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Abstract

Background: The precise differentiation of schizophrenic patients with positive and negative symptoms is still challenging; hence,
psychiatrists mainly focus on diagnosing schizophrenic patients with positive symptoms. However, schizophrenic patients with
negative symptoms have revealed remarkably poor outcomes.
Objectives: This study aimed to differentiate schizophrenic patients with positive and negative dominant symptoms quantitatively
by classifying their electroencephalography (EEG) features.
Methods: In this study, 36 patients with schizophrenia and 26 age-matched control subjects voluntarily participated. Their EEG
signals were captured and characterized by elicited multiscale entropy to decode the amount of irregularities occurred in each EEG
channel. The principal component analysis (PCA) was deployed to decrease the dimension of elicited features, and the reduced
features were applied to three Gaussian Naïve Bayes classifiers, each of which was trained for a specific class.
Results: The classification of the three groups resulted in 77.86% accuracy, while this accuracy in the schizophrenic groups provided
65% accuracy. In the resting state, the normal and schizophrenic subjects were differentiated by a high rate (95.43%).
Conclusions: Exploiting information-theoretic features of the EEG signals over the scalp and automatic classification of these fea-
tures, we can well-differentiate schizophrenic patients with different dominant symptoms. Moreover, better classification results
can be achieved by passing the EEG features through PCA.
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1. Background

Schizophrenia is a chronic and severe mental illness
leading to a wide range of symptoms such as delusions,
hallucinations, disorganized speech, thinking problems,
and demotivation (1). Schizophrenia usually affects 1%
of the general population and is traditionally diagnosed
by DSM-V criteria (2). Schizophrenia is often categorized
based on its dominant symptoms, including positive and
negative symptoms. Positive symptoms include hallucina-
tion, delusion, and conceptual disorganization, while neg-
ative symptoms are apathy, affective blunting, and poverty
of speech (3). These symptoms can be evaluated in differ-
ent ways, including clinical interviews with expert psychi-
atrists or psychological tests such as PANSS (4). The di-
agnosis of schizophrenia based on dominant symptoms
plays an important role in differential diagnosis, treat-

ment plan, the selection of best medication by a doctor,
and the prognosis of the disease. Although schizophrenic
patients may have positive or negative symptoms, some
patients have both types of symptoms, which one of them
being more dominant. The diagnosis of schizophrenic
patients with dominant positive symptoms is easier than
the diagnosis of those with negative symptoms. The main
challenge in diagnosing schizophrenic patients with neg-
ative symptoms is the similarity of their signs and symp-
toms with other psychiatric diseases, including major de-
pressive disorder (MDD) and schizoid disorder personal-
ity (5). Moreover, patients with dominant-negative symp-
toms tend to be associated with remarkably poor out-
comes and inaccurate prognosis. Accordingly, the precise
categorization of schizophrenic patients based on their
dominant symptoms is still challenging for psychiatrists
(6). To overcome this drawback, it is better to find a quanti-
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tative biomarker for a better diagnosis of this complicated
disease. Different aspects of schizophrenic patients with
positive and negative syndromes have already been stud-
ied. In schizophrenic patients with both symptoms, a few
brain functions and cerebrospinal fluid flow are affected
and show abnormal behavior. In addition, brain structural
change and deterioration in their genetics are observed
(7). To monitor the electrical and functional activities of
the brain, several types of equipment, including electroen-
cephalography (EEG) systems, functional magnetic reso-
nance imaging (fMRI), and positron emission tomogra-
phy (PET), have been developed. Note that schizophrenia
and its subtypes have been studied with these signals and
imaging modalities (8, 9). Recent progress in neuroimag-
ing modalities enables specialists to better understand the
different aspects of various brain diseases. Structural ab-
normalities were also studied in schizophrenia with differ-
ent types of symptomatology and revealed lower volume
in frontal and temporal lobes (10).

Electroencephalography is a quantitative and
physiological-based tool with a high temporal resolu-
tion and has become an important modality in studying
and diagnosing various brain disorders. Since the EEG sig-
nal acquisition is cheap and has no side effects, researchers
have paid attention to using this physiology-based signal
to reveal different abnormalities in the brain. A few studies
have been conducted to differentiate schizophrenic pa-
tients with positive and negative symptoms by analyzing
their EEG signals (11-13).

