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Abstract

Background: Over the past three years, zinc deficiency among adolescents has varied based on region and access to healthcare. Globally, zinc deficiency

affects approximately 2 billion people, leading to serious issues such as immune problems and growth delays, particularly in developing countries. In the U.S.,

around 10% of adolescents experienced zinc deficiency in 2021, with a higher prevalence among teenage girls. In Europe, deficiency rates are generally low but

can be significant in Eastern Europe and Central Asia. In Asia, particularly in rural and low-income areas, deficiency rates range from 20 - 30%. In Turkey, the

prevalence is high due to poor nutrition.

Objectives: This study aimed to develop a machine learning-based decision support system to determine zinc deficiency in children and adolescents aged 10 -

18 years.

Methods: This machine learning-based study was conducted with 370 adolescents aged 10 - 18 years to assess their zinc deficiency. The dataset consists of 8

feature vectors and an output vector. The machine learning methods used in the analysis include Logistic Regression, Naive Bayes, Decision Tree (CART), K-NN (K-

Nearest Neighbors), SVM (Support Vector Machine), Gradient Boosting Classifier, AdaBoost Classifier, Bagging Classifier, Random Forest Classifier, MLP Classifier
(Multilayer Perceptron), and XGB Classifier (XGBoost Classifier). Evaluation metrics such as accuracy, precision, recall, and F1 score were used to assess the

performance of these methods. Including specific values for these metrics, such as "SVM achieved 94.6% accuracy," would allow readers to quickly compare the

effectiveness of the models. Different metrics serve various purposes: Accuracy provides an overall view of performance, precision and recall highlight specific

aspects, and the F1 score balances precision and recall.

Results: The mean age of the patients in the dataset was 13.79 ± 1.18 years. Of the children, 64.32% (n = 238) were female and 35.68% (n = 132) were male. It was

found that 62.7% (n = 232) of the children had low zinc levels, while 37.3% (n = 138) did not require zinc supplementation. Thirteen different machine learning

methods were applied to a 70% training and 30% testing set. As a result, the SVM method provided the most successful outcome with 94.6% accuracy.

Implementing the SVM-based system in pediatric clinics could improve efficiency and patient care by automatically detecting high-risk zinc deficiency patients

based on lab results, providing early intervention alerts for faster treatment, and improving health outcomes. Highlighting these practical applications could

increase the study’s appeal to healthcare professionals by demonstrating its real-world benefits. Providing detailed information on these applications would

enhance the study’s clarity and practical value, making it more valuable for researchers and healthcare providers interested in AI tools for adolescent health.

Conclusions: This study concluded that machine learning methods can effectively determine zinc deficiency in children. The SVM method demonstrated

superior classification performance compared to the other methods. An SVM-based decision support system could be integrated into pediatric outpatient

clinics to enhance diagnostic accuracy and patient care.
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1. Background

Over the past three years, zinc deficiency in

adolescents has varied depending on the region and

access to healthcare. Globally, zinc deficiency affects

approximately 2 billion people, leading to serious issues

such as immune dysfunction and growth delays,

particularly in developing countries. In the U.S., around

10% of adolescents experienced zinc deficiency in 2021,

with a higher prevalence among teenage girls. In

Europe, deficiency rates are generally low but can be

significant in Eastern Europe and Central Asia. In Asia,

particularly in rural and low-income areas, deficiency

rates range from 20 - 30%. In Turkey, the prevalence of

zinc deficiency is high due to poor nutrition.

The proposed SVM-based system has the potential to

transform healthcare by automating the detection of

high-risk patients, providing early intervention alerts,

and continuously updating with new data to enhance

accuracy. Emphasizing these features increases the

research's appeal by demonstrating how it can improve
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efficiency and patient care. This system offers valuable

insights for healthcare professionals and researchers

interested in AI tools for adolescent health. The ability of

machine learning to analyze laboratory results quickly

and accurately provides additional benefits such as

personalized predictions, early detection, and reduced

human error, all contributing to better patient

outcomes.

The human body needs micronutrients for healthy

functioning (1). Minerals and vitamins are among the

most important of these nutrients, and they are

essential for growing children. Vitamins are necessary

for growth, regulation, and the development of bodily

functions, while minerals play a vital role in energy

metabolism, growth, and body maintenance. Therefore,

maintaining and regularly monitoring the levels of

vitamins and minerals in the body is crucial (2).

