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Abstract

Background: Chronic diarrhea in children poses a significant clinical challenge and can lead to adverse health outcomes.

Among various causes, fat malabsorption is particularly concerning, as it may lead to inadequate nutrient absorption,

malnutrition, and impaired growth. Prompt and precise diagnosis is crucial for implementing effective treatments.

Objectives: The goal of this study is to utilize deep learning to create a superior diagnostic tool that exceeds traditional

methods, facilitating the early identification of fat malabsorption in children suffering from chronic diarrhea.

Methods: In a preliminary study involving 100 pediatric patients, 25 machine learning algorithms were evaluated. The

convolutional neural network (CNN) was identified as the most effective and subsequently refined through hyperparameter

tuning.

Results: The CNN model exhibited exceptional performance, attaining a test accuracy of 97% and an area under the curve (AUC)

score of 99.4%. These results underscore its reliability in accurately identifying cases of fat malabsorption.

Conclusions: This research represents noteworthy progress in pediatric gastroenterology, merging deep learning techniques

with medical expertise to develop a dependable and rapid diagnostic tool. This innovative method promises significant

improvements in detecting fat malabsorption, potentially transforming clinical practices and enhancing patient outcomes in

children with chronic diarrhea.
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1. Background

Chronic diarrhea poses a significant clinical

challenge worldwide in pediatric populations (1). This
condition, characterized by persistent and frequent

bowel movements over a prolonged period, can lead to

serious health consequences for affected children. Fat

malabsorption stands out as a major concern among

the various causes. It occurs when the digestive system
is unable to efficiently absorb dietary fats, leading to

their excessive excretion in stools (2). This impairs the

absorption of essential nutrients, contributing to

malnutrition and growth delays in these children. The

prompt and accurate diagnosis of fat malabsorption is
critical for starting appropriate treatments and

ensuring the best possible health outcomes for

pediatric patients suffering from chronic diarrhea.

Traditional diagnostic methods for fat malabsorption,

which involve collecting and analyzing stool samples,

are not only burdensome and time-consuming but also

produce variable results and are prone to errors (3-5).

There is a pressing need for more innovative, efficient,

and reliable diagnostic methods for pediatric patients

with chronic diarrhea, highlighting the importance of

advancing diagnostic technologies.

In recent years, deep learning, a branch of artificial

intelligence, has initiated a transformative shift in
medical imaging and diagnostics (6). These

sophisticated algorithms excel at identifying complex
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patterns and features within intricate datasets, leading

to the development of potent diagnostic tools.

Machine learning algorithms have made significant

strides in processing and analyzing biomedical data,

aided by advancements in computational power and the

growing availability of datasets. These algorithms are

broadly classified into three categories: Supervised, self-

supervised, and reinforcement learning (7). Supervised

learning algorithms are preferred when dealing with

labeled input and output data, as they learn the

relationship between inputs and outputs through

optimization techniques. Deep learning, which is a type

of supervised learning, is included in this category. It

encompasses variants like long short-term memory

(LSTM) or convolutional neural networks (CNN), which

adjust their parameters through iterative updates using

gradient descent methods (8-10). This process enables

the model to enhance its accuracy progressively.

The CNN algorithm, specifically, is designed for

analyzing datasets in 3D, 2D, or 1D. It utilizes kernels of

various sizes to extract vital features from the data,
aiding in the identification of the intended target.

Activation functions within CNNs are crucial for

tackling non-linear challenges across different datasets

(11-13). Factors such as the type of activation function,

kernel size, number of kernels, and the number of
hidden layers are critical for achieving desired

outcomes. Optimizing these parameters is essential and

should be customized to address the specific problem

being tackled.

In our study, we aimed to leverage the capabilities of

advanced technology for the early detection of fat
malabsorption in children suffering from chronic

diarrhea. Our goal is to create a reliable and quick

diagnostic tool by integrating cutting-edge

computational methods with established medical

expertise. This innovation is expected to significantly
enhance the accuracy and speed of detecting fat

malabsorption.

This paper outlines the methodology, results, and

implications of our pilot study, which involves training

and validating a CNN model on a meticulously compiled

dataset of pediatric patients with chronic diarrhea. We

evaluate the model's ability to differentiate between

cases of fat malabsorption and those without, and we

explore the potential impact of our findings on clinical

practices. The developed deep learning model identifies

fat malabsorption without necessitating stool samples,

offering three key advantages over conventional

diagnostic methods: Rapid and early diagnosis,

avoidance of the inconvenience and discomfort

associated with collecting stool samples, and cost-

effectiveness. The CNN model represents a significant

advancement in pediatric gastroenterology, providing a

novel and efficient diagnostic approach to address the
critical need for accurate and prompt diagnosis in

children with chronic diarrhea.

