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Abstract

Background: The interaction of the risk factors is an important focus in medical study. The etiology of CP is multi-factorial and
usually arises from a series of causal pathways.
Objectives: The aim of this study was to compare four statistical methods to detect the interactions of risk factors of cerebral palsy
(CP).
Methods: In this cross-sectional study, 225 children aged 1 - 6 years were studied during 2008 and 2009 in Tehran, Iran. Penalized
logistic regression (PLR), multifactor dimensionality reduction (MDR), logic regression (LR) and classification regression (CR) meth-
ods were used to detect interactions.
Results: There was an interaction between the consanguinity factor and gender, asphyxia, preterm delivery, vaginal delivery, previ-
ous pregnancies, history of pregnancy, history of illness, sepsis, and small for gestational age (SGA). The methods used in this study
were detect two-way (6 terms), three-way (11 terms) and four-way (2 terms) interaction terms. Of these interactions, asphyxia ×
consanguinity interaction was detected by MDR, LR, and CR methods.
Conclusions: Our findings showed that the consanguinity factor had an interaction with most of the risk factors and especially
consanguinity× asphyxia term was detected in all methods. So this interaction term is very important for considering by clinicians.

Keywords: Penalized Logistic Regression, Multifactor Dimensionality Reduction, Logic Regression, Cassification Regression,
Cerebral Palsy

1. Background

Cerebral palsy (CP) consists of a heterogeneous group
of non-progressive clinical syndromes that is caused by ab-
normal development of the brain and is the most common
cause of physical disability in children (1-4). Despite medi-
cal and technological progresses in neonatal and prenatal
intensive care in the past two decades, movement, and/or
cognitive and/or behavioral disorders are still a dilemma
in children (5). In general population, the prevalence of
CP was reported 1.5 to 2.5 per 1000 live births (6-8). The eti-
ology of CP is multi-factorial (9) and various, and usually
arises from a series of causal pathways (7, 10).

Some risk factors for cerebral palsy were identified by
investigators such as: low birth weight, premature birth,
multiple births, infections during pregnancy, medical con-
ditions of the mother, birth complications, brain infec-
tions, injury, asphyxia, preterm delivery, and multiple fe-
tuses (7, 10-12). It is mentioned that having a risk factor does

not mean that an infant will have CP (3, 4), but the presence
of some risk factors will increase the chance of it (9, 10), i.e.,
more often multiple risk factors lead to CP (10).

In the most of studies, the risk factors of CP were recog-
nized and reported but the interaction terms of those risk
factors were not recognized. The interaction terms effects
are of consequence for doctors and therapists and so iden-
tification of these terms is of great importance.

Regression analysis provides a way to identify the in-
teraction terms between the risk factors. In the case of a
binary response variable, Logistic regression can be used
to explain the relationship between the risk factors and re-
sponse variable (13). But when the independent variables
are too large, logistic regression is not efficient to identify
interactions. In such situations, penalized logistic regres-
sion (PLR), multifactor dimensionality reduction (MDR),
Logic regression (LR) approach and classification regres-
sion (CR) methods can be used (13-17). This study, the first
known study in Iran, adds to the existing information and
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highlights interaction between main factors. The main
purpose of this study is to detect interaction terms effects
for risk factors of CP children by PLR, MDR, LFS, and CR
methods.

2. Methods

2.1. Data Source

This was a cross-sectional study in which the data of
225 children aged 1 - 6 years was used. This study was ap-
proved by university of social welfare and rehabilitation
sciences’ ethics committee (code IR.USWR.REC.1394.190).
All data was gathered over 12 months, March 2008 to Febru-
ary 2009, in Tehran. 112 subjects with documented CP en-
tered the study. These children were referred from health
care centers, located in the eastern and northern parts of
the city of Tehran, to Asma comprehensive rehabilitation
center as a referral center for the city of Tehran. In addi-
tion 113 subjects, who were apparently healthy, i.e. without
CP, were randomly selected. “These children had attended
only for well-being check-ups (as the control group), and
were examined in the same health-care centers by the re-
search team” (5).