Zinc is known to be the second most important trace

element after iron, playing a key role in ensuring the

proper functioning of tissues and organs (2, 3). Zinc is

particularly important to monitor in children aged 10 to

18. It is a mineral found in small amounts in plant and

animal tissues (4), involved in many biological

processes, and plays a crucial role in regulating various

body functions.

The World Health Organization (WHO) estimates that

approximately 800,000 deaths each year are attributed

to zinc deficiency, with over 50% of these deaths

occurring in infants and children under the age of 5. It is

suggested that the global prevalence of zinc deficiency

is around 20% (5, 6). Global rates of inadequate zinc

intake, based on data from national food balance sheets,

are consistent with this estimate (7). Zinc deficiency

tends to be more pronounced in countries with lower

energy intake, lower proportions of energy from

animal-based foods, and diets with higher molar ratios

of phytate to zinc. Notably, there is a positive association

between the prevalence of stunting and inadequate zinc

intake, although stunting generally exceeds the

prevalence of inadequate zinc intake (8).

The healthy development of children and

adolescents today is directly linked to their need for

zinc, which is an essential part of their diet. Zinc plays a

critical role in numerous biological processes and

contributes to several important functions, from

regulating cellular activity to supporting the immune

system (9, 10). However, the rapid growth and

development during childhood and adolescence

increases the demand for zinc, raising the risk of

deficiency.

Studies on zinc have shown that it is essential for

children to perform many basic functions, such as

growth, pica prevention, managing hypoglycemia,

combating diarrhea, fighting infections, wound healing,

cell division, and DNA synthesis. It also supports the

healthy production of hair and nails and plays a role in

sensory and cognitive functions (11-14). Moreover, the

need for zinc increases during periods of rapid growth

and development, making it crucial to ensure sufficient

intake in adolescents. When zinc levels are insufficient,

all biological processes that rely on the mineral are

disrupted, leading to a range of health problems.

Therefore, individuals who do not receive adequate zinc

through a balanced diet should undergo appropriate

tests to determine their zinc status (15).

In recent years, there has been growing research

interest in using artificial intelligence and expert

systems to detect vitamin and mineral deficiencies.

Among these, machine learning methods have gained

popularity due to their capability to analyze large and

complex datasets. However, to date, no research has

specifically focused on using artificial intelligence to

detect zinc deficiency, making this study particularly

valuable.

Machine learning is renowned for its ability to

process complex data and uncover hidden patterns (16).

Since numerous factors influence zinc levels, machine

learning is predicted to be highly effective in

understanding these complexities and identifying

correlations, which is why it was chosen as the

methodology for this study. Well-trained machine

learning models (17) can achieve high accuracy and

predictive power in identifying zinc deficiency by

learning from data patterns. Furthermore, by

continuously updating the proposed model with new

data, its ability to detect zinc deficiency can be

improved over time.

The primary objective of this study is to develop a

machine learning-based decision support system that

can identify zinc deficiency in adolescents earlier and

more accurately. This research will focus on the need for

zinc using 10 features (age, gender, hydro vit D, LDL

cholesterol, iron, ferritin, CRP, calcium, sodium, and

phosphorus) as part of an artificial intelligence feature

set for children. By identifying individuals with zinc

deficiency at an early stage, this study aims to

https://brieflands.com/articles/ijp-148520
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Figure 1. Database of zinc features

contribute to more effective interventions. The results

may help advance child health interventions and

provide new insights into detecting zinc deficiency at a

young age.

2. Objectives

This study aims to fill a significant gap in the field of

children's health by showcasing the potential of

artificial intelligence in identifying zinc deficiency. By

offering a rapid, sensitive, and scalable solution, this AI-

based approach can equip healthcare professionals with

valuable tools for early intervention and personalized

treatment strategies.

3. Methods

This section provides background information on

the key components of the dataset used, an overview of

various machine learning algorithms, the performance

evaluation metrics applied, and the proposed approach.

3.1. Data Description

This study is a retrospective, descriptive, cross-

sectional, and machine learning-based research aimed

at determining zinc levels in children and adolescents

aged 10 - 18 years. The data was collected at Dr. Behçet Uz

Children's Hospital between 2019 and 2021. The required

sample size to ensure a performance accuracy metric of

over 90% was determined and included in the study. A

total of 370 patients who presented to outpatient clinics

with acute problems and had their zinc levels tested

were included, as shown in Figure 1. Patients were

randomly identified by searching the electronic records

system for the years 2019, 2020, and 2021. The search

identified 120 patients who had their zinc levels tested

in 2019, 112 in 2020, and 138 in 2021, all of whom were

included in the study.