The study involved 100 patients who visited the

Pediatric Gastroenterology outpatient clinic at

Gaziantep University Medical Faculty Hospital with

diarrhea lasting more than four weeks, previously

undiagnosed. Diagnostic tests such as stool reductant,

hematocrit, sugar chromatography, hemoglobin (Hb),

platelet count, white blood cell count, alanine

aminotransferase (ALT), aspartate aminotransferase

(AST), albumin, glucose, sodium (Na), potassium (K),

chloride (Cl), calcium (Ca), magnesium (Mg),

phosphorus (P), vitamin B12, ferritin, folate, vitamin D,

lipid profiles, immunoglobulins, and a sweat test were

performed for a comprehensive assessment and to rule

out other conditions.

We employed 25 different machine-learning

algorithms, among which the CNN emerged as the most
effective. This model underwent fine-tuning of

hyperparameters tailored to the specific problem. The

data fed into these algorithms included 21 key features

like gender, age, weight, and height, along with various

clinical parameters such as Hb and platelet count. The
objective was to predict the presence or absence of fat

malabsorption. The CNN model's efficacy was gauged

through accuracy, F1 score, precision, recall, and Area

Under the Curve (AUC) score (14-16). The model

demonstrated a remarkable 97% accuracy, an AUC score
of 99.4%, and an F1 score of 96%. In clinical validation at

Cengiz Gökçek Gynecology and Pediatrics Hospital and

the Department of Pediatrics at Gaziantep University,

the model achieved 100% accuracy in detecting fat

malabsorption in pediatric patients with chronic

diarrhea.

2. Objectives

This study aimed to utilize deep learning,

particularly CNN models, to improve the early detection

of fat malabsorption in pediatric patients with chronic

diarrhea. Chronic diarrhea is a significant clinical

challenge, and the presence of fat malabsorption

further complicates the health of affected children.

Traditional diagnostic methods, which rely on the

collection and analysis of stool samples, are

cumbersome and prone to variability. Our research

seeks to identify innovative and efficient diagnostic

methods by harnessing the power of advanced

computational techniques, especially deep learning. By

training and validating a CNN model using a specially
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curated dataset of pediatric patients, our objective is to

evaluate the model's effectiveness in distinguishing

between cases of fat malabsorption and those without.

The ultimate aim is to develop a fast, non-invasive, and

cost-effective diagnostic tool for pediatric
gastroenterology, meeting the critical need for accurate

and prompt diagnosis in children experiencing chronic

diarrhea.

3. Materials

The study included patients from Gaziantep

University's Department of Pediatrics who presented

with diarrhea lasting more than four weeks without a

previous diagnosis. All individuals attending the

Pediatric Gastroenterology Clinic from January 2022 to

December 2022 for chronic diarrhea were considered for

the study, totaling 100 patients.

A thorough physical examination was conducted for

each patient, during which height and weight were
measured. Dates of birth and the onset of diarrhea were

collected from patients and their caregivers. Data on
fecal reductant, steatocrit, sugar chromatography,

hemoglobin, platelet count, white blood cell count, ALT,

AST, albumin, glucose, Na, K, Cl, Ca, Mg, P, vitamin B12,

ferritin, folate, vitamin D tests, lipid profiles,

immunoglobulins, and sweat test results were gathered
and used in the differential diagnosis.

For reductant analysis, stool samples were diluted

with distilled water in a graduated centrifuge tube to

form a slurry, which was then centrifuged. The

supernatant obtained was analyzed for reductant

content using the Clinitest method. This test involved

adding fifteen drops of the supernatant to a 15 mL tube,

followed by a Clinitest tablet. The mixture was then

heated to boiling for 15 seconds, after which a color

change was observed and compared with a reference

scale. A green-brown coloration of the remaining liquid

indicated the presence of reductant substances,

marking the test as positive. A reductant level of 0.5

mg/dL or higher in the stool was deemed abnormal.

