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Abstract

Background: Myopia is a very common eye disease with an unknown etiology. Increasing evidence shows that mitochondrial dys-
function plays an active role in the pathogenesis and progression of this disease.
Objectives: The purpose of this study was to analyze the relationship between mitochondrial tRNA (mt-tRNA) variants and high
myopia (HM).
Methods: The entire mt-tRNA genes of 150 children with HM, as well as 100 healthy subjects, were PCR-amplified and sequenced. To
assess the pathogenicity, we used the phylogenetic conservation analysis and pathogenicity scoring system.
Results: We identified six candidate pathogenic variants: tRNALeu (UUR) T3290C, tRNAIle A4317G, tRNAAla G5591A, tRNASer (UCN) T7501C,
tRNAHis T12201C, and tRNAThr G15915A. However, these variants were not identified in controls. Further phylogenetic analysis revealed
that these variants occurred at the positions, which were very evolutionarily conserved and may have structural-functional impacts
on the tRNAs. Subsequently, these variants may lead to the impairment of mitochondrial translation and aggravated mitochondrial
dysfunction, which play an active role in the phenotypic expression of HM.
Conclusions: Our results suggested that variants in mt-tRNA genes were the risk factors for HM, which provided valuable informa-
tion for the early detection and prevention of HM.
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1. Background

Myopia is one of the most common eye disorders glob-
ally (1). Researchers have estimated that by the year 2050,
approximately ~ 49.8% and 9.8% of individuals all over the
world will develop myopia and high myopia (HM) (2). Fur-
thermore, myopia increases the risk of developing a lot of
eye diseases, including cataracts, retinal dysfunction, and
myopic maculopathy (3, 4). Nevertheless, the underlying
molecular mechanisms are still largely undetermined.

Myopia is a complex disease that is associated with
both genetic and environmental factors, such as long-time
reading and close work, which are believed to be associated
with oxidative stress (OS) (5-7). In fact, OS is a condition
associated with an imbalance between overproduction of
reactive oxygen species (ROS) and reduced antioxidant ca-
pacity (8). Because mitochondria are the main sources for
ROS generation and clearance, mutations/variants in mi-
tochondrial DNA (mtDNA) will cause a defect in ATP syn-
thesis and an increase in oxygen radicals (9). Furthermore,
Wang et al. found a potential association between mtDNA
genetic background and the phenotypic manifestation of

myopia in the Chinese population (10), emphasizing the
important role of mtDNA mutations/variants in myopia.
Nevertheless, currently, there are no studies regarding the
association between mitochondrial tRNA (mt-tRNA) muta-
tions and HM.

2. Objectives

The objective of our study was to analyze the spectrum
of mt-tRNA mutations/variants in 150 children with HM
and 100 healthy controls from Dongguan City Maternal &
Child Health Hospital by using PCR and direct sequencing.
Moreover, to assess the pathogenicity of mt-tRNA variants,
the phylogenetic conservation and pathogenicity scoring
system were employed to evaluate these mt-tRNA muta-
tions/variants.

3. Methods

3.1. Subjects
From January 2018 to January 2020, a total of 150 my-

opic children (60 boys and 90 girls) younger than 16 years,
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together with 100 healthy children (50 boys and 50 girls)
younger than 15 years who had normal vision, were re-
cruited from the Department of Ophthalmology, Dong-
guan City Maternal & Child Health Hospital. The age of HM
patients ranged from seven to 16 years, with an average of
11 years, and the age of healthy children ranged from eight
to 14 years, with an average of 10 years.

The Visual Acuity (VA) was carried out to examine HM.
Then, HM was classified as spherical equivalent ≤ -5.00 D
and axial length≥ 26.5 mm, according to a previous study
(11). We excluded the patients if they had other eye or rele-
vant systemic diseases. In addition, 100 children with nor-
mal vision were enrolled based on the following criteria:
(1) Born in Dongguan City of Guangdong Province, (2) best-
corrected VA ≥ 1.0, (3) no other known eye or relevant sys-
temic diseases that could interfere with the results, and (4)
no family history of myopia.

All procedures were performed as per the Declaration
of Helsinki. The Ethics Committee of Dongguan City Ma-
ternal & Child Health Hospital approved the study. Written
informed consent was obtained from all participants.

3.2. Screening for mt-tRNA Variants

In order to see the spectrum of mt-tRNA variants, PCR-
Sanger sequencing was performed. First, the genomic DNA
of 150 subjects with HM and 100 controls was isolated from
blood samples using the Puregene DNA extraction Kit (Qi-
agen, Valencia, CA). Then, the DNA concentrations and pu-
rity were measured by ultraviolet-visible spectrophotome-
try.

