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Abstract

Background: Rotavirus-induced diarrhea (RD) could cause disorders in food protein and fat metabolism of infants the changes of
which have not been clearly revealed; however, relevant studies are limited.
Objectives: The aim was to investigate the changes of proteins, amino acids and fatty acids profiles in fecal samples of the infants
caused by RD.
Methods: A total of 30 fecal samples were collected from 15 RD infants and 15 healthy infants. The compositions of fecal pro-
teins, amino acids and fatty acids profiles in all fecal samples were analyzed using sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE), automatic amino acid analyzer and gas chromatography (GC), respectively.
Results: Compared to H infants, the feces in RD infants had lower contents of proteins with 50 - 55, 79 - 80, and 84 - 85 KDa, mean-
while higher contents of proteins with 67 - 69 KDa. The levels of aspartic acid, threonine, serine, glutamic acid, glycinc, alanine,
valine, methionine, isoleucine, leucine, lysine, phenylalanine, histidine, arginine, and proline in the feces from RD infants were sig-
nificantly lower than that of H infants (P < 0.05). The relative proportions of butyric acid, elaidic acid, linoleic acid, cis-11, 14-icotenic
acid, cis-11, 14, 17- epoxyeicosatrienoic acids, cis-13, 16-docosanoic acid, and cis-7, 10, 13, 16,19 docosapentaenoic acid in feces from RD
infants decreased significantly compared to those of H infants (P < 0.05). On the contrary, significant increases in the relative pro-
portions of caprylic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, myristoleic acid, palmitic acid,
cis-10-heptadecaenoic acid, oleic acid, and γ-linoleic acid were found in the; feces of RD infants (P < .05).
Conclusions: RD changed the proteins, amino acids, and fatty acids profiles in infants feces, which improved the understanding of
relationship between RD and fecal metabolites profile.
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1. Background

Rotavirus-induced diarrhea (RD) is the leading cause
of severe diarrhea in young children and infants (1). An
estimated 2.3 million hospitalizations and approximately
527000 deaths in children aged < 5 years are caused by ro-
tavirus annually worldwide (2). The diarrhea in human is
associated with the dysfunction of intestinal mucosal cell
absorption, resulting in the intestinal microecological im-
balance and changes in composition of fecal metabolites
(3, 4). Previous studies have revealed the changes in fecal
microbiota of infants and children infected with RD (5, 6).
However, reports on the differences in the fecal metabo-

lites profile between the RD infants and healthy (H) infants
are limited.

Among many fecal metabolites, the changes in fecal
amino acids (AAs) and fatty acids (FAs) contributed to re-
veal the relationship between intestinal diseases and fe-
cal metabolites profile (7, 8). On the one hand, fecal pro-
teins profile has been reported to be affected by intesti-
nal diseases, and the significant differences in composi-
tion of fecal proteins have been found in patients suffer-
ing from intestinal disease, such as a significant increase
of calprotectin and lactoferrin in feces of patients with in-
flammatory bowel disease (9, 10). Meanwhile, as an im-
portant metabolite of protein metabolism, a range of fecal
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AAs levels were up-regulated or down-regulated due to the
effects of intestinal diseases, which improved the under-
standing of changes in protein metabolism under the in-
fluence of intestinal diseases (11, 12). On the other hand, the
composition of fecal FAs containing short-chain fatty acids
(SCFAs), medium-chain fatty acids (MCFAs), and long-chain
fatty acids (LCFAs) have also been altered due to inflamma-
tion or diarrhea (13-15). Huda-Faujan et al. (13) revealed that
inflammatory bowel disease leads to the decrease of acetic
acid, butyric acid and propionic acid, and increase of lactic
and pyruvic acids in; feces. De et al. (14) found the levels of
fecal MCFs of patients with inflammatory bowel disease de-
creased significantly, such as pentanoate, hexanoate, hep-
tanoate, octanoate and nonanoate. Yoshioka et al. (15) re-
ported that intestinal secretion induced by cholera toxin
might delay the mucosal uptake and lymphatic transport
of LCFs, and the amount of linoleic acid transported into
the intestinal lymph was delayed and reduced in cholera
toxin-treated rats. Therefore, in order to understand fully
the pathological characteristics of RD infants, the changes
in compositions of fecal proteins, AAs and FAs between RD
infants and H infants should be elucidated.

