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Abstract

Background: Glucocorticoid (GC) is a fundamental drug used to treat asthma. GC binds to its corresponding receptor (GR) to
formulate a complex that increases the production of anti-inflammatory factors and decreases the amount of pro-inflammatory
mediators, covering many cytokines. GR is a nuclear receptor superfamily protein, encoded by NR3C1 gene. Studies suggest that
polymorphisms of the NR3C1 gene contribute to a decreased response to GC for the treatment of asthma, even leading to drug-
resistance. Also, TGF-β1 plays a central role in airway remodeling, GC significantly inhibits the production of TGF-β1, and TGF-β1 can
induce GC resistance. Thus, it is possible that the polymorphisms of the NR3C1 gene can affect the expression of TGF-β1 mRNA and
tissue remodeling.
Objectives: This study evaluates the effect of polymorphisms (TthIII1, BclI, ER22/23EK, and N363S) of the NR3C1 GR gene on TGF-β1
mRNA expression in children with asthma.
Methods: The samples of this study included 52 outpatients (age range: 6 - 14 years) with asthma referred to Huai’an First People’s
Hospital, Nanjing Medical University, from January 2018 to June 2019. Meanwhile, 40 healthy volunteers were included as the control
group.
Results: The polymorphisms of the NR3C1 GR gene were identified using polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP), and TGF-β1 mRNA levels were measured by real-time reverse transcription (RT)-PCR. TthIII1 and TGF-β1
mRNA expression levels had significant (P = 0.011) correlations. But BclI showed no e effect on TGF-β 1 mRNA, N363S, and ER22/23EK
had not been examined.
Conclusions: According to the results, there was a relationship between single nucleotide polymorphisms (SNPs) of the NR3C1 gene
and TGF-β1 mRNA in asthmatic children. TthIII1 CC and CT genotype have the strongest induction effect on the expression of TGF-1.
The phenomenon suggests that SNPs may be involved in the asthma pathology.
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1. Background

Asthma is one of the most common diseases among
children with a global prevalence of about 14% and an in-
creasing incidence worldwide (1, 2). It is a disease with
heterogeneity and complexity originating from an inter-
play of gene and environment, persisting and recurring
inflammation of the respiratory tract, leading to tissue re-
modeling and impairing the lung function (3). The patho-
logic mechanisms of asthma are not completely known
yet. Many polymorphisms and cytokines take part in the
pathogenesis of inflammation in asthma, such as TGF-β,
interleukins (IL-2, IL-4, IL-5, IL-9, IL-6, IL-10, IL-12, IL-13, and
IL-17, IL-22, IL-25, IL-33, etc.) (4, 5). TGF-β has played an im-
portant role in growth, differentiation, cell migration, for-

mation, and degradation of extracellular matrix compo-
nents, chemotaxis courses, remodeling, and cell apopto-
sis in the bronchi. Experimental studies have shown that
adenoviral mediated transgenic TGF-β1 in the rodent lung
induced serious pulmonary fibrosis and caused the sedi-
mentation of extracellular matrix (6). TGF-β is a multifunc-
tional cytokine, which has both pro-inflammatory and
anti-inflammatory effects on airway inflammation and im-
mune response in asthma, and its fibrotic effect has an im-
portant role in airway remodeling in asthma (7, 8).

Glucocorticoid (GC) is widely used to treat many
chronic conditions, such as asthma, skin diseases, Crohn’s
disease, rheumatoid arthritis, and immune rejection af-
ter organ transplantation (9, 10). GC binds to its corre-
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sponding glucocorticoid receptor (GR) to form the GC-GR
complex, that subsequently up-regulates the expression of
anti-inflammatory proteins and cytokines (i.e., lipocortin-
1, IKB, MKP1, IL-10, IL-12, and IL-1 receptor antagonist) in the
nucleus; meanwhile, it suppresses the expression of pro-
inflammatory proteins in the cytoplasm (i.e., IL-2, IL-3, IL-
4, IL-5, IL-6, TNF-α, IFN-γ, endothelin-1, and phospholipase
A2).

