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Abstract

Background: Listeria monocytogenes is the causal agent of listeriosis, a foodborne infection.
Objectives: Osthole has antibacterial properties, but its mechanisms of action is still unknown.
Materials and Methods: Two millimoles of osthole was inoculated in the broth culture of Listeria monocytogenes. To study the
mechanism of action, the ATP levels of cells were measured.
Results: Listeria monocytogenes was controlled using 2 mM of osthole. Treatment of L. monocytogenes by 2 mM osthole had no effect
on the ATP level.
Conclusions: Probable mechanism of suppression of energy generation is suppression of the rise in glucose.
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1. Background

Listeria monocytogenes is a species of bacteria, which
causes the infection listeriosis (1), responsible for an esti-
mated 1600 diseases and 260 deaths in the United States of
America (USA) (2).

Plants can be useful sources of antimicrobial agents.
Osthole (chemical formula shown in Figure 1) is isolated
from several medicinal plants such as Cnidium monnieri.
Osthole has antituberculous properties (3).

More than one mechanism can be involved in osthole
activity. However, a pertinence of mechanisms may be
discounted if the inhibition of energy generation occurs.
These are because cells which cannot generate energy are
unable to change their metabolism to adapt to the antimi-
crobial treatment.

2. Objectives

The aim of this study was to measure antibacterial ac-
tivities and mechanisms of action of osthole.

3. Materials andMethods

3.1. The Antimicrobial Agent and Culture Conditions of L. mono-
cytogenes

Osthole was supplied by Sigma-Aldrich. Listeria mono-
cytogenes was grown on brain heart infusion (BHI) agar.

3.2. Determination of Bactericidal Concentrations of the Ost-
hole

Concentrations of cultures were adjusted by dilution
with the TSB + YE. Bactericidal concentrations of the ost-
hole were determined as described by Shabala et al. (4).

3.3. Determination of ATP Level

The bacteria were grown to their growth phase as de-
scribed above. The ATP level was determined as described
by Shabala et al. (4).

3.4. ATP Analysis

ATP content of samples was measured by a light output
reaction (5) in that light output was amplified by the DEAE-
dextran (6).

3.5. Measurement of Protein Content

Protein content of cell suspensions was measured by
utilization a modified Lowry method.

4. Results

The experiment was carried out to measure the con-
centration of osthole required for the bactericidal activity
against L. monocytogenes. Bactericidal effects were defined
as a > 1-log depletion in the number of CFU in compari-
son with those of controls. Minimum concentration of the
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needed osthole for a bactericidal activity against L.monocy-
togenes was 2 mM (Figure 2).

The suppressive effect on ATP generation: When glu-
cose was supplied to L. monocytogenes cell in 25 mM HEPES,
the ATP level was altered compared to the level in controls
(Figure 3A). Incubation of L. monocytogenes with 2 mM ost-
hole inhibited the uptake of ATP (Figure 3A). Furthermore
2 mM of osthole had no effects on ATP level when the ener-
gized cell was treated (Figure 3B).

Figure 1. Chemical Formula of 7-Methoxy-8-Isopentenoxycoumarin

Figure 2. Effect of Osthole on Listeria monocytogenes in TSB ± YE at 20°C and pH 7.0

The data are the average of three experiments

(A) Cells were exposed to osthole at zero time, and
all treatments except the buffer treatment were energized
with 0.25% glucose for 5 minutes. (B) All treatments except
the buffer treatment were energized with 0.25% glucose at
zero time, and osthole was added at five minutes. The treat-
ments included buffer, glucose, osthole (2 mM) and CCCP
(10µM). The data are the average of three experiments, and
values, which are significantly different as determined by
the Student t test (P = 0.05), are indicated by different let-
ters.

5. Discussion

When applied to L. monocytogenes prior to glucose, it
was observed that osthole inhibited the uptake in ATP level,
which occurred in the controls. However, the osthole did
not cause ATP reduction from the cell energized by glucose
(7).

The current study findings are in contrast with the ion
transport model for activities suggested by Ultee et al. (8)
for the carvacrol. Carvacrol is bactericidal to Bacillus cereus
at concentrations of 1.5 to 2 mM (9). Addition of 0.15 mM of
carvacrol also disjoined membrane potential (10, 11). When
the effects of carvacrol on the growth of B. cereuswere com-
pared with the effects of the related molecule, it was found
which concentration of the molecules possessing the hy-
droxyl group were needed to the growth suppression (12).
It is hard to differentiate between membrane disruptions
and ion transport, and carvacrol is reported to uptake the
staining of Pseudomonas aeruginosa (1, 13).

The CCCP may be anticipated in reducing ATP pools to
preserve its normal pH; the bacteria utilize ATPase to ex-
port H+ (4, 14). The ATPase suppression is a real possibility
as Rico-Munoz et al. (15) demonstrated which propyl gal-
late could reduce the activity of ATPase of S. aureus.

The L. monocytogenes has two glucose systems (16-18). It
seems that osthole inactivates the transport mechanisms.
The membrane effects cannot be decreased, as Walsh et al.
(19) showed the potassium decline from E. coli treated with
the eugenol.

5.1. Conclusions

The obtained results indicated the suppression of en-
ergy metabolisms of L. monocytogenes when the cell is
treated with osthole.
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Figure 3. Cellular ATP Concentrations Expressed as Femtomoles Per Microgram of Protein From L. monocytogenes in 25 mM HEPES Buffer (pH 7.0) at 20°C
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