Temporal synchronization and the oscillation behav-
ior of neurons in the EEG signals are critical factors in
cognition and perception tasks, both of which are im-
paired in schizophrenic patients. These impairments lead
to abnormal EEG behaviors. However, the relationship be-
tween the gate sensory deficit and schizophrenia symp-
toms is still ambiguous. Keil et al. (11) recorded the
EEG signals of 22 schizophrenic patients (with an equal
number of dominant symptoms) and 22 age-matched con-
trols in the presence of an auditory stimulus. They ob-
served an increase in the Gamma-band power sensory gat-
ing in schizophrenic patients with positive symptoms. In
contrast, alpha-band phase synchrony sensory gating was
decreased in schizophrenic patients with negative symp-
toms.

Fan et al. (12) asked a group of hospitalized
schizophrenic patients to do a cognitive task to compare
their cognitive ability with that of the healthy subjects. The
results of their test illustrated some features, such as the
amplitude of EEGs and the frequency distribution of EEGs,
which can guide specialists to classify schizophrenic pa-

tients with different dominant symptoms more accurately.
In another study, Saletu et al. (13) assessed the brain maps
of 48 schizophrenic patients and showed a severe drop
and incline in their Alpha and Beta bands, respectively,
compared to healthy subjects. Moreover, they compared
the EEG variations of schizophrenic patients with negative
and positive symptoms and observed an increase in the
low-frequency EEG bands (e.g., delta/theta) of patients
with dominant-negative symptoms while observed a
drop in the activity of the Alpha band and an increase in
the Beta band in schizophrenic patients with dominant
positive symptoms. A review of the literature reveals that
a few studies have aimed to discriminate schizophrenic
patients with different dominant symptoms, some of
which have traced the increase or decrease in the standard
EEG band powers in classifying schizophrenic patients by
their dominant symptoms.

As EEG signals behave irregularly and obey no specific
pattern, information-theoretic measures are adopted to
decode the EEG variations and reveal their content. The do-
main of information theory is vast and contains several is-
sues such as coding and decoding different types of data
(e.g., text, image, and video) (14) and measuring, rough-
ness, and complexity captured in different types of data,
including EEG signals, MRI images, data stream, micro-
array sequences, and radio signals. One of the main mea-
sures in information theory is entropy. In this regard, sev-
eral methods have been proposed to measure entropy be-
cause the value of entropy directly relates to the amount
of information included in data. The well-known entropy
measures are approximate entropy (ApEn), Kolmogorov
entropy (15), Shannon entropy (in the time domain), spec-
tral entropy, and multiscale entropy (MSE) (16). In a study,
Shannon entropy was applied to the fMRI images to iden-
tify the nonlinear dynamics of the brain functional net-
works in schizophrenic patients (17). The usefulness of
ApEn in diagnosing schizophrenia was studied by Taghavi
et al. (18). They showed that the value of ApEn in most
EEG channels significantly decreased in schizophrenic pa-
tients compared to healthy individuals. Sabeti et al. (19, 20)
extracted ApEn, spectral entropy, Shanon entropy, Limpel-
Ziv, fractal dimension, and auto-regressive (AR) coefficients
from the EEG signals of healthy subjects and schizophrenic
patients to differentiate these two groups of individuals
(21, 22). They achieved a maximum classification accuracy
of 91% for 20 schizophrenic patients and 20 age-matched
controls. Note that the estimated value of entropy by dif-
ferent schemes is not equal, and some measures can reveal
the EEG variations better (for a specific brain disease) than
the other entropy measures.
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Multiscale entropy is an efficient signal processing
scheme to reveal the hidden patterns captured in relatively
short time-series such as segmented EEG. Other entropy
measures quantify only the irregularity of time-series on
a single scale. In contrast, using a coarse-graining proce-
dure, the MSE method quantifies the degree of complexity
on multiple scales (23).

It is noteworthy to mention that extraction of entropy
features (by each of the aforementioned schemes) from
several EEG channels in successive time frames leads to
providing high dimensional feature vectors. Moreover,
some of these features are correlated. To make these fea-
tures independent and also diminish the size of the fea-
tures, some methods [e.g., principal component analysis
(PCA)] can be used (24). The features extracted by PCA guar-
antee to preserve maximum information about the origi-
nal features and provide new features with no dependency
and much lower dimension.