The fecal steatocrit test measures the ratio of fecal fat
to the total fecal matter in a stool sample. For this test,

about 0.5 grams of feces were processed, homogenized,

and centrifuged at 12,000 rpm for 15 minutes. The fat
layer's length was then measured as a percentage of the

total solid layer. For infants under six months, values
exceeding 85% were indicative of fat malabsorption,

while for infants older than six months, values between

93 - 95% were considered significant.

Initially, standards for stool and sugar

chromatography were set using glucose, galactose,

fructose, lactose, and sucrose, each at a concentration of

1 g/L. This process involved dissolving 10 mg of each

sugar in 10 mL of distilled water and mixing it with 2 mL

of acetone in a graduated centrifuge tube, leaving a 1 cm

space from the top. Sample application points on
chromatography paper were marked at intervals of 1.25

cm. The samples, mixed with 1 mL of stool, were

vortexed and centrifuged to obtain a clear acetone

supernatant for the next step. A line was drawn with a

pencil 1 cm from the bottom of the chromatography
plate, which was then positioned 0.5 cm from the edge,

and samples were applied using a chromatography

syringe with 10 µL. The plate was placed in a solvent tank

and allowed to run until the solvent reached the top.

Patient samples were then analyzed by comparing the
migration distances of their spots with those of the

standard spots.

3.1. Dataset Preparation

The dataset for the machine learning algorithms

included 21 inputs: Gender, age, weight, height, Hb,
platelet count, white blood cell count, ALT, AST, albumin,

glucose, Na, K, Cl, Ca, Mg, P, vitamin B12, ferritin, folate,

and vitamin D test results. These criteria and variables

were chosen based on the exploration of potential

causes of chronic diarrhea, with blood tests conducted
to ensure a thorough evaluation. The goal was to

determine the presence or absence of fat

malabsorption. Among the collected data, 19 patients

were identified as having positive fat malabsorption.

To address the challenge of an imbalanced dataset,

where the minority class (positive fat malabsorption
cases) was significantly underrepresented compared to

the majority class (negative cases), the synthetic

minority over-sampling technique (SMOTE) was

employed (17). This technique enhances the dataset by

generating synthetic examples of the minority class. It

selects a sample from the minority class along with its k

nearest neighbors and then creates new samples by

interpolating these points in the feature space. Using

the SMOTE algorithm, we augmented the dataset to

include up to 81 positive cases, resulting in a balanced

dataset of 162 samples, with 81 negative and 81 positive

cases.

For model training, 122 samples were used, while 10

samples were set aside for validation. Additionally, 30

original data samples not generated by the SMOTE

algorithm were reserved for testing to accurately assess

the performance of the developed models. This

approach ensures that the testing phase reflects the

models' effectiveness on genuine data, free from

synthetic augmentation.
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3.2. Methods

Convolutional neural networks are a fundamental

category within deep learning, designed primarily for

processing images and signals. They utilize specialized

kernels to efficiently extract relevant features from the

input data. Following the operation of these kernels,
activation functions introduce nonlinearity into the

model, enhancing its ability to understand complex

data relationships. Functions such as sigmoid or ReLU

are commonly used for this purpose, enabling the

network to capture complex patterns in the data (12).

A critical element of CNN architecture is the

Maxpooling layer (18). This layer identifies and retains

the most significant features within specific areas or

pools, greatly aiding the network in pattern recognition.

The integration of a Dropout layer instrumental in

mitigating overfitting, a common challenge in machine

learning (19). Overfitting occurs when a model

excessively learns from the training data to the

detriment of its generalization to new, unseen data (20).

Overfitting is addressed by the Dropout layer, which

temporarily disables a fraction of the kernels in each

training epoch, encouraging the model to generalize

better across various data aspects.

The effectiveness of CNNs relies on the precise tuning

of parameters, such as the size and number of kernels

(21). Adjusting these parameters to suit the particular

challenge at hand is crucial. It is important to note that

different CNN architectures may be more suited to

specific types of problems, demonstrating the model's

flexibility and capability to tackle diverse tasks. Figure 1

provides a visual representation of a CNN model's

architecture for further clarification.

Figure 1. The architecture of the CNN Model. This diagram outlines the essential
components and layers of the CNN model, highlighting its structure.

The learning rate is another critical parameter that

requires careful adjustment. An improperly set learning

rate can lead the model to get stuck in local minima or

exhibit erratic behavior.

