two highways (52), and aggressive violations
(e.g., “sound horn to indicate your annoyance”, “get an-
gry, give chase”, and “aversion, indicating hostility”). More-
over, Iran and Great Britain, the Netherlands, and Finland
are among the countries with higher speeding violations
than other countries, such as Greek and Turkey (53). In ad-
dition, visual, perceptual, and cognitive capabilities and
physiological condition of drivers (e.g., Barkley’s Attention
Deficit Hyperactivity Disorder Screening Test, Risk Percep-
tion Questionnaire, Risk Taking Questionnaire, Sensation
Seeking Scale Survey, and Driver Behavior Questionnaire),
among other factors in SHRP2 naturalistic driving study,
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are assessed in the USA (54).
Advanced and sophisticated statistical methods are in

demand for traffic-related datasets. The GAMs are among
the statistical models that can be used for complex rela-
tionships, such as risky driving in Iran (4) (e.g., driving
offenses near public places, such as airports (1)). The bi-
variate structure of the response can estimate the corre-
lation and compare the traffic offenses between provinces
at distinct times of the day (5). It also calculates the peak
hours and 95% confidence interval with their pattern for
each province. The Getis-Ord General G* statistic in geo-
graphically weighted regression models revealed that the
hotspot for fatal pedestrian accidents is in Mazandaran,
Iran, and it is more common in Yazd, East Azerbaijan,
and Ardebil (55). Future studies can investigate cluster-
ing methods, statistical learning methods (56), functional
data analysis (57), and GAM for location, scale, and shape
techniques to estimate the exact distribution with many
parameters and their estimation for the underlying distri-
bution (58).

5.1. Conclusions

The present study concluded that the risky driving be-
haviors due to traffic offenses can be estimated straight-
forwardly at different times and locations and add new in-
formation about the time of the days and roads that have
not registered or occurred any traffic accidents. In this re-
gard, they are predictive models. The geographical status
of the roads, such as mountains or deserts, is shown to be
related to the type of traffic offenses. For example, speed-
ing violations on desert roads are higher than mountain
roads, and unsafe distance violations on mountain roads
are higher than desert roads. The day-night, rush hours,
and holidays are the main time-related factors for occur-
ring traffic offenses. The future direction of this study is
to investigate the relationships between the percentage of
traffic offenses and traffic accident occurrence, climate sta-
tus (e.g., raining, foggy, and sunny), and holidays and re-
strictions (e.g., coronavirus disease 2019 restriction) on all
roads in different times of the day.

In highway safety research, crash modification factors
and safety performance are introduced based on the traf-
fic volume and road characteristics, and different statisti-
cal methods are proposed to estimate them (59, 60). There-
fore, defining new and easy-to-compute indices is needed
for future studies to measure and model the percentage of
risky driving. This study had some limitations. Firstly, the
police statistics have crime classification errors (e.g., some
errors in detecting speeding and unsafe distance) and sys-
tematic errors (e.g., the failure of count stations in some
hours) (61). Secondly, the statistics on traffic accidents are
not publicly available.
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