After extracting low dimensional independent fea-
tures, to classify the patients automatically, we need an
intelligent classifier to learn patterns in the offline phase
(train phase) and then classify the test features in the on-
line phase. Since the Bayes classifier is the optimum classi-
fier, this classifier can be used. Bayes’ theorem measures
the probability of each class regarding the input feature
vector. In other words, for each class, a probability den-
sity function is estimated, and an input feature vector is
assigned to that class whose classifier obtains a higher pos-
terior probability. Nonetheless, we need to know the data
distribution to use the general form of the Bayes classifier.
Since the distribution of data is unknown, we cannot use
the standard form of this optimum classier.

Nevertheless, there is a weak form of Bayes classifier,
known as Gaussian Naïve Bayes (GNB), in which each di-
mension obeys a Gaussian distribution. Despite the sim-
plicity of GNB, this classifier can capture the mean and vari-
ance of the features (25). GNB determines the label of each
input by maximizing the posterior probability (26). If we
apply the features to PCA before applying them to the clas-
sifier, we can guarantee that the input features to the GNB
are independent. To classify the feature vectors of each
class, we need to train an exclusive GNB classifier.

This study aimed to evaluate and separate
schizophrenic patients with different symptomatology
by characterizing their EEGs using the MSE method. We
also differentiated schizophrenic subjects from healthy
subjects using the same method. Moreover, the patient’s
MSE patterns on all EEG channels were also studied and
reported. Few studies have quantitatively assessed the
differences in the EEG signals of schizophrenic patients

with different dominant symptoms; hence, this area is still
spending its infancy period, and more research is required
to reveal more differences in their EEG signal patterns. To
the best of the authors’ knowledge, no research has yet
been conducted on discriminating schizophrenic patients
with different dominant symptoms by eliciting the MSE
of their EEGs. Furthermore, in the recent and previous
studies, researchers just showed a positive or negative
correlation of the band power in different EEG bands
in schizophrenic patients with positive and negative
symptoms; however, they did not report the classification
results. To fill up this gap, in this research, after extracting
MSEs from all channels using the successive time frames,
we applied PCA to these feature vectors to diminish their
size and provide new independent features. Then we auto-
matically used the reduced features of the GNB classifiers
(27) to distinguish schizophrenic patients with positive
and negative symptoms automatically. It should be em-
phasized that we aimed to classify patients automatically
by adopting statistical classifiers and training them in the
offline phase.

Moreover, we considered a control group and recorded
their EEG signals to distinguish them from schizophrenic
patients. In other words, a GNB for each class is trained, and
in the test phase, the extracted features of EEG signals are
applied to the three GNBs, and an input label is assigned to
that class, the posterior probability of whose GNB is max-
imized. Another contribution of our study was to collect
and prepare a new EEG dataset from 26 healthy subjects
and 36 schizophrenic patients with positive and negative
symptoms.

The present paper is outlined as follows. Section 2 in-
troduces the collected EEG dataset, and the subjects and
the recording protocol are specified. Then the preprocess-
ing stage is explained, and the candidate features and clas-
sifier are expressed. Section 3 presents the empirical re-
sults of our dataset, and section 4 discusses the pros and
cons of the proposed method compared to past research.
The paper is finally concluded in section 5, and there are
some recommendations for future research.

2. Objectives

In this paper, we have presented a fast and efficient
computer-aided diagnosis (CAD) system, which can be
used in private and general clinics not only to differenti-
ate schizophrenic patients from control subjects but also
to differentiate schizophrenic patients with dominant pos-
itive and negative symptoms. This research is critical since
therapeutics focus more on positive symptoms; however,
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many patients with negative symptoms may also experi-
ence poor outcomes. Accordingly, the automatic and pre-
cise classification of schizophrenic patients with differ-
ent dominant symptoms has a high impact on their treat-
ment process. The diagnostic process is based on record-
ing EEG channels captured by 19 electrodes. The MSE fea-
tures were extracted in successive time frames from all EEG
channels. By applying PCA to the elicited MSE features,
they are projected into a new space with a lower dimension
while the projected features are independent. Three GNB
classifiers were trained for the corresponding three classes
(controls, schizophrenia with positive and negative symp-
toms), which require independent features to be trained.
The proposed CAD system provides high classification ac-
curacy in differentiating the controls and schizophrenic
patients and generates acceptable results for distinguish-
ing between patients with positive and negative symp-
toms. Since there was no publicly available EEG data set for
this purpose, we prepared and recorded an EEG dataset in
a standard manner.