2.2. Variables

These related factors of perinatal and neonatal, as the
risk factors of CP in children, were collected and used: gen-
der, breech birth, neonatal respiratory disorders, jaundice,
sepsis, history of illness, parental consanguinity, prema-
ture rupture of membrane (PROM), history of infertility,
multiple birth in a pregnancy, previous pregnancies, vagi-
nal bleeding, asphyxia, SGA, preterm delivery (gestational
age 37 weeks or less), risky delivery (the first delivery or
more than 4 deliveries), history of abortion, vaginal deliv-
ery or cesarean delivery, maternal age at delivery (risks: <
16 or > 40 years).

2.3. Statistical Methods

PLR, MDR, LR and CR methods were used to detect inter-
actions. Data analysis was carried out with the R3.2.2 soft-
ware.

2.3.1. Penalized Logistic Regression

PLR can be considered as generalized regression model
which finds interactions with the large number of vari-
able. In this case, the logistic regression criterion is used
by combining with a penalization of the L2-norm of the co-
efficients. “The quadratic penalty makes it possible to code
each level of a factor by a dummy variable, yielding coef-
ficients with direct interpretations. This coding method
cannot be applied to regular logistic regression because

the dummy variables representing a factor are perfectly
collinear” (13). In this method, because of avoiding over-
fitting, a penalty on large fluctuations is imposed in the
process of parameters estimation:

(1)Q =
1

n

∑n

i=1

(
yi −

∑m

j=1
xijβj

)2
+ λJ (β)

where y is a vector of dependent variables; x is a matrix
of independent variables; β is a m × 1 matrix of parame-
ters;λ is tuning parameter; and J(β) is penalty term (13, 17).

2.3.2. Multifactor Dimensionality Reduction

The MDR is a nonparametric method, as an alternative
to logistic regression, to detect the interactions of main
effects even if the main effects are statistically insignifi-
cant. So, this is a weakness of this approach. However, this
method considers all combinations of potentially interac-
tion terms (16) and will be able to detect high-order interac-
tion terms (such as two-way and/or three-way interactions,
etc.) (17, 18). The MDR method creates a measure of accu-
racy and then the best model is selected based on the high-
est accuracy. It is expected that this model perform well
in terms of prediction and assessment of internal valida-
tion measures (19, 20). For comparing different interac-
tions terms (combination of variables), balanced accuracy
(BA) is used as

(2)BA =
1

2

(
TP

FN + TP
+

TN

FP + TN

)
where FP, FN, TP, TN represent the number of false posi-

tives, false negatives, true positives, and true negatives, re-
spectively. Indeed BA is the arithmetic mean of sensitivity
and specificity (21).

2.3.3. Logic Regression

LR is a (generalized) regression methodology that is ap-
plied to detect interaction terms between covariates, espe-
cially, when most/all of the covariates are binary. In the LR,
we are interested in finding the binary variables which re-
sulting Boolean combinations of initial binary covariates.
These new covariates, new combinations, will be entering
in the regression model to get the best fit. The LR model is
defined as

(3)g (E (Y )) = β0 +
∑t

j=1
βjLj

where Y is response variable,β0 andβj are parameters,
and Lj is Boolean combination (logic term) of the covari-
ates. In this model, logic terms must be determined and
parameters must be estimated simultaneously (14). In this
case, a single-tree approach of logic regression was used to
detect interaction terms. A large value of variable impor-
tance measure (VIM) means a high importance of a partic-
ular interaction, whereas a value of about zero means no
importance for it (22).

2 Iran J Pediatr. 2018; 28(3):e57202.

http://ijp.tums.pub


Bakhshi E et al.

2.3.4. Classification Regression Methods

CR method is one of the most powerful, non- paramet-
ric, and yet simple powerful statistical method to deter-
mine the most important covariates, and to visualize the
important associations and also to find the accurate pre-
diction of outcome (15). Methods which will be used in
this sense are: classification and regression tree (CART), Ad-
aBoost, Bagging, and C 4.5 algorithm. These methods, also,
will detect the existing interaction between covariates.