In this study, fecal samples were collected from 15 RD
infants and 15 H infants. All infants were given equal
amounts of breast milk and complementary foods. The dif-
ferences in proteins, AAs, and FAs profiles in fecal samples
between RD infants and H infants were analyzed to deepen
the understanding of relationship between RD and fecal
metabolites profile.

2. Objectives

The thirty fecal samples used in this study were col-
lected at a period from November 2018 to February 2019,
among them, fifteen fecal samples were obtained from the
RD infants (mean age 6.8 months old; range 4 - 9 months
old; sex ratio 1:1), who were officially diagnosed as RD pa-
tients by the Harbin Children’s Hospital using specific en-
zyme immunoassay method (6). Other 15 fecal samples
were collected from the H infants ranging 4 to 9 months
old (mean 6.8 months; sex ratio 1:1) were provided by vol-
unteers in Harbin city. All infants were provided with the
same diet, including equal amounts of breast milk, fruit
puree, and rice flour. All fecal samples after collection
were transferred into sterile plastic tubes, immediately dis-
patched to the laboratory where the study was conducted,
and then stored at -80°C before use. In addition, this study
was approved by the local ethics committee, and “freely
given informed consent” was signed by parents of all in-
fants.

3. Methods

3.1. Composition Assays of Fecal Proteins

Approximately 100 mg fecal samples (wet weight) were
transferred to a sterilized centrifuge tube, followed by the
addition of trifluoracetic acid (0.15% v/v) of 200 µL and a
gently mixing. All samples were centrifuged at 13,000 rpm
for 5 min at 4°C using a refrigerating centrifuge (Heraeus,
Hanau, Germany) to obtain fecal supernatants (16). The su-
pernatants of 10µL were heated at 95°C for 10 min, and ana-
lyzed with Sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) using 5% stacking gel and 12% sepa-
rating gel respectively and the Coomassie brilliant blue R-
250C staining (17). The gels were scanned with an HP scan-
ner (HP 1000, USA) to obtain corresponding images of pro-
tein bands. After that, the fecal protein feature was ana-
lyzed using a relative ratio analysis with Scion image PC
software (Scion Co, Frederisk, USA) (18).

3.2. Assays of Fecal Amino Acids Profile

Fecal samples of 1 g (wet weight) were weighed and
transferred to a hydrolysis tube. 6 mol/L HCl of 13 mL and 3
drops of phenol were added to the fecal samples followed
by a vacuum treatment with 99.99% nitrogen. The hydrol-
ysis tube was kept at 110°C for 22 h in a thermoelectric
thermostat drying box to obtain the fecal hydrolysate. Af-
ter filtration, fecal hydrolysate of 1 mL was dried with vac-
uum condition at 45°C, and then dissolved in 1mL of cit-
rate buffer (pH 2.2). Finally, the types and contents of fe-
cal AAs were determined with external standard method
using an automatic amino acid analyzer (Hitachi, L-8900,
Tokyo, Japan) (19).

3.3. Assays of Fecal Fatty Acids Profile

Approximately 100 mg (wet weight) fecal samples
weighed and etherified with boron fluoride methanol
methyl esterification method reported by Lópezlópez et al.
(20). The supernatant containing methyl FAs was analyzed
by high performance gas chromatography (HPGC) using
Agilent 7890A gas chromatograph (Palo Alto, USA) to deter-
mine the relative amount of FAs in; feces.