3. Methods

3.1. Data Collection

In this study, 36 patients with schizophrenia and 26
age-matched control participants (from both genders)
with the age range of 25 - 60 years old participated vol-
untarily. All patients were diagnosed by DSM-V criteria,
while the healthy participants had normal mental status.
The patients were selected according to their dominant
symptoms in a structural interview by an expert psychia-
trist. Notably, all patients had symptoms in this study. The
demographic characteristics of the participants are pre-
sented in Table 1. Inclusion criteria were determined based
on the structural clinical psychiatric interview using the
DSM-V criteria. The exclusion criterion was unwillingness
to participate or collaborate in the research study due to
some factors (e.g., irritability).

Their EEG signals were recorded via 21 electrodes (2 ref-
erences and 19 scalp electrodes) molded on a cap according
to the international 10 - 20 positioning system. Using the
EEG recording, the subjects sat upright on a comfortable
chair in the resting state with their eyes closed. The sam-
pling frequency of the EEG setup was 500 Hz. The electrode
FZ was selected as the ground electrode. The EEG recording
session lasted for 35 minutes under the supervision of an
EEG technician, who removed the trials contaminated by
the high amplitude of noise and motion artifact.

3.2. Pre-processing

First, we change the data montage to the average mon-
tage. The recorded EEGs were filtered using a band-pass
filter with 1 Hz and 55 Hz cut-off frequencies, respectively.
Moreover, a notch filter was applied to remove the 50Hz
component to eliminate the power line. After removing
the artifacts by visual inspection, an independent compo-
nent analysis (ICA) was applied to the EEG signals to re-
move the EMG and EOG sources. Finally, the filtered source
signals were projected back on the scalp electrodes (28).

3.3. Multiscale Entropy

Multiscale entropy method for computing the entropy
of biological signals was developed by Costa et al. (23).
This approach computes the sample entropy on the orig-
inal time-series (or "signal") and coarse-scaled series de-
rived from the original signal. To extract MSE from a
window of signal, several embedding time-series are con-
structed by averaging the successive samples within the
non-overlapping windows of increasing length (Figure 1).
Multiple scale time-series are embedded into the original
signal using a coarse-graining procedure. The scale #1 se-
ries is the original time-series. The scale #2-time-series was
obtained by averaging two successive values from the orig-
inal series. Scale #3 was obtained by averaging every three
original values, and this continues, as shown in (Figure 1).

Irregularity at each scale is measured by SampEn,
which is a correlation entropy version of Kolmogorov-Sinai
entropy that is well suited for analyzing short and noisy
experimental data(30). This library is implemented in
Python, which provides high-level integrative functions
like MSE (31).

3.4. Principal Component Analysis

First, the covariance matrix of the successive feature
vectors should be calculated for extracting new features
by PCA. Afterward, eigenvalues and their corresponding
eigenvectors are determined. Then, we sort the eigenval-
ues in the descending order and apply an empirical thresh-
old to the sorted values; bigger values are selected, and the
eigenvectors corresponding to low eigenvalues are elimi-
nated. This approach achieves a low number of new fea-
tures with high variance (equal to high entropy).

3.5. Gaussian Naïve Bayes Classifier

Similar to the Bayes classifier, the GNB classifier is a
supervised classifier, and the dimensions of input feature
vectors are assumed to be independent. Accordingly, the
conditional probability of each feature vector is equal to
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Table 1. Demographic Data of Participants

Variables Control Group Positive Symptoms Negative Symptoms

Number of subjects in each group 26 18 18

Gender

Male 13 8 7

Female 13 10 11

Age (y) 31 ± 4.1 36.6 ± 8.6 37.8 ± 7.8

Duration (y) 7.3 ± 2.5 8.6 ± 1.9

Figure 1. Describing the coarse-graining procedure in determining multiscale entropy (MSE) for scales #2 and #3 (29).

the multiplication of the conditional probability of all uni-
variate features. Thus, GNB does not consider the covari-
ance among the predictor variables due to the indepen-
dence of features. Hence, the posterior probability (Y)
given class kth for the input of X1 ..., XP is modeled accord-
ing to the Bayes theorem (29).

3.6. Proposed Method

For simplicity, the roadmap of this paper is demon-
strated in Figure 2. First, the signals are acquired from
19 channels and then preprocessed. After removing their
noise, MSE from each channel is determined in successive
windows, and they are then passed through the PCA trans-
form to make the new features independent from each
other. They are finally applied to three GNBs, each of which

is trained by another class. For each input feature vector,
the GNB with the highest output probability determines
the class label of the input pattern.

