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Abstract

Background: Addiction is known as a gradual process leading to the uncontrolled abuse of a substance. The main problem facing
the practitioners is the high rate of return among abusers after stopping substance consumption. Deep brain stimulation (DBS)
is considered as one of the methods for treating stimulant substance abuse, in which an electrical current is passed, typically at
frequencies above 100 Hz, through electrodes implanted surgically in the subcortical brain nuclei.
Objectives: The present study aimed to investigate the effects of high-frequency DBS (HF-DBS) applied to the medial prefrontal
cortex (mPFC) on the electrical response of the accumbens nucleus as well as on the motor activity and dependency in morphine-
addicted male rats.
Materials and Methods: Experimental rats (n = 40) were assigned to five groups (n = 8), including saline, sham, morphine,
saline+DBS, and morphine+DBS groups. The rats received DBS with a frequency of 130 Hz, amplitude of 0.2 to 0.5 mA, and repeated
periods of 15 minutes with an interval of 45 minutes for 3 hours during the conditioning period in the conditioned place preference
(CPP) box. Then, they were treated with saline or morphine and were subjected to stereotaxic surgery for insertion of the stimulator
electrode in mPFC and the recorder electrode in AC. The electrical response of AC neurons to DBS was determined by adopting the
single-unit recording method. Then, the motor activities of different groups were assessed to evaluate the effects of DBS on animal
movement activities. Finally, data analysis was performed using GraphPad Prism 8.1.
Results: The injection of morphine enhanced the CPP score and reduced the average of spikes in the cortical neurons of the AC
compared to those obtained in the sham group. These parameters were significantly decreased and increased in the animals receiv-
ing morphine+DBS compared to the morphine group, respectively. Moreover, a significant difference was observed between the
morphine+DBS group and the morphine group in terms of the total traveled distance.
Conclusions: The stimulation of the AC nucleus at high frequency reduced the addiction preference as well as enhanced the loco-
motor activity and primary neuron activity in the cortex of the AC nucleus.
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1. Background

Addiction is a gradual process that begins with occa-
sional use and progresses to regular consumption, even-
tually leading to uncontrolled substance abuse. The main
problem facing the practitioners is the high rate of return
among abusers with an unsuccessful attempt to stop sub-
stance consumption. Substance abuse is a worldwide phe-
nomenon that has caused the most severe damage to hu-

man societies. It is an uncompromising model of sub-
stance abuse that can cause acute symptoms, including a
set of cognitive, behavioral, and psychological symptoms
(1). Approximately 200 million people aged 15 - 64 world-
wide take an illicit substance at least once a year (2). Iran,
in this regard, has a large number of addicted people to
substances due to its geographical characteristics and its
borders with drug-producing countries (1). The last report
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of Iran’s drug control headquarter indicates the presence
of 1.2 - 2 million consumers in the country. Furthermore,
many individuals are either addicts or have at least some-
one addicted in their families (2).

The accumbens (AC) nucleus is a part of several groups
in subcortical nuclei called the basal ganglia (basal nuclei).
It plays a vital role in the return to substance use, and
its stimulation produces promising results in the treat-
ment of substance dependence. The AC sends efferent to
areas such as the frontal cortex, limbic areas, amygdala,
hypothalamus, and midbrain, which greatly contribute to
the processes involved in reward. Studies have shown that
addiction can decrease the activity of areas such as the cin-
gulate cortex and dorsolateral prefrontal cortex (DLPFC),
which, in turn, decreases a person’s control over his behav-
ior and ultimately leads to addiction. On the other hand,
the AC receives important inputs from the prefrontal cor-
tex, which affects the activity of the AC region and the ad-
dictive behaviors of the individual. One of the target areas
studied when investigating DBS and addiction is the pre-
frontal cortex – the medial prefrontal cortex (mPFC), in par-
ticular (3). A behavioral study has evaluated the effect of
high and low-frequency stimulation of mPFC (4) on depen-
dency manners.