GR is a nuclear receptor superfamily protein, encoded
by NR3C1 gene. Studies suggest that mutations and poly-
morphisms of the NR3C1 gene contribute to a decreased
response to GC for the treatment of asthma, leading to
drug-resistance (11, 12). Four restriction fragment length
polymorphisms (RFLP) (TthIII1, BclI, ER22/23EK, and N363S)
may be involved in the pathogenesis of this phenomenon,
given their role in the pathology of other diseases, such
as metabolic syndrome, autoimmune diseases, and car-
diovascular disease (13): TthIII1 coupled with ER22/23EK, is
implicated in resistance to GC (11, 14); BclI couples with
other two single nucleotide polymorphisms (SNPs, intron
33389 and intron 33388) to increase sensitivity to GC (15, 16);
ER22/23EK deceased GC sensitivity (11, 17); the N363S influ-
ences the phosphorylation of GR that introduces the struc-
tural changes of GR and functional changes of AF1; it is
also characterized by increased gene encoding for protein
syntheses in response of cells to GC action (17, 18). Over
the years, SNPs with altered response to GC therapy have
been reported (18-20). TGF-β1 induces the proliferation and
chemoattraction of fibroblasts, which results in airway re-
modeling. It also induces fibroblast to differentiate into
myofibroblasts, promoting the production of ECM pro-
teins, fibronectin, and collagen, which finally contributes
to the contraction of the ECM (21). GC significantly inhibits
the production of TGF-β1 by altering the expression of TGF-
β1 mRNA (22, 23), and TGF-β1 induces GC resistance (24).
These results imply that SNPs may be associated with TGF-
β1, which may illuminate the potential pathological mech-
anism of children with asthma.

Therefore, we hypothesize that these polymorphisms
contribute to the heterogeneity of treatment response
given their role in mediating TGF-β1 and GC signaling.

2. Methods

2.1. Subjects

The samples of this study included 52 outpatients
(age range: 6 - 14 years) with asthma referred to Huai’an
First People’s Hospital, Nanjing Medical University from
January 2018 to June 2019. Meanwhile, 40 age-matched
healthy volunteers were included as the control group. All

the recruited children conformed to the diagnostic guide-
lines of childhood asthma developed by the national coop-
erative group on Child Prevention and Treatment in 2016
(25) and The Global Initiative for Asthma (GINA) (2). There
were 32 mild, 17 moderate, and three severe cases of asth-
matic children who had been diagnosed for 2 - 3 years.
The patients had not received any allergen specific im-
munotherapy, and they had three or more asthma attacks
per year; onset was exacerbated at night or early morning.
Of the 52 children, 32 were males, and 20 were females.
All enrolled children were screened for allergens (sero-
logical allergen detection), including 10 non-sensitized,
16 mono-sensitized, and 26 multi-sensitized patients; the
total serum of IgE of the allergic patients was above 0.2
IU/L. Meanwhile, 40 healthy children (25 males vs. 15 fe-
males) with an age range of 6 - 14 years were recruited
and underwent a physical examination. The subjects were
included if their immediate relatives across three gener-
ations did not have a history of asthma and other lung
diseases, such as chronic obstructive pulmonary disease
(COPD) and pulmonary fibrosis. There was no history of
diabetes, nephritic syndrome, systemic lupus erythemato-
sus (SLE), and psoriasis. Additionally, there was no history
of long time use of GC and ephedrine treatment. The study
was approved by the ethics committee of Huai’an First Peo-
ple’s Hospital, Nanjing Medical University (Ethical Code:
YX-P-2020-002-01). All children or their guardians signed
an informed consent.