Equally important is the selection of optimizers (22-

24). These gradient-based optimization algorithms are

pivotal for various tasks. Choosing the right loss

function is also essential. In the context of deep learning

models that utilize gradient-based optimizers, the loss

function directs the updates of kernels by calculating

the derivative of the loss concerning the kernel weights.

For example, Mean Absolute Error is apt for regression

issues, Binary Cross Entropy fits binary classification

tasks, and Categorical Cross Entropy is suited for multi-

class classification scenarios (25). Each choice must be

made with careful consideration to maximize model

efficacy. In our case, the Binary Cross Entropy loss

function was chosen due to the binary classification

nature of our problem.

Padding is a key concept in image processing,

especially within the realm of CNNs (26). It involves

appending extra pixels to the image borders before

filter application or convolution. Padding serves two

main purposes. First, it aims to mitigate the potential

loss of edge information during convolution, which,

without padding, could result in a reduced output

feature map size, possibly overlooking important

details. Second, padding helps maintain the spatial

dimensions of the input image through the network

layers, which is crucial for applications such as object

detection and localization, where accurate spatial

information is vital. Different padding strategies exist,

with "valid" indicating no padding and "same" implying

padding that retains the original input size. By carefully

implementing padding, CNNs can effectively learn and

extract significant features from images, thereby

enhancing their performance in a variety of computer

vision tasks. For our project, 'same' padding was utilized

to ensure the input size was maintained.

Several supervised machine learning algorithms

were applied in the pursuit of detecting fat

malabsorption, with the CNN model proving to be the
most effective. Given the feature size of 1 × 21, 1-

dimensional kernels were used in the CNN to extract
relevant features. The model's parameters were initially

fine-tuned to address this particular issue. Table 1

provides a detailed list of parameters targeted for
optimization.

Table 1. Optimized Parameters of Convolutional Neural Network (CNN)

Hyperparameters Values

Learning rate 0.01, 0.001, and 0.0001

Number of hidden layers 1 to 20, the stride is 1

Number of dense hidden layers 1 to 5, the stride is 1

Number of neurons 4 to 512, the stride is 4

Number of kernels 16 to 2048, the stride is 16
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Hyperparameters Values

Size of kernels 1 × 3, 1 × 5, and 1 × 7

Activation functions ReLU, Sigmoid, Tanh, Selu, and Linear

Batch size 1 to 16

Optimizers Adam, RMSprop, Momentum, and Adadelta

Loss function Binary cross entropy

A grid search method was employed to determine

the optimal parameters, recording validation accuracy

across 5 epochs. The model that achieved the highest

validation accuracy was then selected for further

training, as outlined in Table 2.

Table 2. Optimum Convolutional Neural Network (CNN) Parameters a, b, c

Layer and Kernel -Neuron Count
Activation
Function

Trainable
Parameters

Conv1D Linear 256

Kernel count = 128

Kernel size = (3, 1)

Maxpooling1D (Pool size = 2)

Conv1D ReLU 24704

Kernel count = 128

Kernel size = (3, 1)

Maxpooling1D (Pool size = 2)

Conv1D ReLU 98560

Kernel count = 256

Kernel size = (3, 1)

Maxpooling1D (Pool size = 2)

Conv1D ReLU 393728

Kernel count = 512

Kernel size = (3, 1)

Maxpooling1D (Pool size = 2)

Flatten

Dense

Neuron count = 1 Sigmoid 513

a Learning rate = 0.001.

b Batch size = 5; padding = Same.

c Optimizer = Adam; loss = Binary cross-entropy.

The study incorporated a total of 162 samples. To

evaluate the model's effectiveness, 21 negative and 9

positive original samples were reserved, ensuring these

30 datasets comprised actual, non-synthetic data. This

allocation involved using 122 samples for training, 10 for

validation, and 30 for testing the model's accuracy.

4. Results

The distribution of the patients' age, gender, weight,

and height percentiles is presented in Table 3. Table 4

displays a comparison of weight and height percentile

values, stool steatocrit, reducing substances in stool,

and mortality based on gender. Furthermore, Table 5

contrasts certain blood parameters between deceased

patients and survivors.