To date, no approved drug treatment has been de-
veloped for stimulant substance abuse. However, a new
class of neurosurgery interventions has become popular
to treat movement disorders and mood disorders. One of
these prominent therapies is deep brain stimulation (DBS)
(5). Electrical current, typically at frequencies above 100
Hz, is directed through electrodes implanted surgically in
the subcortical brain nuclei (6). Preclinical studies and
case studies have reported the therapeutic effects of DBS
on addiction. Recent findings about the neural pathways
affected by addiction have created a new range of possi-
bilities for the treatment of addiction by targeting the in-
volved neural pathways and returning their activity to nor-
mal status. There is a need for new effective interventions
for patients who do not benefit from conventional treat-
ments, since addiction is a chronic brain disease that seri-
ously affects individual and social health (7).

In this respect, DBS research has explored various areas
of the brain to treat neuropsychiatric conditions such as
Alzheimer’s disease (8), Tourette’s syndrome (9), obsessive-
compulsive disorder (10), and advanced depression (11). Ac-
cording to recent studies on animals and humans, DBS
may serve as an effective treatment for addiction. Investi-
gating the effects of DBS on the responses to alcohol, co-
caine, heroin, morphine, and nicotine has produced en-
couraging results in several areas of the reward system (5).
The effects of DBS are much more complex than simple lo-
cal stimulation or inhibition. Instead, DBS has been shown

to stimulate axonal terminals, exerting significant effects
on neural circuits. However, the precise mechanism of DBS
action has remained unknown. The impact of DBS depends
on several parameters, such as the stimulated structure, its
specific afferents and efferents, cell type, the ratio of pri-
mary neurons to interstitial neurons, mediating systems,
etc. (12). In addition, different brain structures have dif-
ferent conductivities, and this parameter can fluctuate as
a result of neurophysiological changes in different neu-
rological disease states for which DBS is already used (13).
However, DBS is a costly treatment for addicted patients
that restricts access to available therapies (14). The side ef-
fects of DBS depend on the targeted locations and its ap-
plication, and include speech disorder, memory disorder,
aggression, mild mania, sexual hyperactivity, depression,
and increased risk of suicide; furthermore, it can change
the main aspects of the patient’s personality and behavior
(15). Insertion of stimulating electrodes can also lead to se-
vere infections (14).

2. Objectives

To our knowledge, there was little known about the ef-
fect of DBS in mPFC on morphine dependency and motor
activity. Therefore, the present study aimed to investigate
the effects of high-frequency DBS (HF-DBS) in mPFC on the
electrical response of neurons in the AC nucleus and de-
pendency in morphine-addicted male rats.

3. Materials and Methods

Wistar adult male rats (200 – 250 g) were housed
in standard plastic cages in a controlled colony room
with standard conditions (temperature 21 ± 3°C, and 12
h light/dark cycle (lights on at 07:00 a.m.)) and with
free access to food and water. The experiments were
performed during the light cycle, and all animals were
tested once. All experiments were performed based on
the Guide for the Care and Use of Laboratory Animals
(IR.ZAUMS.REC.1397.292).

3.1. Experimental Groups and Design

As illustrated in the experimental design (Figure 1), a
pilot study was conducted to determine the optimum dose
of Morphine. To this end, different doses of morphine
(2.5, 5, and 10 mg/kg) were injected intraperitoneally. Ac-
cording to the results obtained from the conditioned place
preference (CPP) test, the dose of 5 mg/kg was selected as
the optimum dose (Figure 2).

Then, animals (n = 40) were assigned to five groups
(n = 8), including saline, sham (animals were operated
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Figure 1. Various parameters and time intervals presented in a scheme of experimental schedule
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Figure 2. The effect of morphine in doses of 2.5-5-10 on the conditioned place pref-
erences (CPP) for three days. Data are presented as mean ± SEM. && P < 0.01, &&& P
< 0.001: Significant differences in CPP scores compared to saline group.

and a cannula was implanted), morphine (IP injection),
saline+DBS, and morphine+DBS. All animals were used in
withdrawal relapse, and extinction tests.

Animals were treated with saline or morphine accord-
ing to the assigned groups. Then, the rats were subjected to
stereotaxic surgery to insert the stimulator electrode in the
mPFC and the recorder electrode in the AC. The electrical
response of AC neurons to DBS was determined by adopt-
ing the single unit recording method.

