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Vitamin D Double-edged Sword Against COVID-19
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Dear editor,
In late 2019, a viral disease called acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2 or COVID-19) spread from
China and has now infected many people worldwide (1).
Generally, the immune system response to the infection is
associated with inflammation, pain, and decreased tissue
function (2). Patients with COVID-19 die in critical condi-
tion due to acute respiratory distress syndrome (ARDS) and
dysfunction of several major organs. Increased release of
cytokines plays a key role in the pathology of this disease
(3). At present, the rapid spread of this disease due to the
lack of effective control has caused serious concerns in pa-
tients with underlying conditions such as diabetes, cardio-
vascular diseases, autoimmunity, hypertension, and pul-
monary diseases (4). No specific treatment has yet been
found for COVID-19, and current drugs have not shown any
desired function (5).

The SARS-CoV2 virus employs the angiotensin-
converting enzyme 2 (ACE2) to enter host cells (6). The
host protein of ACE2 is expressed in almost all tissues,
but its expression is higher in the respiratory tissue ep-
ithelium, kidney, cardiovascular system, gastrointestinal
tract, and type I and II alveolar cells (7, 8). The protein acts
as one of the key components of the renin-angiotensin
system (RAS). At the beginning of the RAS pathway, the
renin enzyme, which is synthesized in the kidney, converts
angiotensinogen (synthesized in the liver) to angiotensin
I (AngI), which has 1 - 10 amino acids and subsequently
is converted to Ang II (1 - 8 amino acids) by ACE. Through
a pathway mediated by Ang II receptor type 1 (AT1R), Ang
II triggers inflammation, fibrosis, hypertension, and ox-
idative stress. Angiotensin I and II peptides are converted
to Ang (1 – 7) by the act of endopeptidase (NEP) and ACE2
enzymes, respectively. The bioactive Ang- (1-7) peptide,
through the Mas-receptor, initiates anti-inflammatory
and anti-fibrotic processes and lowers blood pressure by
inducing the release of nitric oxide (9).

When SARS-CoV-2 binds to ACE2, it prevents the con-
version of Ang II to Ang-(1-7), resulting in the accumula-
tion of Ang II and activation of inflammatory pathways
(10). The virus also enhances the bradykinin (BDK) sig-
naling pathway, exaggerating inflammation. This is be-
cause ACE2 inhibits the conversion of BDK to its bioac-
tive derivative, des-Arg9 bradykinin (DABK), and prevents
the formation of a complex between DABK and bradykinin
B1 receptor (BDKB1R) in pulmonary epithelial cells, sup-
pressing acute pulmonary inflammation. In a study to in-
vestigate ARDS, by knocking out the ACE2 gene in mice,
it was reported that the lung disease incurred more se-
vere clinical symptoms and greater vascular permeabil-
ity along with pulmonary edema (11). The inhibition of
pulmonary ACE2 by endotoxin inhalation caused severe
lung damage in a mouse model due to the activation of
the DABK/BDKB1R inflammatory pathway, increased pro-
inflammatory factors such as C-X-C motif chemokine 5
(CXCL5), macrophage inflammatory protein 2 (MIP2), C-
X-C motif chemokine 1 (KC), tumor necrosis factor-alpha
(TNF-α), and finally enhanced neutrophil infiltration into
the lung (12). In lipopolysaccharide (LPS)-induced ARDS, in-
ducing ACE2 expression increased the conversion of Ang
II to Ang I, activated Ang-(1-7)/Mas-receptor-mediated anti-
inflammatory pathways, and suppressed nuclear factor-
κB (NF-κB)-mediated inflammatory reactions (13) and pro-
inflammatory genes’ expression (14).

Vitamin D belongs to the group of fat-soluble vita-
mins and has several roles in the body, acting as an im-
portant hormone and intestinal absorber of calcium, mag-
nesium, and phosphate. It is derived from subcutaneous
7-dehydrocholesterol with the help of the sun’s ultravi-
olet rays. The produced cholecalciferol (vitamin D3) is
then converted to calcidiol (25-hydroxy D3) by the 25-alpha-
hydroxylase liver enzyme, which is the most important
metabolite of vitamin D in the body and is used to deter-
mine vitamin D levels in serum. The active form of the vi-
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tamin, called calcitriol (1,25-dihydroxy D3), is produced by
the 1-alpha hydroxylase renal enzyme (15).

Studies have shown that vitamin D plays a protec-
tive role against COVID-19 by reinforcing the immune sys-
tem via reducing the production of TNF-α and interferon
γ (IFN-γ), supporting cellular connections, and inducing
regulatory T cells (16), finally culminating in reduced pro-
duction of anti-inflammatory cytokines during acute lung
injury (ALI) and ARDS (17). Moreover, vitamin D receptor
(VDR) is highly expressed in the lungs. In mice models of
LPS-induced ALI, more severe symptoms were observed in
animals with knockout VDR gene; however, the use of par-
icalcitol (a vitamin D analog) prevented further damage to
the alveolar tissue of these animals (18), partly via inducing
ACE2 production and the anti-inflammatory Ang - (1-7) /Mas
pathway and suppressing the renin and ACE/Ang II/AT1R
inflammatory branch (19). In mice with LPS-induced ALI,
vitamin D consumption increased the gene expression of
ACE2 and VDR, which played significant roles in the recov-
ering of mice (20). Nevertheless, increasing vitamin D lev-
els up to the normal range can increase ACE2 expression,
which like a double-edged sword, can cut RAS (Ang II/AT1R)
and BDK (DABK/BDKB1R) inflammatory pathways (Figure
1), leading to severe pulmonary inflammation in COVID-19
patients.
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Figure 1. The acting mechanisms of vitamin D on both RAS and bradykinin pathways in COVID-19 patients. Abbreviations: RAS, Renin-angiotensin system; BDKB1R, Bradykinin
B1 receptor; Vit. D, Vitamin D; Ang-(1-7), Angiotensin-(1-7); Mas-R, Mas-receptor; ACE2, Angiotensin-converting enzyme 2; ACE, Angiotensin-converting enzyme; AT1R, Angiotensin
II receptor type 1; NEP, Endopeptidase.
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