3. Results

The average weight of the children at birth was 2491.94
± 887.13 and 3101.77 ± 542.83 with medians of 2500 and
3150 grams for CP and non CP group respectively. The av-
erage gestational age was 35.66± 3.78 and 39.81± 1.32 with
medians of 38 and 40 weeks for CP and non CP group re-
spectively. 47.1% of the studied children were male. In to-
tal, 14.7 % of children presented with respiratory disorders,
24.4% with jaundice, 14.7% with sepsis, 17.8% with history
of illness, 69.8% with consanguinity, 9.3% with PROM, 4.9%
with adjuvant treatment of infertility, 4.9 % with multiple
birth in a pregnancy, 7.1% vaginal bleeding, 50.2% with as-
phyxia, 20.9% with SGA, 19.6% with preterm delivery, 1.3%
with high risk delivery, 17.3% with a history of abortion,
19.6% with previous pregnancy, 70.7% with vaginal deliv-
ery and 7.6% of maternal risky age (Table 1). The relation
between these risk factors and response variable was ex-
amined by chi-square and Fisher exact tests. The results of
the chi-square test showed that neonatal respiratory disor-
ders (P < 0.001), jaundice (P = 0.040), neonatal infant (P
< 0.001), history of illness (P = 0.001), history of consan-
guinity (P < 0.001), PROM (P = 0.003), adjuvant treatment
of infertility (P = 0.028), multiple birth in a pregnancy (P =
0.001), asphyxia (P < 0.001), preterm delivery (P < 0.001),
have a significant relationship with CP whereas with ordi-
nary logistic regression analysis, only history of illness (P
= 0.002 and OR = 0.03) and asphyxia (P < 0.001 and OR =
127.579) variables were significant.

For identifying the interactions by PLR, first, the opti-
mal model based on the BIC criterion and with different
values of (tuning parameter) was evaluated. Then, with
smallest deviation criterion was considered as a tuning pa-
rameter. The value was equal to 0.005. The identified main
and interaction effects, from PLR model with forward step-
wise and forward stage-wise procedure, are reported in Ta-
ble 2. The main effects of asphyxia (P < 0.001), consanguin-
ity (P = 0.003), preterm delivery (P = 0.002), history of ill-
ness (P = 0.001) were significant effects on CP. In the for-
ward stage-wise procedure, the main effects of asphyxia (P
< 0.001), consanguinity (P < 0.001) and also interaction

Table 1. Characteristics of Children with and Without CP, Based on Their Risk
Factorsa

Variables Control, N = 113 Case, N = 112 P Valueb

Male gender 47 (20.9) 59 (26.2) 0.125

Breech birth 4 (1.8) 4 (1.8) 1.000

Respiratory disorders 2 (0.9) 31 (13.8) < 0.001

Jaundice 21 (9.3) 34 (15.1) 0.058

Sepsis 5 (2.2) 28 (12.4) < 0.001

History of illness 30 (13.3) 10 (4.4) 0.001

Consanguinity 50 (22.2) 107 (47.6) < 0.001

PROM 4 (1.8) 17 (7.6) 0.006

Adjuvant treatment of
infertility

2 (0.9) 9 (4.0) 0.061

Multiple birth 0 (0.0) 11 (4.9) 0.002

Vaginal bleeding 6 (2.7) 10 (4.4) 0.426

Asphyxia 23 (10.2) 90 (40.0) < 0.001

SGA 19 (8.4) 28 (12.4) 0.178

Preterm delivery 3 (1.3) 41 (18.2) < 0.001

High risk delivery 0 (0.0) 3 (1.3) 0.242

History of abortion 17 (7.6) 22 (9.8) 0.462

Previous pregnancy 17 (7.6) 27 (12.0) 0.122

Vaginal delivery 64 (28.4) 95 (42.2) < 0.001

Maternal age (< 16 or >
40 y)

6 (2.7) 11 (4.9) 0.304

aValues are expressed as No. (%).
b2-sample test for equality of proportions with continuity correction.

terms of preterm delivery× consanguinity (P = 0.040), his-
tory of illness× consanguinity (P < 0.002) had significant
relationship with CP.

For analyzing the data with MDR, cross validation and
3-way split methods were used to identify the more impor-
tant compounds.