The PCR products spanning the entire mt-tRNA genes
were amplified in all participants using primer sequences
described in a previous study (12). Subsequently, the PCR
products were purified and sequenced by an ABI auto-
mated DNA sequencer. Sequences were edited using DNAS-
tar software (DNASTAR Inc., Madison, WI, USA), and the
mtDNA variants were scored relative to the revised Cam-
bridge Reference sequence (rCRS, GenBank Accessible No:
NC_012920.1) (13).

3.3. Structural Analysis

Stem and loop structures were defined based on
published human mt-tRNA secondary structures (mam-
malian mt-tRNA database: http://mamit-trna.u-strasbg.fr/)
(14), with tertiary structure interactions for these tRNA
molecules being determined by referring to the relevant
literature (15).

3.4. Conservation Assessment

An interspecies analysis was conducted by comparing
mtDNA sequences across 16 different vertebrate species

(http://trna.bioinf.uni-leipzig.de/DataOutput/), as de-
scribed previously (16). These species were as follows:
Cebus albifrons, Colobus guereza, Gorilla gorilla, Homo
sapiens, Hylobates lar, Lemur catta, Macaca mulatta,
Macaca sylvanus, Nycticebus coucang, Pan paniscus,
Pan troglodytes, Pongo pygmaeus, Pongo abelii, Papio
hamadryas, Tarsius bancanus, and Trachypithecus obscu-
rus. We further calculated the conservation index (CI) by
comparing the human mtDNA variant with the other 15
species involved in this study (17).

3.5. Determining Pathogenicity

Previously, Yarham et al. generated a weighting
scoring system that could be used to determine the
pathogenicity of an mt-tRNA variant (18). According to
their standard, if the total score was less than 6 points, it
belonged to “neutral polymorphism”; if the score was 7-10
points, it was classified as “possible pathogenic”, and if the
score was more than 11 points, it was regarded as “definitely
pathogenic”.

4. Results

4.1. Mutational Screening for HM-related mt-tRNA Variants

We carried out a genetic screening program for HM-
associated mt-tRNA variants. The PCR and direct se-
quencing analysis revealed six possibly pathogenic muta-
tions: tRNALeu (UUR) T3290C, tRNAIle A4317G, tRNAAla G5591A,
tRNASer (UCN) T7501C, tRNAHis T12201C, and tRNAThr G15915A.
Among these sequence variants, the T3290C, A4317G, and
G5591A variants were homoplasmic, whereas the T7501C,
T12201C, and G15915A variants were heteroplasmic. Fur-
thermore, the T3290C variant occurred in two out of 150
myopic children (1.33%), the A4317G variant in one patient
with HM (0.67%), the G5591A variant in one child with
HM (0.67%), the T7501C variant in two children with HM
(1.33%), the T12201C variant in one out of 150 myopic chil-
dren (0.67%), and the G15915A variant in one out of 150 my-
opic children (0.67%). However, we did not find any mt-
tRNA variants in control subjects. The characteristics of six
HM-associated mt-tRNA variants are listed in Table 1.

4.2. Evaluation of mt-tRNA Variants

We next assessed the potential pathogenicity of these
mt-tRNA variants by using the following criteria: (1) CI
value > 75%, consistent with evolutionary conservation at
a given locus, as suggested by Ruiz-Pesini and Wallace (17),
(2) being present in < 1% of control patients, and (3) capa-
ble of making alterations in the structure and/or function
of mt-tRNA molecules. As shown in Table 1, all of the six mt-
tRNA variants identified were well conserved between var-
ious species (CI = 100% for all). In addition, none of them
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Table 1. Molecular Features of HM-associated mt-tRNA Variants

tRNA Species Sequence
Alteration

Homoplasmy/
Hetero-
plasmy

Location Numbering
In trna

CI (%) No. of 150
Myopic

Children (%)

No. of 100
Controls (%)

Disease
Association

tRNALeu ( UUR) T3290C Homoplasmy TψC loop 59 100 2 (1.33) 0 Diabetes;
hypertension

tRNAIle A4317G Homoplasmy TψC loop 59 100 1 (0.67) 0 Deafness;
cardiomyopathy

tRNAAla G5591A Homoplasmy Acceptor arm 69 100 1 (0.67) 0 Myopathy

tRNASer ( UCN) T7501C Heteroplasmy DHU loop 15 100 2 (1.33) 0 Cardiovascular
disease

tRNAHis T12201C Heteroplasmy Acceptor arm 68 100 1 (0.67) 0 Deafness

tRNAThr G15915A Heteroplasmy Anticodon
stem

28 100 1 (0.67) 0 Encephalomyopathy

were found in control subjects. The locations of these vari-
ants within tRNA secondary structures are shown in Figure
1. Typically, mt-tRNA molecules had a clover-like morphol-
ogy with acceptor arm, anticodon stem, and TψC loop and
DHU loop (19, 20). Of these variants, two occurred at the
acceptor arm, two were localized at the TψC loop, one oc-
curred at the DHU loop, and one occurred at the anticodon
stem. Based on the analysis, these six evolutionarily con-
served tRNA variants were predicted to disrupt the tRNA
structure and function.