Table 3. Age, Gender, Weight, and Height Percentile Distribution of the Patients

Parameter Values a

Age (y)

< 1 42 (42.0)

1 - 5 46 (46.0)

> 5 12 (12.0)

Gender

Female 45 (45.0)

Male 55 (55.0)

Weight percentile

< 3 26 (26.0)

3 3 (3.0)

3 - 10 15 (15.0)

10 2 (2.0)

10 - 25 24 (24.0)

25 - 50 15 (15.0)

50 2 (2.0)

50 - 75 8 (8.0)

75 - 90 1 (1.0)

90 - 97 3 (3.0)

> 97 1 (1.0)

Height percentile

< 3 26 (26.0)

3 2 (2.0)

3 - 10 14 (14.0)

10p 4 (4.0)

10 - 25 16 (16.0)

25 6 (6.0)

25 - 50 12 (12.0)

50 3 (3.0)

50 - 75 13 (13.0)

75 - 90 3 (3.0)

90 - 97 1 (1.0)

Total 100 (100.0)

a Values are expressed as No. (%).

Table 4. The Comparison of Weight and Height Percentile Values, Steatocrit in Stool,

Reducing Substance in Stool, and Death Status According to Gender a

Parameter Female Male P-Value b

Weight percentile

< 3 10 (22.2) 16 (29.1) 0.418

3 - 97 34 (75.6) 39 (70.9)

> 97 1 (2.2) 0 (0.0)

Height percentile 0.891

< 3 12 (26.7) 14 (25.5)

3 - 97 33 (73.3) 41 (74.5)
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Parameter Female Male P-Value b

Steatocrit in stool 0.508

Negative 37 (82.2) 44 (80.0)

Trace/rare 4 (8.9) 8 (14.5)

1 + 1 (2.2) 1 (1.8)

2 + 1 (2.2) 2 (3.6)

3 + 2 (4.4) 0 (0.0)

Reductant in stool 0.050

Negative 24 (53.3) 33 (60.0)

Trace/rare 18 (40.0) 11 (20.0)

2 + 1 (2.2) 7 (12.7)

3 + 1 (2.2) 4 (7.3)

4 + 1 (2.2) 0 (0.0)

Current status of the patient 0.657

Alive 42 (93.3) 50 (90.9)

Dead 3 (6.7) 5 (9.1)

a Values are expressed as No. (%).

b P-values < 0.05 are significant.

Table 5. The Comparison of Some Blood Parameters Between Dead and Surviving

Patients a

Parameters Dead (n = 8) Living (n = 92)
P -

Value

Hb, g/dL 9.9 (8.1 - 15.6) 10.7 (4.6 - 15.5) 0.965

Leukocytes, 10 3/
µ

13310 (3360 - 20070) 9690 (3360 - 45350) 0.141

Platelets, 10 3/µ
285500 (26000 -

650000)
388500 (23000 -

1159000)
0.384

Glucose, mg/dL 82 (62 - 134) 86 (17 - 416) 0.954

Albumin, g/L 33 (12 - 44) 39 (19 - 52.1) 0.063

ALT, U/L 14.5 (7 - 61) 21.5 (5 - 109) 0.266

AST, U/L 44 (25 - 78) 42.5 (12 - 215) 0.990

Ferritin, ug/L 207.8 (9.8 - 5324) 31.6 (2.7 - 6036) 0.030

B12, ng/L 238 (84 - 930) 275 (40 - 1550) 0.608

Folate, ug/L 9.8 (7 - 14.1) 12.7(3.6 - 24) 0.070

Vitamin D, ug/L 11.0 (0 - 35) 18.9 (0 - 95.5) 0.086

Na, mmol/L 135 (133 - 153) 136 (126 - 159) 0.740

K, mmol/L 4.2 (3.4 - 6.4) 4.5 (2.6 - 7.7) 0.879

Cl, mmol/L 113 (104 - 117) 105 (70 - 405) 0.011

Ca, mmol/L 8.8 (7.9 - 12.1) 9.9 (7.3 - 11.3) 0.042

P, mmol/L 3.7 (2.5 - 5.1) 5 (2.8 - 10.3) 0.004

Mg, mmol/L 1.7 (1.4 - 2.3) 2.1 (1.1 - 5.7) 0.016

Abbreviations: Hb, hemoglobin; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; Na, sodium; K, potassium; Cl, chlorine; Ca, calcium; P,

phosphorus; Mg, magnesium.

a Values are expressed as median (min-max).

Figure 2 illustrates the CNN model's training

performance. Subfigure (A) shows the reduction in loss

for both validation and training data, while subfigure

(B) highlights the improvement in accuracy across

epochs.