2.2. Specimen Collection and DNA Extraction

Following the ethical considerations, 200 UL EDTA an-
ticoagulant peripheral fasting blood was collected from
both experimental and control groups. The QIAmp DNA
Blood Mini Kit (QIAGEN, Germany) was used to extract
DNA following manufacturer’s instructions (spin proto-
col). DNA samples were stored at -20°C.

2.3. Genotyping of TthIII1, BclI, ER22/23EK, N363S: PCR-RFLP
Method

The genotyping of TthIII1, BclI, ER22/23EK, and N363S
was carried out using primers sequence as previously de-
scribed (14, 26). The forward primer for TthIII1 was 5’-TCC
AGG AGT GGG ACA TAA AGC T-3’, and the reverse primer
was 5’-CTT AGA AGC AGA GGT GGA AAT GAA G-3’. The for-
ward primer for BcII was 5’-TGC TGC CTT ATT TGT AAA TTC
GT-3’, and the reverse primer was 5’-AAG CTT AAC AAT TTT
GGC CAT C-3’. The forward primer for ER22/23EK was 5’-
GAT TCG GAG TTA ACT AAA AG-3’, and the reverse primer
was 5’-ATC CCA GGT CAT TTC CCA TC-3’. The forward primer
for N363S was 5’-AGT ACC TCT GGA GGA CAG AT-3’ and the
reverse primer was 5’-GTC CAT TCT TAA GAA ACA GG-3’.

2 Iran J Pediatr. 2022; 32(2):e114153.



Pan C et al.

Polymerase chain reaction (PCR) was conducted according
to the manufacturer’s instructions (Applied Biosystems,
USA). The products were digested at 37°C for 4 hours with 1
UL restriction enzyme (Thermo Fisher Scientific, USA). The
TthIII1 restriction enzyme, (PsyI) cutting site was 5’…G A C
N↓ N N G T C…3’, 3’…C T G N N↑N C A G…5’. The BclI re-
striction enzyme (BclI) (Thermo Fisher scientific, USA) cut-
ting site was 5’…T↓ G A T C A …3’,3’…A C T A G ↑T…5’. The
ER22/23EK restriction enzyme (MnlI) cutting site was 5’…C
C T C (N)7 ↓…3’,3’…G G A G (N)6↑ …5’. The N363S restric-
tion enzyme (TasI) cutting site was 5’…↓ A A T T …3’, 3’…T T
A A↑T…5’. The RFLP (restriction fragment length polymor-
phisms) products were isolated using 3% agarose gel elec-
trophoresis, stained with ethidium bromide and observed
by UV light. Hydrolyzed fragments of TthIII1 DNA were CT
(96bp, 53bp, 43bp), TT (96bp), and CC (53bp, 43bp); DNA
fragments of BclI were GC (335bp, 221bp, 117b), CC (221bp,
117bp), and GG (335bp); DNA fragments of ER22/23EK were
GG (221bp, 117bp); and DNA fragments of N363S were AA
(135bp, 95bp).

2.4. TGF-β1 mRNA Expression

The peripheral mononuclear cells were extracted by
Hank’s method from 2 mL EDTA anticoagulant blood. The
total RNA was extracted by TRIzol Reagent (Ambion, NY,
USA), then 1000 ng RNA was converted to cDNA by reverse
transcription using AccuScript PfuUltraII RT-PCR kit (Agi-
lent Technologies, USA). Primers of TGF-β1 of real-time PCR
were 5’-GGT ACC TGA ACC CGT GTT GCT-3’ and 5’-TGT TGC
TGT ATT TCT GGT ACA GCT C-3’, and the primers of the load-
ing control GAPDH were 5’-AGC CAC ATC GCT CAG ACA-3’
and 5’-GCC CAA TAC GAC CAA ATC C-3’. The amplification of
cDNA was done by qRT-PCR kit (Stratagene, USA), using nor-
mal two steps: primer annealing temperature was 61°C and
annealing time was 40 cycles of 20 seconds. PCR reaction
used Agilent Technologies Stratagene Mx3000P. The RT-
PCR amplification of the TGF-β1 and GAPDH gene for every
sample, GAPDH as internal reference, the CT (threshold cy-
cle) values were analyzed using Mx-Pro software. ∆CT val-
ues calculated using the formula: ∆CT = CT, GENE - CT, GAPDH.