4.3. Determining Pathogenicity of Candidate mt-tRNA Variants

To evaluate the pathogenic role of an mt-tRNA variant,
the pathogenicity scoring system was used (18). Therefore,
we found that the total scores of T3290C, A4317G, G5591A,
T7501C, T12201C, and G15915A variants were 7, 15, 15, 7, 17, and
11 points, respectively, belonging to “possibly pathogenic”
and “definitely pathogenic” (Table 2).

5. Discussion

Since human mtDNA codes 13 polypeptides that are es-
sential for oxidative phosphorylation (OXPHOS), it gener-
ates ROS as a toxic byproduct (21). The overproduction
of ROS may have serious consequences such as damaging
lipids, proteins, and DNA or RNA, increasing OS (22, 23).
In fact, the retina is very sensitive to be influenced by ROS
because it needs high levels of oxygen consumption (24).
Therefore, we hypothesized that mtDNA mutations or vari-
ants may lead to mitochondrial dysfunction, and play a pu-
tative role in the pathogenesis of HM.

For this purpose, the frequencies of mt-tRNA vari-
ants in 150 children with HM and 100 control sub-
jects were analyzed by direct sequencing. As a re-
sult, we identified six possible pathogenic mt-tRNA vari-
ants: tRNALeu (UUR) T3290C, tRNAIle A4317G, tRNAAla G5591A,
tRNASer (UCN) T7501C, tRNAHis T12201C, and tRNAThr G15915A,

which were not detected in 100 controls. Among them,
the homoplasmic T3290C variant that occurred at posi-
tion 59 in the TψC loop of tRNALeu (UUR), was regarded as
a risk factor for hypertension (25). Moreover, the A4317G
variant affected a very conserved adenine at position 59 in
the T-loop of tRNAIle. This variant, however, introduced a
novel Watson-Crick base-pairing (59G-54C) and led to the
re-arrangement of the TψC loop region (26, 27). A recent
experimental study revealed that the A4317G variant in-
fluenced the steady-state and aminoacylation efficiency of
tRNAIle, and aggravated the defective mitochondrial trans-
lation and respiratory phenotypes associated with the 12S
rRNA A1555G mutation (28). In addition, the G to A transi-
tion at position 5591 was found to be associated with my-
opathy (29). Structurally, the G5591A variant disrupted the
very conserved Watson-Crick base-pairing (4G-69C). Fur-
thermore, the G5591A variant was localized at the accep-
tor arm in the 3’-end of tRNAAla, which was crucial for tRNA
structure and function (30). Thus, it can be speculated that
the G5591A variant may influence the tRNA metabolism
and lead to mitochondrial dysfunction.

Moreover, the T7501C variant was localized at the DHU
loop of tRNASer (UCN) (position 15) with heteroplasmy form.
The nucleotide at position 15 was extremely conserved
from various species. Bioinformatics analysis indicated
that the T7501C variant can alter the secondary structure
of tRNASer (UCN) and may result in a failure in mt-tRNA
metabolism (31-33). While the T12201C variant, which is
located at the acceptor arm of tRNAHis, abolished a well-
conserved base-pairing (5A-68T), functional analysis of cy-
brid cells containing this variant revealed a significant re-
duction of tRNAHis stability level (34-36). Therefore, this
variant may impair the tRNA metabolism, which is re-
sponsible for mitochondrial dysfunction. In particular,
the T12201C variant reduced the OXPHOS-related polypep-
tides, as evidenced by a recent study (35). Furthermore,
the G15915A variant disrupted a classic Watson-Crick base-
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Figure 1. The mt-tRNA variants

pairing in tRNAThr, which was regarded as a pathogenic
mutation associated with mitochondrial encephalomy-
opathies (37, 38). The alteration in tRNA structure may im-
pair tRNAThr functions, subsequently affecting the mito-
chondrial protein translation, which was similar to the tR-
NALys A8344G variant (39).

Based on these observations, we proposed that the pos-
sible molecular mechanisms underlying the mt-tRNA vari-
ants for HM may be as follows. First, the variant itself al-
ters the secondary structure of the corresponding tRNA
and causes a failure in tRNA metabolisms, such as affect-
ing the steady-state level, aminoacylation ability, and post-
transcriptional modification. Defects in tRNA metabolism
will lead to the impairment of mitochondrial protein
translation and respiratory chain function. As a result,
these events will cause mitochondrial dysfunction, includ-
ing increased ROS production and decreased ATP synthe-
sis. Subsequently, OS occurs due to an imbalance between

ROS and antioxidants, potentially involved in the patho-
genesis of HM.

In conclusion, our study indicated that mt-tRNA vari-
ants may play important roles in the pathogenesis of HM.
Screening for common mt-tRNA variants is advised for the
diagnosis of children with HM.
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