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Abstract

Background: The virulence factors of enterococci play a major role in the pathogenicity of enterococcal strains.
Objectives: This study aimed to evaluate virulence factors and detect selected virulence and resistance genes in vancomycin-
resistant Enterococcus (VRE) from clinical samples from southwest Nigeria.
Methods: The VRE isolates (n = 85) recovered from clinical samples were characterized using conventional microbiology techniques,
and molecular identification was made with ddlE primers. Phenotypic screening for five virulence determinants and detection of
virulence and resistance genes using a polymerase chain reaction were carried out.
Results: Phenotypic identification revealed 61 Enterococcus faecium and 24 Enterococcus faecalis. All the isolates hydrolyzed bile.
Moreover, 88.2% of the isolates produced biofilm; however, 72.9% of the isolates produced gelatinase enzyme. Altogether, six isolates
(7%) produced all five virulence factors. The least virulence factor expressed by the two species E. faecium and E. faecalis was DNase
at 21.3% and 29.2% followed by cytolysin at 27.9% and 41.7%, respectively. Only 25 isolates (29.4%), including 23 E. faecium (37.7%) and
only 2 (8.3%) E. faecalis isolates, revealed bands with molecular identification. Additionally, VRE isolates showed bands for asa1 (16%);
only one isolate (4%) each isolate had the hyl gene and vanB gene, respectively.
Conclusions: The absence of vanA and low detection of vanB resistance genes suggest the possible presence of other van types
and emphasizes the need for further investigations on the incidence of other van genes using molecular screening methods in
enterococci isolates in Nigeria for surveillance purposes. Moreover, the low occurrence of virulence genes implies that there might
be other mediators of pathogenicity involved in Enterococcus virulence traits.
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1. Background

Enterococci represent a substantial part of the gut
flora and can exist under severe environmental conditions.
They are Gram-positive cocci, facultative anaerobes, impli-
cated in hospital-acquired infections superseded only by
staphylococci as a source of Gram-positive nosocomial in-
fections (1). Although more than 50 species have been re-
ported (2), Enterococcus faecium and Enterococcus faecalis
are the most clinically important multidrug-resistant in-
fectious pathogens worldwide (3).

Vancomycin-resistant Enterococcus (VRE) particularly
poses a major challenge to healthcare practitioners as
its management has been trying in the hospital setting.
The VRE infections have been reported to escalate cost
and mortality as opposed to vancomycin-sensitive strains.
Vancomycin-resistance in enterococci involves the modifi-

cation of the peptidoglycan synthesis pathway.
Vancomycin attaches to the D-ala-D-ala end of the pen-

tapeptide precursor, impeding the synthesis of the cell
wall by inhibiting the cross-link of peptidoglycan chains.
The VRE alters pentapeptide precursors, substituting the
terminal D-ala with D-lactate or rarely D-ser (4), which
now bind glycopeptides with significantly reduced affin-
ity than typical precursors. The altered D-alanyl-D-lactate
form causes loss of one hydrogen-bonding interaction and
an interaction lesser than for D-alanyl-D-alanine associa-
tion between vancomycin and the peptide, thereby con-
ferring high-level resistance (1); nevertheless, D-alanyl-D-
serine variation results in a six-fold affinity loss between
vancomycin and the peptide, probably from steric imped-
iment (5), conferring low-level vancomycin resistance (1).

Nine forms of vancomycin-resistance genotypes are ex-
pressed by enterococci, namely vanA to vanE, vanG, vanL,
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vanM, and vanN (1, 4, 6), with vanA and vanB of utmost clini-
cal importance (1). The vanA genotype, most common glob-
ally and linked with vancomycin-resistance in enterococci
in the hospital environment (1) confers resistance to van-
comycin and teicoplanin (7). Moreover, less frequently, the
vanB gene, mostly noticed in E. faecium, exhibits resistance
to vancomycin but susceptibility to teicoplanin (7).

Bacterial attachment to host tissues is a key phase
in the instigation of any infection process. Enterococci
species express diverse virulence factors, including ente-
rococcal surface protein (esp), aggregation substance (agg
and asa1), gelatinase (gelE), cytolysin (cylA), hyaluronidase
(hyl), pilA, pilB, ecbA, scm, fms8, efaAfs, efaAfm (adhesin-like
endocarditis antigen A encoded by E. faecalis and E. fae-
cium, respectively), and sgrA genes, which augment colo-
nization, subsequent binding, and invasion in the host (8-
10). Therefore, enterococci have numerous possibilities as
most of the virulence genes commonly harbored are asso-
ciated with adherence.