2.5. Statistical Analysis

SPSS 26.0 software and GraphPad Prism version 8 were
used for statistical analysis. The genotype distribution fre-
quency and allele frequency of each point in each group
were calculated and confirmed to be in line with the Hardy-
Weinberg equilibrium (P > 0.05). The comparison of alle-
les and genotypes between groups was performed by anal-
ysis of variance (ANOVA), and P < 0.05 indicated a statis-
tically significant difference. Correlation coefficients were
analyzed by Spearman’s rank test.

3. Results

Table 1 indicates the frequencies of genotypes and par-
ticular alleles of four SNPs. We found no statistically signif-
icant differences in TthIII1 and Bcl1 between the asthmatic
and control groups (P > 0.05); N363S and ER22/23EK poly-
morphisms were not detected between the two groups;
also, the genotypes of N363S and ER22/23EK were AA and
GG, respectively.

Table 1. The Frequencies of Four SNPs (TthIII1, BclI, N363S, and ER22/23EK) of the
NR3C1 Gene in Asthmatic Children and Control Group a

NR3C1 SNP Asthma Group Control Group P

TthIII1 0.959

Genotype

TT 1 (1.92) 1 (2.50)

CT 7 (13.46) 6 (15)

CC 44 (84.62) 33 (82.5)

Allele

C 95 (91.35) 72 (90)

T 9 (8.65) 8 (10)

BclI 0.964

Genotype

CC 2 (3.85) 2 (5.0)

CG 16 (30.77) 12 (30)

GG 34 (65.38) 26 (65.0)

Allele

C 20 (19.23) 16 (20)

G 84 (80.77) 64 (80)

ER22/23EK

Genotype

GG 52 (100) 40 (100)

Allele

A 0 (0) 0 (0)

G 104 (100) 80 (100)

N363S

Genotype

AA 52 (100) 40 (100)

Allele

A 104 (100) 80 (100)

G 0 (0) 0 (0)

a Values are expressed as No. (%).

The expression levels of TGF-β1 mRNA are summarized
in Table 2. Correlation analysis between the two SNPs and
the expression levels of TGF-β1 mRNA were calculated by
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Spearman’s rank test. TthIII1 and TGF-β1 mRNA were sig-
nificantly correlated [R2 = -0.25, P = 0.016, beta coefficient
= -0.296, 95% CI -0.0147-0.073] (Figure 1). There was no sta-
tistically significant correlation between BclI and TGF-β1
mRNA [R2 = 0.063, P = 0.548; beta coefficient = 0.063, 95%CI
= 0.036-0.019]. BclI and the level of TGF-β1 mRNA relation-
ships are shown in Figure 2. ER22/23EK and N363S polymor-
phisms were not found between the groups.

Table 2. The Expression Level of TGF-β1 mRNA in Asthmatic and Control Groups

Parameter Control Group Asthmatic
Group

Control +
Asthmatic

Group

Mean ± SD dCT -9.748 ± 3.268 -7.459 ± 2.928 -7.580 ± 4.319

Max. dCT -4.3 9.1 9.1

Min. dCT -18.3 -14.2 -18.3

P = 0.003**

P = 0.113

P = 0.036**
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Figure 1. CT and TT, CC and TT was statistically significant, CC and CT was not statis-
tically significant
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P = 0.177  P = 0.784 
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Figure 2. CC and GG, CC and GC, GC and GG was not statistically significant (*P < 0.05
indicated a statistically significant difference; **P < 0.01 showed a high difference.)