Data were collected using a socio-demographic form

and a zinc information form prepared for this purpose,

as shown in Figure 2. The socio-demographic form

included the children's age and gender. The zinc

information form recorded the children's zinc levels,

vitamin D levels, LDL cholesterol levels, iron, ferritin,

CRP, calcium, and sodium levels. The researchers

developed this form based on expert opinions and

relevant literature.

The correlation coefficient graphs of the features

help visualize which features are highly correlated,

which are independent, and any potential

multicollinearity within the dataset. A high correlation

between two features indicates that one feature may be

used interchangeably with the other, which should be

considered during model training. Highly correlated

features are undesirable as they may cause the model to

overfit. The correlation graph for the data used in this

study is shown in Figure 3.

In machine learning, feature importance refers to

determining how effectively each feature contributes to

a model's predictions. The feature importance graph

helps visualize each feature's contribution to the

model's performance. In this study, the feature

https://brieflands.com/articles/ijp-148520
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Figure 2. Data description of zinc requirement

importance values of the model using the Random

Forest Classifier are shown in Figure 4.

As shown in Figure 4, based on the Random Forest

Classifier, the most important features for detecting zinc

deficiency are LDL cholesterol, ferritin, and hydro-

vitamin D, while the least important features are

demographic factors such as gender and age.

To avoid bias, the researchers systematically reviewed

the archives for each year over a two-month period. They

then collaborated to jointly decide which patients

should be included in the study. The inter-rater

agreement between the researchers was found to be

99.9%.

Additionally, in a machine learning application, a

balanced distribution of the output variable is essential.

For this reason, the distribution of the two classes, those

with and without zinc deficiency, as shown in Figure 5,

was selected.

Approval to conduct the study was obtained from the

relevant university ethics committee. Following this,

written permission was obtained from the hospital

management to proceed with the research. The study

data were provided in compliance with the law on the

protection of personal data, with all identifying

information such as patient identification numbers,

names, file numbers, and protocol numbers removed.

All stages of the study adhered to the principles

outlined in the Declaration of Helsinki (18).

3.2. Machine Learning Methods

In this study, machine learning models were

developed to detect zinc deficiency in children aged 10 -

https://brieflands.com/articles/ijp-148520
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Figure 3. Correlation coefficients of features

Figure 4. Random forest classifier feature importance.

18 using eight key features: Age, gender, hydro vitamin D, LDL cholesterol, iron, ferritin, CRP (C-reactive

https://brieflands.com/articles/ijp-148520
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Figure 5. Distribution of data classes

protein), calcium, sodium, and phosphorus. These

features were selected for their biological significance,

either through direct interactions with zinc metabolism

or as indicators of broader nutritional and health

statuses. Various machine learning models were tested,

with SVM (Support Vector Machine) achieving the

highest accuracy at 94.6%. Feature importance analysis,

conducted via Random Forest, highlighted LDL

cholesterol, ferritin, and hydro-vitamin D as the most

influential markers. Although age and gender were

included, their impact on predicting zinc deficiency was

minimal. Overall, the model presents an effective

approach to early zinc deficiency detection by

leveraging both direct and indirect health indicators.

Cross-validation was used to ensure the robustness of

the machine learning models. This technique involved

dividing the dataset into subsets, training the model on

some and testing it on others, which helped avoid

overfitting and improve generalizability. The likely use

of k-fold cross-validation provided more reliable

performance estimates by averaging results across

multiple iterations. This approach minimized bias,

ensuring that the SVM model's 94.6% accuracy is robust

and applicable to new data.

Table 1 presents the machine learning methods used

in this study, along with their descriptions, parameters,

advantages, and disadvantages.

A decision support system was programmed using

commonly applied algorithms in the literature and

widely utilized algorithms in the Sklearn library, within

a Python environment (20). The parameters for these

models were determined experimentally in the working

https://brieflands.com/articles/ijp-148520
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Table 1. Machine Learning Techniques Used in the Study (17, 19)

ID Methods Name Description Parameters Advantages Disadvantages

1. K-Nearest Neighbors
(K-NN)

K-NN is used to classify or predict an
instance by using the class labels of its
nearest neighbors.