Figure 2. A, Training and validation loss; B, Training and validation accuracy

The performance of the CNN model was evaluated

using several metrics, including accuracy, precision,

recall, F1 score, and AUC score (15). After a thorough

assessment of the test dataset, our model exhibited

impressive performance metrics. Notably, it achieved an

accuracy of 97%, indicating a high level of correct

predictions. The F1 score, which harmonizes precision

and recall, was outstanding, reaching 95% for class 1 and

98% for class 0. The metrics, including precision, recall,

F1 score, and accuracy for the test data, are detailed in

Table 6.

Table 6. Model Evaluation Metrics

Precision
(Positive

Predictive
Value)

Recall
(Sensitivity)

z F1-
Score

Support

Class 0 1.00 0.95 1.00 0.98 21

Class 1 (fat-
malabsorbtion) 0.90 1.00 0.95 0.95 9

Accuracy 0.97 30

Macro avg 0.95 0.98 0.95 0.96 30

Weighted avg 0.97 0.97 0.95 0.97 30

The macro average calculates the unweighted mean

of precision, recall, and F1 score across all classes (14),

treating each class equally without considering its

frequency or distribution in the dataset. Conversely, the

weighted average takes into account class imbalance by

calculating the metrics weighted by the number of

samples in each class, providing a more nuanced

evaluation by emphasizing the performance in larger

classes. The "macro avg" values show exemplary

performance across classes, with a precision of 95%,

indicating that 95% of positive predictions were

accurate. Moreover, a recall score of 98% suggests that

98% of actual positives were correctly identified. The

resultant F1 score of 96% indicates a balanced

integration of precision and recall. The "weighted avg"
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values, accounting for class distribution, similarly

highlight strong overall model efficacy, with precision,

recall, and F1 score all at 97%, demonstrating the model's

adeptness at generalizing across different classes. These

outcomes affirm the model's robust and reliable

classification capability, highlighting its potential for

real-world applications.

Furthermore, the AUC score, assessing the model's

capacity to differentiate between positive and negative

classes, reached an outstanding 99.4%. These findings

emphasize the model's strength and efficiency in

accurately classifying instances.

Several machine learning algorithms were tested to

achieve the best outcome, with CNN emerging as the top

performer. The results, displayed in Table 7, are

organized in descending order based on test accuracy,

highlighting the CNN model's superior performance.

Table 7. Scores of Classification Algorithms a

Algorithm Accuracy AUC

CNN 97.0 99.4

Quadratic discriminant 87.9 92.0

Medium gaussian SVM 85.6 93.1

Kernel naive bayes 80.3 84.1

Quadratic SVM 80.3 88.1

Gaussian naive bayes 79.5 86.2

Cubic SVM 79.5 87.0

Ensemble subspace KNN 78.8 86.1

Fine tree 76.5 75.6

Medium tree 76.5 75.6

Coarse tree 76.5 74.5

Fine Gaussian SVM 76.5 85.0

Bagged trees 75.8 88.0

Fine KNN 73.5 72.9

Cosine KNN 72.0 80.1

Linear SVM 70.5 74.7

Ensemble RUS-boosted trees 69.7 81.8

Ensemble subspace discriminant 68.2 75.3

Logistic regression 65.9 63.2

Linear discriminant 65.2 67.2

Cubic KNN 62.9 79.4

Medium KNN 61.4 79.4

Weighted KNN 60.6 86.4

Coarse Gaussian SVM 58.3 81.3

Coarse KNN 54.5 50.8

a Values are expressed as percentages.

Layer-wise relevance propagation (LRP) is an

interpretability technique for neural networks,

designed to shed light on how individual input features
influence the model's predictions. As an explainability

method, LRP assigns relevance scores to each input
feature, elucidating their significance in the neural

network's decision-making process.

The fundamental concept of LRP involves

redistributing the model's output relevance back to its

input features in a layer-wise fashion. This process

assigns relevance scores to each feature, demonstrating

their effect on the final prediction. Such interpretability

is vital for establishing trust and understanding in the

workings of complex neural network models,

particularly in domains requiring model transparency

and accountability.

The relevance formula is described in Equation 1,

where Ri represents the relevance of the ith neuron in

the analyzed layer, Rj the relevance of the jth neuron in

the subsequent layer, aij the activation between the ith

and jth neurons, and is the sum of all activations

for the ith neuron.

Interpreting LRP scores entails identifying each
feature's impact on the model's output. Positive scores

indicate a beneficial influence, negative scores a
detrimental effect, and their magnitude is the strength

of their contribution. A comparative analysis identifies

the most impactful features, where higher positive
relevance scores contribute favorably to the predictions.