4. Results

This section presents the empirical results of applying
the EEG entropy features to the classifiers. After recording
the signals and applying the preprocessing method to the
EEGs, signals are segmented by the window length of 1s,
while successive windows have a 50% overlap. The entropy
features were extracted from each windowed signal, and
the features of all 19 channels belonging to identical time
frames were arranged into feature vectors. The length of
the recorded EEG signals is 185 seconds for each subject.
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Figure 2. The roadmap of the proposed scheme for distinguishing three groups of subjects. The classifiers GNB#1, GNB#2, and GNB#3 are trained for schizophrenic patients
with positive symptoms, schizophrenics with negative symptoms, and control groups, respectively. Since each of these classifiers provides a probability given input data, the
label of the input sample is determined by taking a maximum operator on the outputs of the three classifiers.

Figure 3A shows the average MSE for the control group and
the schizophrenic patients. The table shows P-values for
schizophrenic patients with positive and negative symp-
toms. Moreover, Table 2 presents the extracted MSE values
at each EEG channel for the three groups.

Moreover, Table 3 reports the P-value for the patients
with positive symptoms and controls. To see the difference
between the schizophrenic patients with different domi-
nant symptoms, we compared their extracted features (Fig-
ure 3B), and their P-values are illustrated in Table 3. To
decrease overlap between the MSE features of the corre-
sponding groups, PCA is applied to the MSE features of all
channels to reduce the dimension of original features by
projecting them onto only a few principal components cor-
responding to greater eigenvalues. In this research, there
were two new extracted features, which preserve data vari-
ation and information as much as possible. Moreover, we
applied the extracted features to three GNBs, each sepa-
rately trained for one of the classes.

First, we exploit these models to predict and distin-
guish patients from the control group. After conduct-
ing 5-fold cross-validation, the average classification ac-
curacy in differentiating controls from schizophrenic pa-
tients using GNBs is reported in Table 4. Then we ap-
plied the same procedure to differentiate schizophrenic
patients with positive and negative symptoms. After con-
ducting 5-fold cross-validation, the average accuracy in dif-
ferentiating schizophrenic patients with different symp-
toms is shown in Table 4, which is not convincing. Finally,
the total accuracy of this method for the three classes (con-
trols group, positive prominent symptoms, and negative
prominent symptoms) was determined (Table 4).

In Figure 4, the confusion matrices are presented for
the three classes on five-folds. Moreover, the boundary of
the three classes for the five folds cross-validation is also

demonstrated.

5. Discussion

In this section, we discuss similar and different meth-
ods concerning this research. First, we should empha-
size that just a few studies have focused on differentiat-
ing schizophrenic patients based on their dominant symp-
toms. In contrast, many research studies are dedicated
to classify schizophrenic patients from normal subjects or
other mental diseases.

The neurobiology of schizophrenic patients with posi-
tive symptoms is different from that of patients with neg-
ative symptoms. In other words, schizophrenic patients
with positive symptoms involve the dopamine and gluta-
mate networks and affect the mesolimbic pathways. In
contrast, schizophrenic patients with negative symptoms
involve fronto-cortical temporal and cortico-striatal path-
ways (32). The results are in line with the findings re-
ported in Tables 2 and 3. According to the tables, the en-
tropy values on the electrodes, located above the fronto-
cortical temporal and also above the limbic systems, re-
vealed significant differences between the schizophrenic
patients with positive and negative dominant symptoms.

Keil et al. (11) recorded the EEG signals of 22
schizophrenic patients and 22 age-matched controls.
They found sensory gating deficits in schizophrenic pa-
tients compared to the age-matched controls. In this study,
we determined high classification accuracy between the
schizophrenic patients and the control group, which is in
line with the findings reported in (11). In schizophrenic
patients with positive symptoms, there is a positive
correlation with the EEG power in the Gamma-band. Fur-
thermore, the amount of phase synchrony sensory gating
in the Alpha-band is negatively correlated in patients with
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Figure 3. Multi-scale entropy (MSE) values. A, The average entropy of patients compared to the control group across all channels and the standard deviation of all channels are
presented; B, The average entropy of patient sub-groups and control groups are presented. Moreover, the overlap between the patient and control groups is still considerable.