3.4. Statistical Analysis

Each trial was independently carried out in triplicate.
The data were analyzed by two-tailed Student’s t-test to
compare two groups using SPSS 20.0 software (SPSS, Inc.,
Chicago, IL, USA). The data were expressed as mean values
± standard deviations. The level of statistical significance
was set at ≤ 0.05 for all analyses.
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4. Results

The gel bands representing fecal proteins from RD in-
fants and fifteen H infants are presented according to SDS-
PAGE results (Figure 1). Using a relative ratio analysis by
Scion image PC software, the relative proportion of each
band was determined according to its brightness (Table
1). The results showed that all bands were divided into 17
groups based on the molecular weight of proteins, among
them, significant differences (P < 0.05) in relative propor-
tions of fecal proteins were found in four groups, includ-
ing 50 - 55 KDa, 67 - 69 KDa, 79 - 80 KDa, and 84 - 85 KDa. In
addition, compared to H infants, the relative proportions
of fecal proteins with 50 - 55 KDa, 79 - 80 KDa, and 84 - 85 KDa
from RD infants decreased significantly (P < 0.05), mean-
while, the relative proportion of fecal proteins with 67 - 69
KDa increased significantly (P < 0.05).

Almost all sort of amino acids of infants; feces from
RD and H samples were also assayed (Table 2). The re-
sults showed that RD infants; feces were detected to have
decreased levels of the AAs (aspartic acid, threonine, ser-
ine, glutamic acid, glycinc, alanine, valine, methionine,
isoleucine, leucine, lysine, phenylalanine, histidine, argi-

Table 1. Differences in Composition of Fecal Proteins Between RD Infants and H In-
fants a

Protein Molecular
Weight (KDa)

Relative Proportion (%)

RD Group H Group

150 - 160 12.09 ± 2.45A 14.23 ± 3.83A

140 - 150 7.07 ± 4.27A 5.03 ± 2.15A

84 - 85 10.88 ± 5.38A 0B

79 - 80 7.70 ± 4.33A 1.47 ± 0.25B

67 - 69 0A 8.25 ± 2.05B

58 - 66 19.51 ± 5.72A 11.67 ± 7.77A

50 - 55 6.55 ± 1.77A 0B

43 - 44 6.20 ± 1.21A 8.42 ± 2.12A

42 - 43 11.46 ± 2.05A 7.68 ± 1.34A

39 - 41 17.19 ± 6.93A 16.42 ± 4.46A

37 - 39 10.02 ± 4.87A 10.21 ± 4.00A

35 - 37 6.55 ± 2.03A 5.16 ± 1.64A

33 - 35 6.60 ± 1.76A 9.76 ± 2.65A

30 - 31 8.75 ± 6.92A 6.23 ± 3.82A

22 - 26 22.60 ± 11.11A 29.12 ± 11.94A

19 - 20 14.35 ± 9.41A 10.57 ± 4.34A

14 - 16 10.48 ± 5.60A 12.7 5± 0.30A

aSuperscripts with different capital letters within the same row are signifi-
cantly different (P < 0.05).

Table 2. Differences in Levels of Fecal Amino Acids Between RD Infants and H Infants
a

Amino Acid Ingredient
Levels (mg/100 mg)

RD Group H Group

Aspartic acid 0.288 ± 0.158A 0.561 ± 0.190B

Threonine 0.244 ± 0.119A 0.463 ± 0.174B

Serine 0.208 ± 0.117A 0.374 ± 0.133B

Glutamic acid 0.457 ± 0.261A 0.766 ± 0.260B

Glycinc 0.149 ± 0.085A 0.275 ± 0.098B

Alanine 0.194 ± 0.106A 0.380 ± 0.116B

Cystine 0.147 ± 0.057A 0.189 ± 0.063A

Valine 0.271 ± 0.111A 0.430 ± 0.108B

Methionine 0.224 ± 0.134A 0.440 ± 0.242B

Isoleucine 0.131 ± 0.076A 0.223 ± 0.079B

Leucine 0.244 ± 0.137A 0.421 ± 0.155B

Tyrosine 0.097 ± 0.420A 0.137 ± 0.077A

Phenylalanine 0.179 ± 0.077A 0.258 ± 0.082B

Lysine 0.218 ± 0.169A 0.354 ± 0.175B

Histidine 0.087 ± 0.041A 0.126 ± 0.047B

Arginine 0.118 ± 0.073A 0.254 ± 0.096B

Proline 0.171 ± 0.078A 0.288 ± 0.136B

Isoleucine 0.131 ± 0.076A 0.223 ± 0.079B

Leucine 0.244 ± 0.137A 0.421 ± 0.155B

aSuperscripts with different capital letters within the same row are signifi-
cantly different (P < 0.05).