Figure 3 showcases the relevance scores of features.

Using the test dataset, LRP scores for each feature across

samples were calculated and averaged. The bar graph in

Figure 3 illustrates the average LRP scores, highlighting

that while all features contribute positively, Platelet

Count (501.6), ferritin (323.16), and vitamin B12 (292.01)

show exceptionally high positive relevance, marking

them as significantly influential on the model. The

relevance scores are listed in descending order in Table

8.

Ri = ∑
i

αij × Rj

∑
k

αik

∑
k

αik
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Figure 3. Relevance scores of features

Table 8. Relevance Scores of Features in Descending Order

Parameter Value

Platelet count 501.6

Ferritin 323.16

B12 292.01

Na 136.58

Cl 107.2233

Glucose 87.733

AST 47.83333

Albumin 34.98667

ALT 29.08333

Vitamin D 19.47267

Age 14.06667

Folate 12.921

White blood cell 12.8433

Hb 10.88667

Ca 9.48

P 4.96

K 4.43

Weight 2.8333

Height 2.8

Mg 2.106667

Gender 0.5667

The clinical validation of our model was carried out

in collaboration with patients from both Cengiz Gökçek

Gynecology and Pediatrics Hospital and the Department

of Pediatrics at Gaziantep University, covering the

period from June 1, 2023, to January 30, 2024. The study

included 27 patients diagnosed with chronic diarrhea,

of whom 6 tested positive and 21 tested negative for fat

malabsorption. Of these patients, 20 were selected from

a repository of historical cases collected at

predetermined intervals, while 7 were diagnosed in real

time by our researchers. The model showcased perfect

prediction accuracy, correctly determining the fat

malabsorption status of all 27 patients in the cohort.

This exceptional performance affirms our model's

reliability as a precise diagnostic tool for pediatric

patients with chronic diarrhea, highlighting its

potential clinical value.

5. Discussion

5.1. Interpretation of Results

Our study's results offer strong support for the

effectiveness of our innovative diagnostic approach to

fat malabsorption in pediatric patients with chronic

diarrhea. The high precision, recall, and F1-score values

achieved by our CNN model attest to its capability to

accurately identify cases of fat malabsorption versus

those without. Notably, the model demonstrated a

Sensitivity of 100%, successfully detecting all instances

of fat malabsorption. With merely 1 false positive, the

model exhibited a remarkable specificity of 95.2%,

effectively minimizing incorrect diagnoses and

accurately identifying cases without malabsorption. The

positive predictive value (PPV) of 90% further

underscores the model's dependability in making

accurate positive diagnoses. Achieving 100% true

positives and 95.2% true negatives, the model balanced

its performance impressively.

Throughout its clinical evaluation, which included 6

positive and 21 negative cases, the model maintained

flawless accuracy in predicting both fat malabsorption

and its absence, achieving an astounding 100% accuracy

rate. This outstanding performance underscores the

model's robustness and reliability in a clinical context,

marking it as an invaluable diagnostic tool for pediatric

patients suffering from chronic diarrhea.

The LRP results offer detailed insights into the

model's decision-making process by highlighting the

significant impact of specific features, such as 'Platelet

count,' 'Glucose,' and 'Ferritin,' in line with medical

understanding of their connection to fat

malabsorption. The high positive relevance scores of

these features emphasize their vital role in the model's

predictive success. Conversely, features like 'Vitamin D'

and 'Mg' showed lower positive relevance, indicating a

lesser impact on detecting fat malabsorption.

5.2. Comparison with Previous Studies

To the best of our knowledge, no CNN or AI model has

been developed specifically for detecting fat
malabsorption using a range of blood tests and features.

Nonetheless, our findings are in harmony with prior
research exploring deep learning and CNN applications

in medical diagnostics. The efficacy of our model in
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distinguishing fat malabsorption cases aligns with

outcomes in related domains, demonstrating the

adaptability and dependability of deep learning

techniques. While traditional diagnostic approaches

have yielded variable outcomes, our method offers a

promising alternative, enhancing both accuracy and

efficiency.

5.3. Addressing Limitations

It's critical to acknowledge our study's limitations.

The relatively small sample size, despite being

meticulously selected, might introduce a level of

variability. Moreover, our study was limited to pediatric

patients from a particular clinical setting. Future studies

involving larger and more varied groups will be crucial

to ascertain the durability and applicability of our

diagnostic method across broader contexts.