The rats were anesthetized with an intraperitoneal in-

jection of urethane (1.2 g/kg) during the procedure. An ad-
ditional dose of urethane (0.1 g/kg) was injected to main-
tain deep anesthesia at one-hour intervals. Body tempera-
ture was maintained between 35.5 - 36.8°C by using a heat-
ing pad. The correct positions of mPFC and AC were then
identified, and the skulls of the animals were perforated
by a drill after considering the exact identified areas. The
spatial location of AC was recognized based on the Paxinos
atlas (AP: -4 mm, ML: ± 1.6 mm, and –DV: 8.4).

Extracellular recording of AC single neurons was per-
formed by inserting a tungsten microelectrode (Harvard
Apparatus, USA; Parylene Coated; 127 mm diameter; 5 MΩ)
into the brain and using a stereotaxic device. Spike signals
were amplified with a differential amplifier, and the pro-
duced sound was displayed on a monitor. Only neurons
were included in the study, which had spike signals with
stable amplitude and form. The action potentials were sep-
arated from the background activity using a window dis-
criminator, which counted the number of spikes per unit
time in addition to generating output pulses for the single-
units based on the signal amplitude. Electrophysiological
Data Acquisition was utilized to obtain samples from ex-
tracellular activity, and the obtained data were stored on a
hard disk. Finally, single-unit activity was calculated as the
frequency of spikes.

3.2. Conditioned Place Preference Test

To this end, a wooden device with dimensions of
30[L]x16[W]x45[H] and consisting of two chambers (i.e.,
a chamber with vertical lines and another chamber with
horizontal lines) was used. The chambers were con-
nected by a valve. This test was performed in three
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phases, including pre-conditioning, conditioning, and
post-conditioning.

3.2.1. Pre-conditioning Phase

Each rat was separately located in the apparatus for 10
min on the 1st day. During this phase, the animal had free
access to all chambers. Then, the presentation duration of
the animal in each chamber was recorded and analyzed.
Preference chamber for an animal was considered more
tendency of the animal to one chamber.

3.2.2. Conditioning Phase

This phase lasted three days in conditioning sessions.
The conditioning train was implemented on days 2 - 4,
twice a day. All animals received 30-min sessions of saline
and morphine for three days in the chamber, which was
contrasted to the preferred chamber. Saline or morphine
was injected in the morning-afternoon design alternately,
with an interval of six hours. At the end of this phase,
the rats experienced six times the effects of morphine and
saline collectively. Access to another chamber was pre-
vented on these days.

3.2.3. Post-conditioning Stage (Test Stage)

This phase was conducted on the 5th day (test day),
in which the separator valve was removed, and the ani-
mals had access to the entire apparatus. The time spent in
both parts of the apparatus for each animal was recorded
for 10 min. The difference between the times spent in the
drug-received chamber and the saline-received chamber
was considered as the preference criteria to calculate the
conditioning score. No injection was administered on the
test day. Moreover, locomotor activity for each animal in
all experimental groups was determined as a total traveled
pathway for a 10 min period on pre- and post-days.

3.3. DBS Pattern

When a responsive neuron was identified, 5 min of
baseline activity was recorded. During conditioning in the
CPP box, the rats received DBS with a frequency of 130 Hz,
the amplitude of 0.2 to 0.5 mA, and repeated periods of 15
minutes with an interval of 45 minutes for 3 hours. In this
regard, a stimulator with proper programming potential
was applied to achieve the mentioned stimulation pattern.
DBS was performed by directing an electrical current from
the stimulator to an electrode implanted in the rat’s brain.
The stainless-steel electrode used in this study was bipo-
lar and coated with insulating material. When a respon-
sive neuron was identified, 5 min of baseline activity was
recorded.

3.4. Locomotor Activity

Open field test (OFT) was performed to evaluate the
motor activity of the rats. The OFT (80 cm × 80 cm × 50
cm) has a black body color with white lines. Every rat was
placed in the center of the open field, and the number of
lines crossed was recorded for 5 min (16). The field was
cleaned between each trial by using 90% ethanol to remove
odor cues. This field was divided into 25 squares of the
same size, including a central area and 24 side squares, us-
ing Maze software.

3.5. Data Analysis

Data analysis and figure drawing were performed by
using GraphPad Prism 8.1. The normality of data distribu-
tion was assessed by performing the d’Agostino–Pearson
omnibus normality test. Behavioral and electrophysiologi-
cal data were evaluated using One-way analysis of variance
(ANOVA) and Tukey as a post hoc test. All data were pre-
sented as mean ± SEM, and the significance level was set
at P ≤ 0.05.