nine, and proline) when compared to healthy subjects; fe-
ces (P < 0.05).

The compositions of fecal FAs of RD infants and H in-
fants were analyzed. Compared to H infants, the relative
proportions of butyric acid (C4:0), elaidic acid (C18:1N9T),
linoleic acid (C18:2N6C), cis-11, 14-icotenic acid (C22:0), cis-
11, 14, 17- epoxyeicosatrienoic acid (C20:3N3), cis-13, 16-
docosanoic acid (C22:2), and cis-7, 10, 13, 16,19 docosapen-
taenoic acid (C20:5N3) in; feces from RD infants decreased
significantly (P < 0.05). The significant increases in the
relative proportions of caprylic acid (C8:0), decanoic acid
(C10:0), undecanoic acid (C11:0), lauric acid (C12:0), tride-
canoic acid (C13:0), myristic acid (C14:0), myristoleic acid
(C14:0), palmitic acid (C16:0), cis-10-heptadecaenoic acid
(C17:1), oleic acid (C18:1N9C), and γ-linoleic acid (C18:3N6)
were found in the; feces collected from RD infants (P <
0.05) (Table 3).
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Figure 1. SDS-PAGE analysis of fecal proteins of 30 infants. (A) Lane M: marker, Lanes 1 - 15: RD infants (B) Lane M: marker, Lanes 1 - 15: H infants.

5. Discussion

Protein metabolism could be affected by the intesti-
nal mucosal damage caused by microbial dysbiosis, diar-
rhea and other intestinal deseases, leading to the changes
in composition of proteins in feces (16, 21). Among them,
alpha-1-antitrypsin in human milk could withstand the
breakdown of digestive juices, and help the survival of
other proteins especially during bacterial diarrhea (22).
Increased fecal lactoferrin can be a significant indicator
for monitoring intestinal inflammation in children with
non-virus diarrhea (23). In addition, serum albumin was
identified as a marker in the colorectal cancer, meanwhile,
polymeric-immunoglobulin receptor could not protect ro-
tavirus from expanding in the gut (16, 24). Similarly, af-
ter infants suffered from RD, the relative proportions of
fecal proteins with 50-55 KDa, 79-80 KDa, and 84 - 85 KDa
decreased significantly (P < 0.05), meanwhile, the relative
proportion of fecal proteins with 67 - 69 KDa increased sig-
nificantly (P < 0.05). Given that all fecal proteins from in-
fants in the study were derived from breast milk, it was
reasonable to infer these differential proteins should cor-
respond to polymeric immunoglobulin receptor (84 KDa),
lactoferrin (80 KDa), serum albumin (69 KDa) and alpha-1-
antitrypsin (53 KDa) according to the molecular weight of
the proteins (10, 22, 25, 26). However, a deeper and more
comprehensive study on the relationship between differ-
ential proteins and rotavirus infection is still needed in fu-
ture.