2. Objectives

Within Nigeria, there are reports of VRE recovery from
the clinical setting (11) and even from food samples (9).
However, documentation on the virulence of these organ-
isms remains inadequate in Nigeria. Therefore, this study
was performed to evaluate virulence factors and detect the
possible presence of virulence and resistance genes in VRE
from clinical samples from southwest Nigeria.

3. Methods

3.1. VRE from Participants

This study assessed 85 non-duplicate VRE isolates recov-
ered from the samples in three selected hospitals in south-
west Nigeria, namely State Specialist Hospital, Osogbo
(7.76958°N; 4.54999°E), State Hospital, Iwo (7.66686°N;
4.19926°E), and Oke-Baale Primary Health Centre, Osogbo
(7.76516°N; 4.578°E) (12) (Figure 1). Ethical approval was ob-
tained from the Ethical Review Board of State Specialist
Hospital, Osogbo (approval no.: HREC/SSHO/11/478).

The samples were aseptically inoculated into 10 mL
of sterile Tryptone Soy Broth (TSB) (Oxoid, UK) and
then streaked out on Slanetz and Bartley Agar. Pale-
pink/maroon colonies on Slanetz and Bartley Agar indi-
cates the growth of enterococci species. Overnight growth
from Slanetz and Bartley Agar plates were inoculated onto
Bile Aesculin Agar and Mannitol Salt Agar for the speciation
of enterococci into E. faecalis (yellow colonies on Mannitol
Salt Agar [MSA]) and E. faecium (no growth on MSA). Screen-
ing for vancomycin resistance was through inoculation on
Brain Heart Infusion Agar supplemented with 6 µg/mL of
vancomycin. Recovered isolates were preserved in TSB sup-
plemented with 15% glycerol, frozen, and stored at -20°C.

3.2. Screening for Virulence Determinants

3.2.1. Gelatinase Production
Overnight cultures of VRE isolates were stabbed 4 - 5

times 1/2 inch depth into freshly prepared nutrient-gelatin
medium and incubated at 37 ± 2°C for 48 h, along with
an un-inoculated tube. Afterward, the tubes were removed
without shaking or inversion, refrigerated, then gently in-
verted, and visually observed for gelatinase production as
indicated by partial or complete liquefaction of the test
media at 4°C. Control and gelatinase negative tubes re-
mained solid.

3.2.2. Hemolysin/Cytolysin Production
The VRE isolates were streaked on freshly-prepared

blood agar plates, incubated for 24 - 48 h at 37 ± 2°C, and
visually observed for the patterns of hemolysis. Hemolysin
production was scored asβ (complete),α (partial), orγ (no
clear zone) hemolysis indicated by clear/colorless zone,
greenish zone, and completes absence of hemolysis, re-
spectively.

3.2.3. Biofilm Production
The test isolate was inoculated on Congo Red Agar. The

production of black colonies with a dry crystalline con-
sistency indicated biofilm production; nonetheless, non-
biofilm producers developed red colonies.

3.2.4. DNase Production
Overnight cultures of test isolates were inoculated

onto DNase Agar and then incubated at 37±2°C for 18 - 24 h.
The plates were then flooded with 1N HCl for a few minutes,
excess HCl tipped off, and the plates were observed within
5 min against a dark background for clear zones surround-
ing the line of the streak, indicative of DNase production.

3.2.5. Caseinase Production
Test isolates were inoculated onto Mueller-Hinton Agar

supplemented with 3% skimmed milk and then incubated
at 37±2°C overnight. The development of clear proteolytic
zones around the line of the streak was indicative of ca-
seinase production.

3.3. Molecular Characterization of Selected Bacterial Isolates

3.3.1. Extraction of Chromosomal DNA
Deoxyribonucleic acid (DNA) was extracted from VRE

isolates by thermal lysis of the cell. A 1 mL aliquot of an
overnight culture of VRE was centrifuged at 5,000 rpm for
10 min, and the supernatants were discarded. The pellets
were re-suspended in 500 µL of sterile DNA/DNase/RNase
free water, vortexed, centrifuged at 5,000 rpm for 1 min,
and then re-suspended in 200 µL of sterile water. The sus-
pension was boiled in a water bath at 100°C for 10 min
with lids closed, lysates cooled to room temperature, and
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Figure 1. Map of the study areas

then centrifuged at 10,000 rpm for 10 min. The purity
and concentration of the extracted DNA in the supernatant
were estimated using NanoDrop One spectrophotometer
(Thermo Fisher Scientific, United States) at 260 nm and
stored at -20°C in sterile Eppendorf tubes to serve as DNA
templates for subsequent molecular characterization.