4. Results

4.1. The Effect of Morphine and DBS on Conditioning Scores in
Different Groups

As shown in Figure 2, chronic injection of morphine
in 5 (P < 0.001) and 10 mg (P < 0.01) doses increased the
conditioning score, which was indicative of CPP induction.
In other words, the injection of morphine (5 mg/kg) sig-
nificantly enhanced CPP [487.5 ± 59.91] [(F4, 25=37.5; P <
0.001)] in comparison with the sham group [18.33 ± 1.56].

According to Figure 3, administration of morphine
[487.5 ± 59.91] [(F4, 25=63.7; P < 0.001)] without electri-
cal stimulation increased CPP scores compared with the
sham group [18.33 ± 1.56; P < 0.001], but exposure to 130-
Hz high-frequency morphine+DBS [308 ± 27.58; P < 0.01]
significantly decreased CPP in comparison with morphine
group. The results demonstrated that 130-Hz electrical
stimulation of the rat AC nucleus significantly blocked the
morphine-induced CPP.

4.2. The Effect of Morphine and DBS on the Average a Spike
of Neurons in the Cortical Part of the AC Nucleus in Different
Groups

As illustrated in Figure 4, the injection of morphine sig-
nificantly reduced the average spike in cortical neurons of
the AC nucleus [227.7 ± 10.83] compared to the sham group
[273.4 ± 8.8] [F4, 25=63.7; P < 0.001]. However, it was in-
creased significantly in the morphine+DBS group [425.7 ±
19.25] compared to the morphine group [227.7 ± 10.83; P ≤

0.01].
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Figure 3. Effects of exposure to high-frequency deep brain stimulation (DBS)
on morphine-induced conditioned place preference. Exposure to DBS attenuated
morphine-induced CPP compared with the morphine group. Data are presented as
mean ± SEM. &&& P < 0.001 different from the sham group. @@ P < 0.01 different
from the morphine group.

4.3. Locomotor Activity in Different Groups Was Tested 24 h After
the last Conditioning Session

According to Figure 5, administration of morphine
without electrical stimulation [935.7 ± 91.60] decreased the
total traveled distance compared to the sham group [1553
± 50.32;] [F4, 35=36.6; P < 0.05]. However, a significant dif-
ference was observed in the total traveled distance in the
morphine+DBS group [2279 ± 81.06] compared to that in
the morphine group [F4, 35=36.6; P < 0.001].

5. Discussion

This study showed that morphine with concentrations
of 5 and 10 mg/kg was able to create dependency in the rats,
manifested in the occurrence of preferential behavior for
the place of receiving it compared to the place of receiving
saline. The incidence rate of this dependency in our study
was consistent with the rate documented in other studies
by Azizi et al., which showed that these doses of morphine
in CPP tests may have created dependency (17). In our study,
moreover, it was revealed that the administration of DBS in
mPFC inhibited CPP caused by morphine with a different
effect.

Treatment of the addiction to drugs such as heroin and
cocaine is not effective in most cases, and a high percent-
age (over 80%) of the patients relapse after a few days or
years of abstinence. Human studies have shown that this
return to substance use can occur either after encounter-

ing the substance and the peripheral signs related to it, or
after the stress.

The AC nucleus is one of the most important brain re-
gions involved in reward and addiction, which plays a sig-
nificant role in returning to drug use. Several studies have
shown that the AC nucleus is one of the main sites asso-
ciated with drug use (18-20). One of the inputs of the AC
nucleus is the prefrontal cortex. Several approaches have
been proposed for treating neurological diseases, among
which DBS is one of the most effective approaches. There-
fore, the present study aimed to examine the effects of
deep stimulation of the prefrontal cortex on the electrical
activity of AC neurons as well as on morphine-induced de-
pendency.

According to our study results, DBS significantly re-
duced the morphine-induced CPP in rats. Furthermore,
morphine+DBS had the potential to significantly increase
the basal activity of neurons in the cortical part of the AC
nucleus. It was found that performing electrical stimula-
tion for three days reduced the preference score in the CPP
test compared with that in the morphine group.