4. Discussion

Asthma causes airway hyperresponsiveness, recurrent
wheezing, cough, and dyspnea. GC is a vital drug for
the treatment of asthma. However, some children with
asthma have reduced sensitivity or resistance to it. Stud-
ies found that GC resistance is related to the mutation of
NR3C1, that changes the amino acid content of the receptor
structure and determine the biological action or polymor-
phism (20, 27-29). Some studies found that glucocorticoid
resistant patients have an increased cells expressing IL-2
and IL-4 mRNA compared with numbers seen in steroid-
sensitive asthmatic patients in the bronchoalveolar lavage
fluid. IL-2 and IL-4 activate P38MAPK kinase, JNK, and ERK,
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GR phosphorylates at Ser226, which reduces affinity with
GC, resulting in reduced sensitivity or resistance to GC (30,
31).

Patients with resistance to GC are associated with epi-
dermal growth factor (EGF). EGF has low expression of
phosphorylated tyrosine of these patients, which lead-
ing to increasing inflammation and subsequent resis-
tance (32). In asthmatic patients treated with GC, down-
regulation of bispecific MAPK phosphatase expression
(DUSP1) and loss of MAPK activity affect GC sensitivity (33).

In this study, we found that TthIII1 SNPs are signifi-
cantly correlated with the expression level of TGF-β1. We
hypothesize that TthIII1 SNPs increase the expression level
of TGF-β1 and aggravate the inflammation of asthma.
TthIII1 CC and CT genotype have the strongest induction
effect on the expression of TGF-1. TthIII1 SNPs can signif-
icantly increase the expression of TGF-β1 in patients with
GC treatment (24); therefore, TGF-β1 can induce and inten-
sify airway remodeling and GC resistance. According to the
present study, TthIII1 CC are the most important risk factors
for tissue remodeling and GC resistance.

N363 facilitates the action of the GC-GR complex, which
improves GC sensitivity (34, 35). It has also been reported
that codon N363S AG or GG is related to the enhancement
of the anti-inflammatory effect of GC treatment and re-
duces the risk of out-of-control asthma (28, 29, 34). How-
ever, we did not observe this issue in our study, because we
did not detect the polymorphism of N363S or racial differ-
ence.

Our study found that TthIII1 can induce an increase in
the expression level of TGF-β1 mRNA. This causes a progres-
sive asthma course and airway obstruction, leading to the
reduction of lung function and poor clinical prognosis. It
is thought that TGF-β1 plays a crucial part in the epithelial-
mesenchymal transformation (EMT) mechanism, which
results in an increase in the number of subepithelial mes-
enchymal cells, therefore adding to the number of contrac-
tile cell and airway hyperreactivity (36). In the course of
EMT, epithelial cells lose their classic connections and po-
larity between cells and acquire a more mesenchymal phe-
notype. A variety of cytokines, such as interleukins, rein-
force MT in respiratory epithelial cells in a TGF-β1 depen-
dent manner, which promotes airway remodeling in pa-
tients with asthma. EMT contributes to increasing airway
smooth muscle cells in the lung process and elevated TGF-
β signaling, this mechanism which has been confirmed by
many experiments of animal models of asthma (36).

4.1. Conclusions

The results of this study showed the significant effect
of TthIII1 SNPs of NR3C1 polymorphism on increased in-
flammation in asthmatic children, inducing the expres-

sion level of TGF-β1 mRNA. CC and CT of Tth111I are im-
portant high-risk factors enhancing the expression level of
TGF-β1; therefore, they can result in EMT, contributing to
undesirable bronchial remodeling and promotion of air-
way hyperresponsiveness. The ways to reduce the expres-
sion of TGF-β1 and mitigate the degree of airway remodel-
ing have certain implications in the future diagnosis and
treatment of bronchial airway asthma. However, the mech-
anism of bronchial airway remodeling and the intercon-
nection of other growth factors and airway remodeling
needs to be further studied. Clinical early intervention in
the process of airway remodeling can avoid irreversible air-
way restriction or inhibit its further development to im-
prove the quality of life of children with asthma.
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