The class imbalance and the limitations inherent in

the SMOTE algorithm, which was employed to mitigate

this imbalance, pose additional challenges. Although

SMOTE helps in creating synthetic samples to enhance

the representation of the minority class, we addressed

its potential downsides by judiciously adjusting

parameters and ensuring a balance between original

and synthetic data during model training to avoid

overfitting. The susceptibility of clinical datasets to

noise and outliers was countered by implementing

stringent preprocessing measures before applying

SMOTE. To prevent information leakage, we ensured that

synthetic samples were generated solely from the

training dataset. Despite these obstacles, our method

resulted in a successful model for detecting fat

malabsorption, evidencing accuracy in handling both

synthetic and real-world clinical data.

5.4. Proposed Explanations

The remarkable efficacy of our CNN model can be

credited to its capability to discern complex patterns in

clinical metrics indicative of fat malabsorption. The

model's progressive learning and adaptation, driven by

the iterative refinement of weights via gradient descent

optimization, enhance its precision over time. The

optimization of hyperparameters, such as activation

functions and kernel sizes, plays a significant role in the

model's success.

5.5. Discussion of Implications

Our study's results have profound implications for

clinical practice and research. The non-invasive nature
of our diagnostic method reduces patient discomfort

and streamlines the diagnosis process, potentially

transforming pediatric gastroenterology by providing a

more accessible and patient-friendly diagnostic option.

Additionally, the cost-efficiency of our approach eases

the financial strain on healthcare systems and patients,

presenting it as a feasible solution for broad adoption.

In conclusion, our study marks a significant

advancement in pediatric gastroenterology by utilizing

deep learning, specifically a CNN, to identify fat

malabsorption. Traditional diagnostic approaches often

involve tedious stool sample collection and analysis,

which are subject to variability and potential for human

error. Our developed deep-learning model obviates the

need for stool samples, presenting three key benefits.

First, it facilitates rapid and early diagnosis, which is

crucial for timely intervention. Second, it avoids the

discomfort of collecting stool samples, addressing a

significant concern for patients. Third, our model is

cost-effective compared to traditional diagnostic

methods. Given its practicality, swift response, and cost

efficiency, it's crucial to integrate our model into clinical

settings. For effective integration, the model should be

incorporated within existing hospital information

systems, enhancing accessibility for clinicians and

allowing seamless incorporation into their daily

practice.

5.6. Conclusions

5.6.1. Summarizing Main Findings

This research signifies a breakthrough in diagnosing

fat malabsorption in pediatric patients suffering from

chronic diarrhea. Employing deep learning techniques,

we've achieved remarkable accuracy and efficiency in

differentiating fat malabsorption cases from non-

malabsorption cases. The performance of our CNN

model underscores its potential as a significant

diagnostic tool for this challenging clinical scenario.

5.6.2. Reiterating Importance

The need for accurate and prompt diagnosis of fat

malabsorption in pediatric patients is paramount. This

condition can lead to severe health implications, such as

malnutrition and impaired growth, making early

detection vital for ensuring the best possible outcomes

for patients. Our study meets this critical demand by

offering a non-invasive, efficient, and reliable diagnostic

alternative that is also cost-effective.

5.6.3. Recommendations
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Based on our findings, we advocate for the adoption

of our diagnostic method in routine clinical practice

within pediatric gastroenterology. Its non-invasive

nature and high accuracy render it an indispensable

asset for healthcare practitioners. Healthcare facilities

should consider this approach to enhance diagnostic

accuracy and speed in detecting fat malabsorption,

thereby elevating the standard of care for affected

children.

5.6.4. Future Research Directions

While our study constitutes a significant step

forward, future research should aim to further validate

our diagnostic method across broader and more diverse

patient groups to confirm its effectiveness and

applicability in various clinical contexts. Exploring the

application of this methodology to other

gastrointestinal disorders could also extend its utility in

pediatric gastroenterology.

In summary, our study represents a pivotal

development in diagnosing fat malabsorption in

children with chronic diarrhea. Leveraging deep

learning, we have introduced a groundbreaking

diagnostic tool with substantial promise for clinical

application. Integrating this method could

fundamentally transform pediatric gastroenterology,

ensuring timely, accurate diagnoses and ultimately

enhancing the health outcomes of affected children

globally.
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