The number of neighbors (K) is an
important parameter.

Simple and effective. Computationally expensive
for large datasets.

2. Logistic Regression
(LR)

Logistic Regression is a linear model used
for classification problems.

It can be controlled by parameters
like regularization term.

Simple, interpretable, and fast. Limited in handling
complexity.

3.
Random Forest

(FOREST)
Random Forest classifies by combining
many decision trees.

Important parameters include the
number of trees, feature selection,
etc.

Strong, high generalization, and
resistant to overfitting. Complex internal structure.

4. Support Vector
Machine (SVM)

SVM tries to find the best separating
hyperplane between two classes.

Important parameters include
kernel type, C (error tolerance),
etc.

Effective in high-dimensional
data, especially successful with
limited datasets.

Long training time for large
datasets.

5. Decision Tree (TREE)
Decision Tree is used for classification or
regression tasks using a tree structure.

Important parameters include
tree depth, minimum sample
split, etc.

Easy to understand structures,
low data preprocessing
requirement.

Prone to overfitting.

6.
Linear Discriminant

Analysis (LDA)
LDA finds axes that best express the
difference between classes. Few default parameters.

Emphasizes differences between
classes, provides dimensionality
reduction.

Assumes equal covariances
between classes by default.

7.
Gaussian Naive

Bayes (GNB)

Probability-based classification
algorithm based on Bayes' theorem,
assuming independence between
features

Few default parameters.
Simple, fast, often successful in
tasks like text classification.

Independence assumption
may not hold in the real
world.

8.
Extra Tree Classifier

(EXTRA)
Similar to Random Forest, but selects
split points in trees more randomly.

Important parameters include the
number of trees, feature selection,
etc.

Resistant to overfitting, low
variance due to random feature
selection.

Complex internal structure.

9.
Gradient Boosting

Classifier
(GRADIENT)

A community learning algorithm that
combines weak learners (often decision
trees) to create a strong model.

Important parameters include
learning rate, number of trees,
etc.

High generalization ability,
successful in many datasets.

May require more training
time and tuning.

10. AdaBoosting
Classifier (ADA)

Combines weak classifiers to create a
strong classifier by focusing on
misclassified examples.

Important parameters include the
type of weak learner, learning
rate, etc.

Resistant to overfitting, high
generalization ability.

Sensitive to tuning.

11. XGBoost Classifier
(XGB)

Tree-based learning algorithm using
Gradient Boosting technique, known for
its speed and performance.

Important parameters include
learning rate, number of trees,
etc.

Fast, high-performance,
successful in many data science
competitions.

May require more tuning and
hyperparameter selection.

12.
Bagging Classifier

(BGC)

Bagging is a method of improving a
model's performance by training on
different subsamples.

Important parameters include the
type of base learner, sampling
strategy, etc.

Resistant to overfitting, low
variance

Often depends on the type of
base learner.

13. Multilayer
Perceptron (MLP)

A type of artificial neural network with
multiple layers that updates weights
during the learning process.

Important parameters include the
number of layers, number of
hidden neurons, etc.

Ability to learn complex
relationships, suitable for large
datasets.

Long training time for large
datasets, tendency for
overfitting.

environment. Development was carried out using

Python 3 on a Windows 11 operating system with

hardware consisting of an Intel i7 processor and 16 GB of

RAM.

3.3. Performance Metrics

In this study, the key metrics used to evaluate the

effectiveness and performance of the machine learning

algorithms include the confusion matrix, accuracy,

precision, recall, F1 score, and confidence interval. These

metrics are essential for assessing and enhancing the

success of the algorithms (17, 21).

3.3.1. Confusion Matrix

The confusion matrix is a tool that details the

accuracy and inaccuracy of the model in predicting true

and predicted classes in classification problems. It

includes four key terms: True positive, false positive, true

negative, and false negative. In our study, the confusion

matrix for the SVM method, which demonstrated the

highest performance, is presented in Figure 6.

3.3.2. Accuracy

Accuracy is a metric that represents the ratio of

correct predictions made by a classification model to

the total number of predictions. Simply put, it is the

percentage of accurate predictions. The accuracy of a

model's performance is calculated using the following

equation (1).