The contemporary era of DBS emerged in 1987, and
since then, it has been adopted as a suitable strategy for
treating a wide range of neurological disorders (21). As for
the application of DBS, it induced a functional ‘lesion’ in-
stead of an irreversibly destructive lesion. There are some
controversial hypotheses to explain the functional role of
DBS, the most important of which are synaptic inhibition,
depolarization blockade, synaptic depression, and regula-
tion of pathological network activity. Animals – rats, in par-
ticular – play crucial roles in explaining the mechanism by
which DBS exerts the ameliorating effect on Parkinson’s
disease (PD) symptoms. In this regard, electrical stimu-
lation of the subthalamic nucleus can improve the symp-
toms of PD in humans and non-human primates (22). DBS
is considered a sound strategy for treating some neuropsy-
chiatric disorders. However, DBS is a technical innovation
that has been used for researching drug abuse. Several
reports have indicated that electrolytic lesions to the AC
nucleus have remarkable positive effects on conditioning
cues of appetitive procedures (23-25). In our study, mPFC
DBS with a frequency of 130 Hz and amplitude of 0.2 to
0.5 mA increased neuronal firing of the AC nucleus, which
decreased following morphine administration. It was ar-
gued that this occurred due to the activation of recur-
rent inhibitory processes within the mPFC, which are selec-
tively potentiated during DBS. The high-frequency stimula-
tion (HFS) of the nucleus AC in rats blocked the morphine-
induced CPP as the measure of morphine reinforcement
(26) and inhibited the morphine-induced reinstatement of
morphine-seeking in animal models (27). Seemingly, the
AC nucleus core allocated powerful value for separate stim-
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Figure 4. The effect of morphine and deep brain stimulation on the basal activity of neurons in the cortical part of the nucleus accumbens. Data are presented as mean ± SEM.
&&& P < 0.001 different from the sham group. @@@ P < 0.001 different from the morphine group.

uli related to reward or aversion. Furthermore, it is cru-
cial to adapt these values to the changes in circumstances,
which leads to the activation of the AC nucleus for induc-
tion of addictive relapse behavior (28, 29). Applying high-
frequency stimulation of the AC nucleus during the absti-
nence phase also reduced the restoration of drug-seeking
in rats with heroin self-administration (30). Stimulation of
nucleus AC in high frequency over the restoration session
mitigated the cocaine return of drug-seeking in rats (31).
Therefore, Pelloux and Baunez argued that the hypothala-
mus was not a proper option for the utilization of DBS in
drug addiction (32). Liu et al. (cited in Yang et al.) indicated
that HFS application limited the morphine-induced prefer-
ence enhancement (33).

Also, the administration of DBS in the mPFC region in-
creased the reduced motor activity caused by morphine in
the open field test. According to the results, DBS may have
been employed for treating morphine- induced addiction.
Hamilton et al. confirmed that the stimulation of the AC
nucleus in a high-frequency current produces more favor-
able results than the stimulation of it in a low-frequency
current regarding the prevention of relapse of the cocaine-
induced over addiction withdrawal phase (34). The bilat-

eral stimulation of the AC nucleus by high-frequency cur-
rent inhibited the return to morphine-seeking behavior in
the CPP test. It accelerated the impairment of drug ten-
dency rate in rats with morphine preference (27). Studies
showed that the separable effect of electrolytic lesions to
the AC nucleus core and shell on conditioning and shell le-
sion (not core lesion) significantly reduced the function of
locomotion and exploratory (35).

Our study faced a few limitations, one of which was the
identification of appropriate stimulation patterns for DBS.
also it is recommended that future studies should be car-
ried out to investigate the possible effects of DBS on ion-
channel currents, especially on potassium ion currents, by
using the patch clamp recording method.

5.1. Conclusions

The stimulation of nucleus AC in high frequency inhib-
ited the relapse of morphine place preference after with-
drawal, facilitated its impairment, and prevented the re-
turn to morphine-seeking behavior in the CPP test. There-
fore, it was concluded that this treatment enhanced the
locomotor activity and the primary neuron activity in the
cortex of the AC nucleus.
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Figure 5. The effect of deep brain stimulation in the accumbens nucleus on morphine or saline-induced locomotor activity. Data are presented as mean ± SEM. & P < 0.05
different from the sham group. @@@ P < 0.001 different from the morphine group.
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