The results are summarized in Table 3. Both methods
showed that the interaction of asphyxia × consanguin-
ity × preterm delivery had the most accuracy, and then
the MDR procedure with three-way interaction was fitted
to the data. Also, Table 3 shows the identified interaction
terms based on balance accuracy. The first compound, i.e.
asphyxia × consanguinity × preterm delivery, has higher
balance accuracy and hence was detected as an important
interaction term. This interaction means that the effect of
consanguinity on CP is not equal in the different levels of
asphyxia × preterm delivery.

In LR approach, the most logical important com-
pounds on CP based on VIMsingle index were reported.
In this case, Asphyxia × consanguinity × history of ill-
ness compound (VIM = 8.00) was most important logi-
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Table 2. Estimated Penalized Logistic Regression Coefficients with Forward Step-
Wise and Stage-Wise Procedure

Variables Coefficient SE P Value

Intercepta 9.58 2.61 < 0.001

Asphyxia 4.28 0.71 < 0.001

Consanguinity 7.36 2.48 0.030

Preterm delivery 7.59 2.46 0.020

History of illness -2.95 0.90 0.010

High risk delivery 5.14 3.78 0.174

Interceptb 6.21 1.19 < 0.001

Asphyxia 3.50 0.59 < 0.001

Consanguinity 4.57 1.12 < 0.001

Preterm delivery × consanguinity 6.52 3.17 0.040

History of illness × consanguinity -2.75 0.88 0.002

Gender × preterm delivery ×
consanguinity

1.65 3.74 0.660

aForward step-wise procedure.
bForward stage-wise procedure.

cal compound. Other identified logical compounds were
consanguinity×preterm delivery (VIM = 1.70), history of ill-
ness × consanguinity × PROM × asphyxia (VIM = 1.60),
consanguinity × asphyxia (VIM = 1.55), consanguinity ×
PROM × asphyxia (VIM = 0.55), PROM × SGA (VIM = 0.55).

In addition, the result of stepwise logistic regression
analysis based on the risk factors and detected logical com-
pounds showed that two logical compounds (history of ill-
ness × consanguinity × PROM × asphyxia, and consan-
guinity×PROM×asphyxia) were significant. For complet-
ing the analysis, the significant variables in the ordinary
logistic regression without any interactions and these two
logical compounds, were modeled and asphyxia variable
with two mentioned compounds (P < 0.001) remained in
the model.

Finally, the consequences of the AdaBoost and Bagging
methods, C4.5 algorithm, and CART are reported in Table 4.
Then the performance of these methods with four criteria
(sensitivity, specificity, and error as well as Matthew’s corre-
lation coefficient (MCC)), were compared with the 10 stages
cross-validation method. The AdaBoost method with lower
error (0.06) and higher specificity and sensitivity (0.94 and
0.95, respectively) had a better performance than other
methods (Table 5).

4. Discussion

In many epidemiological studies to investigate the re-
lation of risk factors with a special case like presence or ab-
sence of a disease, as a dependent variable, logistic regres-

sion model was used. If the numbers of dependent vari-
ables were large, determining and identifying the interac-
tion becomes difficult or even impossible. In this study,
PLR, MDR, LR, and CR models were used to detect interac-
tion terms.

In several studies, improvement of these models has
been reported. Park and Hastie have used the PLR and MDR
models to determine interaction, gene-gene and gene-
environment, terms in blood pressure and Ladder cancer
data (13). Sun and Wang have proposed the PLR model for
genetic data and showed that this model can be used when
data is correlated within a group (18). Stoknes et al. in
a study on the Norwegian children with CP disease have
identified several interaction terms (preterm birth × in-
duction, maternal disease × preterm birth, maternal dis-
ease × premature birth, maternal disease × induction,
maternal disease × low 5-minutes Apgar score) between
related risk factors. The only significant interaction was
reported as maternal disease × preterm birth. In addi-
tion, they reported that when the number of risk factors
increases, the risk for CP will increase (23). O’Callaghan et
al. have not found interaction between SNPs and epidemi-
ologic risk factors for CP outcome. Finally, they have sug-
gested more studies to assess interaction between them
(24). Gao et al. in a meta-analysis study showed that mater-
nal age (≥ 35 years), multiple pregnancy, and medicine use
in early pregnancy, harmful environment, recurrent vagi-
nal bleeding during pregnancy and pregnancy-induced
hypertension were the risk factors for CP (25). Consanguin-
ity was reported as major risk factor in several studies in
southwest Asia (26-29). Studies showed that the consan-
guinity was associated with complex disorders (27) and in-
creases susceptibility to multifactorial diseases (28). In ad-
dition, it is considered as a factor of higher reading disabil-
ities (29, 30) and the cause of developmental problems (31).
They have not reported any interaction terms between risk
factors.