3.3.3. Precision

Accuracy =  
TP + TN

TP + FP + TN + FN (1)

https://brieflands.com/articles/ijp-148520
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Figure 6. Confusion matrix of SVM algorithm

Precision is a metric that indicates the proportion of

positive predictions made by a classification model that

are actually correct. It helps assess how frequently false

positive predictions are made. For instance, in a

machine learning model that predicts a disease,

precision answers the question: "Of those predicted to

have the disease, how many truly have it?" The precision

of a model is calculated using the following equation

(2).

3.3.4. Recall (Sensitivity)

Sensitivity is a key metric for assessing the

performance of classification models, particularly in

measuring the impact of false negative predictions. In

other words, sensitivity evaluates how accurately a

model identifies true positives, indicating how many

actual positives are correctly detected. It reflects the

model’s ability to avoid missing true positives.

Sensitivity is also known as "recall" or the "true positive

rate (TPR)." The sensitivity of a model is calculated using

the following equation (3).

3.3.5. F1 Score

The F1 score is a crucial metric for evaluating the

performance of a classification model, as it measures

the balance between precision and recall. It is calculated

as the harmonic mean of the precision and recall

metrics, providing a single measure that balances the

trade-off between false positives and false negatives. By

incorporating both precision and recall, as illustrated in

equation (4), the F1 score offers a comprehensive

assessment of the model's overall performance.

3.3.6. Confidence Interval

A confidence interval represents the range of

possible values for a measurement, typically accuracy,

and is used to determine that the model's performance

lies within a specific range. This interval contains the

values at which the measurement is found, given a

certain confidence level (e.g., in this study, the

confidence level for SVM was measured at 1.000 - 0.882).

The confidence interval offers flexibility in estimating

the exact value of a measurement and helps assess

whether the model's performance falls within a defined

range. Mathematically, a confidence interval for a

measurement can be expressed as shown in equation

(5).

4. Results

The dataset was randomly split into training and

testing sets for machine learning using the

train_test_split function in the Python environment.

Precision =  
TP

TP + FP (2)

Recall (TPR) =  
TP

TP + FN (3)

F1 Scor =
2 × Precision × Recall

Precision + Recall (4)

Confidence Interval  =  [Lower Bound,  Upper Bound]

https://brieflands.com/articles/ijp-148520
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Figure 7. Accuracy Performance of ML models

Table 2. Performance Metrics for all AI Models

Metrics (%) KNN LR RF SVM DTREE LDA GNB EXTRA GRA ADA XGB BGC MLP

Accuracy 0.703 0.730 0.730 0.946 0.694 0.721 0.667 0.892 0.730 0.658 0.802 0.685 0.577

Confusion Metrics
[27 - 11] [18 - 20] [13 - 25] [32 - 6] [33 - 5] [17 - 21] [7 - 31] [34 - 4] [20 - 18] [5 - 33] [34 - 4] [10 - 28] [32 - 6]

[22 - 51] [10 - 63] [5 - 68] [0 - 73] [29 - 44] [10 - 63] [6 - 67] [8 - 65] [12 - 61] [5 - 68] [18 - 55] [7 - 66] [41 - 32]

Precision 0.730 0.719 0.728 0.950 0.773 0.709 0.634 0.897 0.722 0.614 0.837 0.663 0.704

Recall 0.703 0.730 0.730 0.946 0.694 0.721 0.667 0.892 0.730 0.658 0.802 0.685 0.577

F1Score 0.709 0.718 0.698 0.945 0.700 0.707 0.609 0.893 0.723 0.585 0.807 0.644 0.577

Confidence-Up 0.753 0.797 0.805 1.000 0.733 0.789 0.746 0.948 0.794 0.740 0.850 0.761 0.607

Confidence-Down 0.652 0.662 0.654 0.882 0.654 0.652 0.587 0.836 0.666 0.576 0.754 0.608 0.546

The conventional split ratio involved using 70% of the

data for training and 30% for testing.

After numerous experimental studies, 13 different

methods were tested for the proposed model, with

accuracy metrics ranging from 58% to 95%, as illustrated

in Figure 7. Some models, such as MLP and ADA

boosting, demonstrated low and insufficient

performance, while others, such as SVM and Extra Tree,

exhibited significantly high performance. During the

study, the focus was on fine-tuning high-performance

models rather than optimizing parameters for low-

performance models. The primary motivation was to

identify the best-performing model and make it feasible

for integration into a decision support system. As a

result, the experimental studies heavily emphasized

improving the SVM model.