As the structural units for proteins and polypeptide,
AAs were participated in synthesis of bioactive molecules
which played the key role in the regulation of signaling

pathways and metabolism (27). AAs metabolism in com-
plex gut environment provides a strategy for bacteria sur-
vival and growth with both positive and negative effects
on host (28). For example, Marchesi et al reported the AAs
degradation of inflammatory bowel disease (IBD) patients
were promoted due to an impairment of the metabolic ac-
tivity of the gut bacteria (29), meanwhile, De et al found
a higher AAs level in the; feces of IBD patients, and con-
sidered it was because that inflammatory conditions in-
duce large energy requirements to repair the damaged
mucosa leading to enhanced protein catabolism (30). Be-
sides, Bjerrum et al revealed that the levels of aspartic acid
and glutamate in fecal extracts from inactive Crohn’s dis-
ease (CD) patients were significantly reduced compared
with those of healthy samples (11). Our results showed
that there were significant decreases in AAs levels in; fe-
ces of RD infants, including aspartic acid, threonine, ser-
ine, glutamic acid, glycinc, alanine, valine, methionine,
isoleucine, leucine, phenylalanine, lysine, histidine, argi-
nine, and proline, which suggested a reduced level of AAs
in; feces linked to the diarrhea induced by rotavirus defec-
tion.

In previous studies, as the significant metabolite of in-
testinal microbiota, the changes in levels of SCFAs in; fe-
ces of diarrhea patients have been a focus of research (31,
32). However, intestinal diseases can not only change the
diversity of intestinal microbiota, but also cause intestinal
metabolic disorders. Therefore, it is necessary to conduct a
comprehensive analysis on the differences in fecal FAs pro-
file consisting of SCFAs, MCFAs and LCFAs between RD in-
fants and H infants.

Butyric acid was considered as one of the most im-

4 Iran J Pediatr. 2021; 31(1):e100031.



Fei P et al.

Table 3. Differences in Composition of Fecal Fatty Acids Between RD Infants and H Infants a

Fatty Acid Ingredient
Relative Proportion (%)