In most studies of CP no interaction between the risk
factors was reported. Models without any interactions oc-
cur, when the number of risk factors is large and so deter-
mining the interactions will be difficult or even impossi-
ble. However, based on used method in this study, consan-
guinity, preterm birth, and asphyxia have had the most in-
teraction with other risk factors. In this scene, consanguin-
ity is a cultural factor and also important to investigate.
One of the limitations of this study was the sample size in
CP group. The cultural, local and available health system,
e.g. NICU can probably affect the proportion of consan-
guinity and asphyxia and also homogeneity of other risk
factors in this sample. So the researchers should pay atten-
tion to this issue, conduct their research using larger sam-
ple size in other CP population studies.
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Table 3. The MDR Fit Using Three-Way Split and Cross Validation Methods

Number of Interactions Final Model with 3-Way Split Training Accuracy Testing Accuracy Validation Accuracy

k = 4 Asphyxia × consanguinity × preterm
delivery

97.83 91.07 82.45

k = 3 Asphyxia × consanguinity 87.82 91.96 85.83

k = 2 Asphyxia × consanguinity 86.43 92.31 90.38

Number of interactions Final model with cross validation Classification accuracy Prediction accuracy

k = 4 Asphyxia × consanguinity × preterm
delivery

92.13 91.92

k = 3 Asphyxia × consanguinity × preterm
delivery

92.15 92.28

k = 2 Asphyxia × consanguinity 89.32 89.03

Top 5 models identified by MDR method
with the best testing accuracy

Balance accuracy

Asphyxia × consanguinity ×
preterm delivery

92.145

Asphyxia × consanguinity ×
respiratory disorders

90.459

Sepsis × asphyxia × consanguinity 90.001

Consanguinity × PROM × asphyxia 90.001

Consanguinity × multiple birth ×
asphyxia

89.897

Table 4. Detected Interactions by AdaBoost, Bagging, C4.5 Algorithm, CART
Methodsa

Method Interactions

Adaboost

2 way
Consanguinity × gender

Previous pregnancy × vaginal delivery

3 way

Consanguinity × preterm delivery × gender

Preterm delivery × history of illness × asphyxia

Consanguinity × asphyxia × gender

History of illness × gender × SGA

Sepsis × asphyxia × SGA

History of illness × asphyxia × gender

Preterm delivery × vaginal delivery × asphyxia

Bagging

2 way Consanguinity × asphyxia

3 way Consanguinity × preterm delivery × asphyxia

C4.5 algorithm

2 way Asphyxia × preterm delivery

4 way Asphyxia × consanguinity × history of illness ×
preterm delivery

CART

2 way Asphyxia × consanguinity

Source: Based on data in Zare Delavar S, IJE 2014; 10(2): 33-9.

4.1. Conclusions

Detection and identification of some interaction terms
between risk factors of CP using PLR, MDR, LR and CR mod-
els were most important results of this study and specially,
there was an interaction between the consanguinity factor
and other factors. These models have played an important
role in the identification of interaction terms in real data
(16-18, 22, 32) and simulation data set (14, 17, 22, 33). Such sta-
tistical methods have the ability of detecting risk factors in-
teractions of diseases, such as CP. It is mentioned that this
study is the beginning for a comprehensive discussion on
interaction terms between risk factors in CP patients. Our
results can be used by therapists and clinicians to design a
preventive strategy for these patients.
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Table 5. Sensitivity, Specificity, and Error in AdaBoost, Bagging, C4.5 Algorithm, and CART Methodsa

Method Sensitivity Specificity Error MCC
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Source: Based on data in Zare Delavar S, IJE 2014; 10(2): 33-9.
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