3.3.2. Identification of Bacterial Isolates and Detection of Target
Genes

The DNA templates were subjected to a polymerase
chain reaction (PCR) using species-specific primers for ddlE
genes (Inqaba Biotec, South Africa) to confirm the bio-
chemical identification of the vancomycin-resistant E. fae-
cium and E. faecalis isolates (13). Virulence genes were de-
tected using four multiplex PCR reactions only in isolates
confirmed genotypically as VRE faecium and faecalis. Viru-
lence genes, namely asa1, gelE, cylA, esp, and hyl, were am-
plified in one reaction (14); however, pilA-pilB-efaAfm, fms8-
sgrA, and ecbA-scm were run in three other reactions. The
resistance genes vanA and vanB were also screened for us-
ing Multiplex PCR (Table 1). Amplification was carried out
using the Master Cycler Nexus Gradient 230 (Eppendorf,
Germany) (Table 2) in a total volume of 25 µL solution
containing 12.5 µL of 2× Master-Mix (Biolabs, England),
0.5 µL of 10 µM each of forward and reverse primers (In-
qaba Biotec, South Africa), and 5 µL of each DNA template
made up to 25µL with DNAse/RNAse free sterile water (Bio-
Concept, New Hampshire, United States).

Each amplicon (10 µL) was run on 1.0% agarose gel
stained with SafeView Classic at 80 V for 60 min for iso-
late identification and resistance gene detection and at 100
V for 60 min for detection of virulence genes. The gels
were visualized with the UV trans-illuminator E-BOX-CX5 TS
imaging system (Vilber, France). Moreover, the 100 bp DNA
Ladder (Biolabs, England) served as DNA molecular weight

standard. E. faecalis ATCC 51299 and E. faecalis MMH594
were the positive control strains.

3.3.3. Plasmid Profile Analyses
Plasmid DNA from VRE isolates was extracted using

Plasmid Miniprep Kit (ZymoPURE, California), and the
eluted plasmid DNA was stored at ≤ -20°C. The vanA and
vanB genes were screened with Multiplex PCR in a total vol-
ume of 25 µL reaction and observed as described above.

4. Results

4.1. Screening for Virulence Determinants

All 85 VRE isolates (100%) were observed to be catalase-
negative, and all grew in the presence of 40% bile; how-
ever, 84 VRE isolates (98.8%) hydrolyzed aesculin. Only 27
VRE isolates (31.8%) could produce cytolysin on blood agar.
The biofilm producers were 75 VRE isolates (88.2%). Further-
more, 72.9% of VRE isolates produced a gelatinase enzyme;
nevertheless, only 20 VRE isolates (23.5%) produced DNase
(Figure 2). Six isolates (7.0%) produced all five virulence fac-
tors. Only two isolates (2.4%) produced no virulence factor,
as all the others produced two virulence factors or more.
Biofilm was the most expressed factor at 88.5% and 87.5%
for E. faecium and E. faecalis, respectively; nonetheless, the
least virulence factor was DNase at 21.3% and 29.2% for E. fae-
cium and E. faecalis, respectively (Figure 3).

4.2. Molecular Characterization

Only 25 isolates (29.4%) revealed bands for the identi-
fication with ddlE primers. In addition, 23 isolates (92.0%)
were E. faecium; however, two isolates (8.0%) were E. faecalis.
Using phenotypic identification, 23 out of 61 isolates phe-
notypically identified as E. faecium (37.7%) revealed bands
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Table 1. Primer Sequences for Vancomycin-Resistant Enterococci Identification and Characterization

Target Genes Primers Sequence (5’ - 3’) Band Size (bp) References

Identification: E. faecium and E. faecalis

ddlE faecium 658 (11)

F TTGAGGCAGACCAGATTGACG

R TATGACAGCGACTCCGATTCC

ddlE faecalis 941 (11)

F ATCAAGTACAGTTAGTCTTTATTAG

R ACGATTCAAAGCTAACTGAATCAGT

Vancomycin-Resistant Gene

van A 732 (11)