RD Group H Group

Butyric acid (C4:0) 6.322 ± 1.101A 9.241 ± 1.950B

Caprylic acid (C8:0) 0.753 ± 0.106A 0B

Decanoic acid (C10:0) 0.691 ± 0.150A 0.244 ± 0.118B

Undecanoic acid (C11:0) 0.380 ± 0.084A 0B

Lauric acid (C12:0) 6.431 ± 1.701A 1.336 ± 0.142B

Tridecanoic acid (C13:0) 0.340 ± 0.106A 0B

Myristic acid (C14:0) 11.862 ± 7.845A 3.783 ± 0.674B

Myristoleic acid (C14:1) 0.331 ± 0.177A 0B

Pentadecanoic acid (C15:0) 0.837 ± 0.310A 0.893 ± 0.327A

Palmitic acid (C16:0) 32.727 ± 3.219A 19.596 ± 3.150B

Palmitoleic acid C (16:1) 1.293 ± 0.504A 1.191 ± 0.555A

Heptadecanoic acid (C17:0) 1.255 ± 0.971A 1.739 ± 0.686A

Cis-10-heptadecaenoic acid (C17:1) 0.355 ± 0.313A 0B

Stearic acid (C18:0) 23.598 ± 5.804A 20.369 ± 5.954A

Elaidic acid (C18:1N9T) 0.228 ± 0.067A 7.63 ± 2.076B

Oleic acid (C18:1N9C) 21.468 ± 5.080A 11.977 ± 4.783B

Linoleic acid (C18:2N6C) 14.45 ± 9.581A 29.798 ± 22.075B

Arachidic acid (C20:0) 1.612 ± 0.487A 1.114 ± 0.279A

γ-linoleic acid (C18:3N6) 0.058 ± 0.031A 0B

Cis-11-ethylenic acid (C20:1) 1.527 ± 0.441A 1.249 ± 0.998A

α-linoleic acid (C18:3N3) 1.592 ± 0.322A 1.348 ± 0.752A

Heneicosanoic acid (C21:0) 0.321 ± 0.105A 0.338 ± 0.205A

Cis-11,14-icotenic acid (C20:2) 0.658 ± 0.251A 3.023 ± 0.929B

Behenic acid (C22:0 1.034 ± 0.872A 0.955 ± 0.273A

Cis-8,11,14-epoxyeicosatrienoic acids (C23:6) 0.437 ± 0.396A 0.598 ± 0.386A

Erucic acid (C22:1N9) 0.511 ± 0.171A 0.956 ± 0.333A

Cis-11,14,17-epoxyeicosatrienoic acids (C20:3N3) 0A 0.602 ± 0.367B

Arachidonic acid (C20:4N6) 2.235 ± 2.013A 3.177 ± 0.884A

Cis-13, 16- docosanoic acid (C22:2) 0A 2.294 ± 0.798B

Lignoceric acid (C24:0) 0.625 ± 0.473A 1.06 ± 0.055A

Cis-7,10,13,16,19-docosapentaenoic acid (C20:5N3) 0A 7.068 ± 4.510B

Nervonic acid C24:1 0.362 ± 0.220A 0.454 ± 0.362A

Cis-4,7,10,13,16,19-docosahexaenoic acid (C22:6N3) 0.918 ± 0.881A 1.041 ± 0.506A

aSuperscripts with different capital letters within the same row are significantly different (P < 0.05).

portant SCFAs associated with human health, and could
be produced by metabolism of intestinal microorgan-
isms; therefore, the differences in biodiversity of fecal
microbiota can explain the possible reason for butyric
acid alteration of patients with intestinal diseases (33).

Some researchers suggested that the lower levels of bu-
tyrate and propionate in; feces of CD and ulcerative col-
itis (UC) diarrhea patients should be the consequence of
an inflammation-driven intestinal dysbiosis (11). Further,
De et al found the depletion of butyric acid in feces of
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IBD patients was linked to a shift in the composition and
metabolic activity of colonic microbiota (30). In this study,
the level of butyric acid in; feces of infants decreased signif-
icantly after infection with rotavirus, which was similar to
the study reported by Canani et al. who found a significant
reduction in the concentration of fecal butyric acid of pa-
tients with intestinal diseases (34). However, in our previ-
ous report, we detected formic acid, acetic acid, propionic
acid and butyric acid in the feces of RD and H infants who
were between 0 and 6 months old, among them, acetic acid
was the dominant SCFA (35), while, in current study, only
butyric acid was detected in the feces of RD and H infants
who were between 4 and 9 months old. In addition, there
was no significant difference in the levels of these five SC-
FAs in the feces between 0-6-month-old infants with and
without RD (35), on the contrary, the level of butyric acid
in RD infants was significantly reduced compared to H in-
fants in this study. Since the infants in the two studies had
the same diet, the difference in SCFAs should be due to the
age, in particular, the intestinal flora of infants younger
than 1 year old is a dynamic colonization, which suggests
that a more detailed age division should be made in the
clinical analysis of RD infants in order to implement spe-
cific treatment measures for patients of different ages.

In prior study, MCFAs were found to be significantly
reduced in the; feces of patients with CD, UC and pou-
chitis, and were used as a class of metabolic biomarkers
of disease-related changes (36). Garner et al also found a
lower prevalence of some MCFs in patients with UC than
that in asymptomatic individuals (37). Similarly, in this
study, the significant decreases in relative proportions
of MCFAs and LCFAs, such as C18:1N9T, C18:2N6C, C22:0,
C20:3N3, C22:2, and C20:5N3 in; feces from RD infants were
found in; feces of RD infants. Furthermore, the relative
proportions of C8:0, C10:0, C11:0, C12:0, C13:0, C14:1, C14:0,
C16:0, C17:1, C18:1N9C, and C18:3N6 were increased in the; fe-
ces from RD infants, which indicated that RD may affect the
absorption of the above fatty acids. Thus, in addition to
SCFAs, the metabolic profiles of MCFAs and LCFAs should
also be analyzed as an important prospective longitudinal
study.

In summary, we provided a comprehensive analysis
to illustrate the effects of RD on protein, AAs and fat
metabolism. The data of this study revealed the differ-
ences in compositions of fecal proteins, AAs and FAs (SCFAs,
MCFs, and LCFs) between RD infants and H infants. These
findings revealed the pathological characteristics of RD in
infants, and expanded the understanding on relationship
between RD and fecal metabolites profile.
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