While the lowest performance was 58% for MLP, the

highest accuracy achieved was 95% using the SVM

method. Examining these performances demonstrates

that machine learning algorithms can be effectively

utilized as decision support systems for detecting zinc

deficiency, with certain models exhibiting high

predictive accuracy. Given its superior performance, the

https://brieflands.com/articles/ijp-148520
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SVM method is recommended as the most effective

model for predicting zinc deficiency status.

The results with other performance metrics are

presented in Table 2. This table includes accuracy,

confusion matrices, precision, recall, F1 score, and

confidence interval data for all models.

All performance metrics clearly indicate that the SVM

algorithm is the best-performing method, while the

lowest values are observed with the MLP method. This

suggests that certain algorithms may struggle to

adequately learn and select decision boundaries,

depending on the nature of the problem and their

classification capabilities. One recommended approach

to address this is increasing the size of the training data.

To enhance model performance and establish a

robust decision support system, several critical steps

can be implemented. First, it is essential to investigate

why certain models performed poorly, focusing on the

characteristics of the dataset and the suitability of the

algorithms. Statistical tests, such as paired t-tests or

ANOVA, can be employed to determine whether

performance differences are statistically significant.

Additionally, analyzing feature importance using

techniques like SHAP values can help identify the key

predictors. Assessing models for overfitting or

underfitting by examining learning curves and

validation metrics is also necessary. Furthermore,

incorporating cross-validation, fine-tuning

hyperparameters, and exploring ensemble methods can

further enhance model accuracy and reliability.

These steps will provide a more effective and

insightful evaluation, leading to broader and more

impactful results in future research with larger datasets.

5. Discussion

The aim of this study was to evaluate machine

learning algorithms developed using data from 370

children aged 10-18 years, originally collected to detect

zinc deficiency. The dataset was randomly divided into

training and test sets, and the performance of different

artificial intelligence models was compared. The results

were as follows:

- Thirteen different methods were tested through

various experimental studies, and success rates ranging

from 58% to 95% were observed.

- While some models, such as MLP and ADA boosting,

exhibited low and insufficient performance, others, like

SVM and Extra Tree, demonstrated significantly high

performance.

- Throughout the study, the focus was on fine-tuning

high-performing models rather than optimizing

parameters for low-performing models, an approach

that helped avoid unnecessary time expenditure.

- The highest accuracy rate of 95% was achieved by the

SVM method, whereas the lowest performance was

observed with the MLP model at 58%. This result

suggests the potential for integrating the SVM model

into a decision support system.

The results demonstrate that machine learning

algorithms can be effectively used for zinc deficiency

detection, although some models may exhibit low

performance. The poor performance of these models

can be attributed to their insufficient learning of

relationships between selected features or model

parameters.

This study serves as a starting point for zinc

deficiency detection, but there are several potential

areas for improvement that can be addressed in future

research. The following aspects should be considered:

- Data set expansion and publication: Using larger

and more diverse datasets can enhance model

performance. The original data can be converted into an

open data format and made available to other

researchers for further analysis and exploration.

- Feature engineering: Implementing various feature

engineering techniques, including the introduction of

new features, may help the model learn more

informative patterns, leading to improved overall

performance.

- Comparison of different algorithms: Future studies

could explore additional machine learning algorithms,

such as deep learning, to compare their performance

against the models used in this study.

- Application integration: The best-performing model

can be integrated into a decision support system and

tested in real-world clinical applications.

The discussion can be further strengthened by

detailing the clinical implications, such as how the high

accuracy of the SVM model could enhance diagnostic

precision and patient outcomes. Additionally, the

benefits of integrating this model into clinical

workflows should be considered. The study's

limitations, including dataset biases, issues with

generalizability, and performance differences across

https://brieflands.com/articles/ijp-148520
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subgroups, should also be addressed in more depth.

Recommendations for future research could include

exploring different machine learning models,

expanding datasets, and applying advanced feature

engineering techniques.

Furthermore, the practical challenges of

implementing the SVM model in real-world settings,

such as integration with health systems, user training,

data privacy, and costs, should be examined. Addressing

these aspects will provide a more comprehensive

evaluation of the study's impact and guide future

research and practical applications.

These suggestions can form the foundation for future

research in zinc deficiency detection. Machine learning

methods are increasingly being recognized by clinicians

as a preferred statistical approach for evaluating

laboratory tests and obtaining more meaningful results

(22, 23).
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