F GGGAAAACGACAATTGCC

R GTACAATGCGGCCGTTA

van B 635 (11)

F ATGGGAAGCCGATAGTC

R GATTTCGTTCCTCGACC

Virulence Genes

asa1 375 (12)

ASA11 GCACGCTATTACGAACTATGA

ASA12 TAAGAAAGAACATCACCACGA

gelE 213 (12)

GEL11 TATGACAATGCTTTTTGGGAT

GEL12 AGATGCACCCGAAATAATATA

cylA 688 (12)

CYT I ACTCGGGGATTGATAGGC

CYT IIb GCTGCTAAAGCTGCGCTT

esp 510 (12)

ESP14F AGATTTCATCTTTGATTCTTGG

ESP12R AATTGATTCTTTAGCATCTGG

hyl 276 (12)

HYL1 ACAGAAGAGCTGCAGGAAATG

HYL2 GACTGACGTCCAAGTTTCCAA

pilA 459 (6)

F AAAACGCCACCAGAGAAGGT

R CATTGGCGCAATCACAACCA

pilB 959 (6)

F GATACCCAGCTGACGGCTTT

R GGTACTGCCGAAAACGAAGC

fms8 765 (6)

F AGACGAGCAGATGAACAGCC

R CCCGTCAATCGTCGTACTGT

EfaAfm 199 (6)

F AAAAGGCAAGCGACGCAGAT

R AGGTCTAGCCAAGCATGAGG

sgrA 150 (6)

F CTGATCGGATTGTTTATGA

R AATAAACTTCCCCAATAACTT

ecbA 182 (6)

F GGAGTGAGGCTTTTAAACCAGA

R GGAAACAGGGTACTTTG

scm 1015 (6)

F GTTTACTAGTCCTAGTTGC

R TCTGTACTGTCGCTTGTGTC
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Table 2. Polymerase Chain Reaction Protocols for Molecular Characterization of Vancomycin-Resistant Enterococci

Target Gene
Initial

Denaturation
No. of Cycles

Temperature (°C), Time
Final Extension

Denaturation Annealing Extension

ddlE faecium; ddlE faecalis 95°C, 5 min 30 95°C, 30 s 53°C, 30 s 72°C, 60 s 72°C, 10 min

vanA-vanB 94°C, 3 min 30 94°C, 60 s 54°C, 60 s 72°C, 60 s 72°C, 7 min

asa1-gelE-cylA-esp-hyl 95°C, 15 min 30 94°C, 60 s 56°C, 60 s 72°C, 60 s 72°C, 10 min

pilA-pilB-efaAfm 95°C, 2 min 35 95°C, 20 s 58°C, 10 s 72°C, 20 s 72°C, 5 min

fms8-sgrA 95°C, 2 min 35 95°C, 20 s 58°C, 10 s 72°C, 20 s 72°C, 5 min

ecbA-scm 95°C, 2 min 35 95°C, 20 s 58°C, 10 s 72°C, 20 s 72°C, 5 min
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Figure 2. Frequency of occurrence of virulence factors

for E. faecium identification; nevertheless, only 2 out of
24 isolates phenotypically identified as E. faecalis (8.3%) re-
vealed bands for E. faecalis identification (Figure 4). The
25 VRE isolates confirmed genotypically as E. faecium and
E. faecalis were selected for screening for virulence genes.
Five isolates (20%) revealed bands, including four isolates
for asa1 (16%) and only one isolate for hyl (4%). None of the
other 10 virulence genes were detected (Figure 5). Only one

isolate showed a band for the vanB gene at 635 bp; none of
them had the vanA gene.

5. Discussion

The virulence factors of enterococci play a major role
in the pathogenicity of enterococci and could be explained

Int J Infect. 2021; 8(4):e114143. 5
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Figure 3. Percentage of occurrence of virulence factors in E. faecium and E. faecalis

not only by the presence of virulence determinants; an-
tibiotic resistance genes play an important role in the
pathogenicity of enterococcal strains (15, 16). In-vivo and
on medical devices biofilm formation aids disease develop-
ment as it boosts the persistence of infections and reduces
antimicrobial activity (17). Biofilm production was 88.5%
and 87.5% in E. faecium and E. faecalis, respectively, corrobo-
rating an earlier study (18) where biofilm production was
86.6% among enterococci isolates. GelE, a foremost vir-
ulence determinant among biofilm producers (18), facili-
tates signals within the quorum sensing fsr system result-
ing in biofilm production (16); however, earlier studies pos-
tulate that no correlation is observed between gelatinase
and biofilm production in many E. faecalis isolates (19).

In this study, gelatinase production was higher in E.
faecium than E. faecalis, a finding at variance with another
report (20) with lower rates for both species but higher
production by E. faecalis than E. faecium. Numerous E. fae-
calis isolates in the current study (64.7%; 55/85) coproduced

biofilm and gelatinase. This may be adduced to environ-
mental and genetic factors, virulence, and the existence of
other mechanisms as these affect surface activity and inter-
cellular interactions (10).

A study reported no production of gelatinase in some
Enterococcus isolates, although gelE was detected (21). The
activation of gelE expression has been reported in the late
exponential growth phase at high cell concentrations, and
its intracellular expression can raise the severity of infec-
tions. Biofilm formation is independent of the presence
or lack of the esp gene (16, 18, 22); nevertheless, other au-
thors affirmed the positive relationship between the pres-
ence of esp (23) and asa1 gene with biofilm formation in en-
terococci as asa1 gene promotes the adherence of microor-
ganisms to surfaces (16, 18). However, no gelE or esp gene
was detected in all the isolates of the present study, and
only 4 out of 25 screened isolates had the asa1 gene, rein-
forcing the complexity of the processes involved in Entero-
coccus virulence.
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Figure 4. Identification of E. faecium and E. faecalis. Upper row: lane 1: 100 bp marker; lane 2: ddlE. faecium positive control; lanes 3, 5, and 6: E. faecium (658 bp); lane 12: E.
faecalis (941 bp); lower row: lane 1: 100 bp marker; lanes 2, 4, 13, 14, and 16: E. faecium (658 bp); lane 12: E. faecalis (941 bp)

Figure 5. Detection of asa1 and hyl Genes in E. faecium and E. faecalis. Upper row: lane 1: 100 bp marker; lane 6: asa1 (375 bp); lane 10: hyl (276 bp); lane 16: negative control; lower
row: lane 1: 100 bp marker; lanes 5, 9, and 11: asa1 (375 bp); lanes 14-15: negative control

Int J Infect. 2021; 8(4):e114143. 7
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Cytolysin facilitates infection by damaging cell mem-
branes (16, 20) and has been reported to enhance virulence
in animal models (16). Hemolysin and/or gelatinase aids
nutrient acquisition from host tissues and advances inva-
sion, thereby increasing the severity of human infections.
However, the failure to detect the cylA gene in the isolates
of the present study, in line with other studies (18), under-
scores the need for phenotypic and molecular screening
for virulence.

DNase production in this study was low for E. fae-
cium (21.3%) and E. faecalis (29.2%), respectively. DNase hy-
drolyzes nucleic acids, contributing to bacterial virulence,
although E. faecium is reported to be devoid of DNase ac-
tivity (24). Hyaluronidase, which was detected in only
4.0% of the isolates of this study, is encoded by chromoso-
mal hyl and degrades hyaluronate. Bacterial hyaluronidase
behaves as endo-N-acetylhexosaminidase, destroys β-1-4
linkage, consequently creating unsaturated disaccharides,
causing tissue damage (16).

Pathogenicity is related to the ability of virulent strains
to grow profusely in the intestinal tract and invade the
body. Host factors, such as underlying medical conditions,
immune status, and antibiotics exposure, are thought to
play a role in the pathogenicity of enterococci. Low recov-
ery of virulence genes in this study population suggests
strongly that virulence alone might not indicate infection,
as other mediators of pathogenicity could be left unex-
plained (25).

The present study detected the vanB gene in only one
isolate, but vanA in none. This result is substantiated by
a study where multi-resistance E. faecium strains had no
vancomycin-resistance genes, E. faecalis strains ST774 car-
ried the vanB gene, and ST133 had no acquired resistance
genes as confirmed by vancomycin susceptibility testing
(26), a finding at variance with other reports (27). In an-
other study, isolates screened as vanA and vanB phenotypes
were negative for both genes; nonetheless, they were pos-
itive for a fragment of the vanHM gene (28). Therefore, the
results of the current study suggest the presence of other
van genotypes the detection of which might be missed (28).
However, a major limitation of this study was the inabil-
ity to confirm the identification using molecular methods
and to screen all the enterococcal isolates for other viru-
lence genes due to limited resources.
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