negative symptoms. Although they empirically approved
these correlations, they reported no classification result.
Moreover, the desynchronization of the EEG signals in the
Alpha-band is in line with the significance of entropy as an
informative feature to classify these groups. Saletu et al.
(13) investigated the EEG brain maps of 48 schizophrenic
patients. They demonstrated a significant decrease in
the Alpha band and a simultaneous increase in the
Beta-band of the patients compared to healthy subjects.
Schizophrenic patients with negative symptoms showed
a frontotemporal augmentation in the delta/theta-band
activity, while patients with florid symptomatology ex-
pressed opposite results. In schizophrenic patients with
positive symptoms, there is a decrease in the alpha-band
while Beta-band’s activity is increased. Unlike our study,
these studies did not report the classification accuracy for
the two groups and just reported some correlations be-
tween the standard EEG bands and their symptoms. John
et al. (33) recorded the EEG signals of 28 schizophrenic

patients and 25 healthy subjects by 30 electrodes. The EEG
band power showed significant differences in the alpha-2,
delta, and theta bands of the healthy and schizophrenic
subjects.

In contrast, insignificant differences are observed in
the alpha-1, alpha-2, theta, and delta bands between
schizophrenic patients with positive and negative symp-
toms. In other words, differences in the band power in
different bands lead to the difference in the irregularity
and entropy of the EEGs originated from schizophrenic dis-
ease with positive and negative symptoms. This research
does not report the classification results between the two
groups. This is because there might be a high overlap be-
tween these correlations, which cannot lead to a consider-
able classification result. Begic et al. (34) investigated the
EEG signals of 47 schizophrenic patients (25 patients with
positive and 22 patients with negative symptoms) and 50
normal subjects over the frontal, temporal, parietal, and
occipital regions (F3, F4, C3, C4, T3, T4, P3, P4, O1, and O2). In

Iran J Psychiatry Behav Sci. 2022; 16(3):e118000. 7



Afrooz E and Taghavi M

Gaussian naive bayes + PCA dimention
 reduction on fold: 1

Confusion matrix, with normalization Confusion matrix, with normalization

Confusion matrix, with normalizationConfusion matrix, with normalization

Confusion matrix, with normalization

Gaussian naive bayes + PCA dimention
 reduction on fold: 3

Gaussian naive bayes + PCA dimention
 reduction on fold: 2

Gaussian naive bayes + PCA dimention
 reduction on fold: 5

Gaussian naive bayes + PCA dimention
 reduction on fold: 4

F2

F2

F1 F1

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

F2

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

F2

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

F2

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.5        -1.0    -0.5       0.0       0.5        1.0        1.5       2.0
F1

-1.5        -1.0    -0.5       0.0       0.5        1.0        1.5       2.0

F1 F1
-1.5        -1.0    -0.5       0.0       0.5        1.0        1.5       2.0

-1.5        -1.0    -0.5       0.0       0.5        1.0        1.5       2.0

-1.5        -1.0    -0.5       0.0       0.5        1.0        1.5       2.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Negative

Control

Positive

Negative

Control

Positive

Tr
u

e 
la

b
el

Tr
u

e 
la

b
el

Negative

Control

Positive

Tr
u

e 
la

b
el

 Predicted label

Negativ
e

Contro
l

Posit
ive

 Predicted label
Negativ

e

Contro
l

Posit
ive

 Predicted label

Negativ
e

Contro
l

Posit
ive

1.0

0.8

0.6

0.4

0.2

0.0

Negative

Control

Positive

Tr
u

e 
la

b
el

 Predicted label
Negativ

e

Contro
l

Posit
ive

1.0

0.8

0.6

0.4

0.2

0.0

Negative

Control

Positive

Tr
u

e 
la

b
el

 Predicted label
Negativ

e

Contro
l

Posit
ive

Neg
Ctrl
Pos
Test-neg
Test-ctrl
test-pos

Neg
Ctrl
Pos
Test-neg
Test-ctrl
test-pos

Neg
Ctrl
Pos
Test-neg
Test-ctrl
test-pos

Neg
Ctrl
Pos
Test-neg
Test-ctrl
test-pos

Neg
Ctrl
Pos
Test-neg
Test-ctrl
test-pos

Figure 4. GNB classification on PCA features. The numerical results of the GNB classifiers in terms of confusion matrix are presented for the three classes. Moreover, boundaries
formed by GNBs among the three classes (in different validation folds) and the samples of different classes on two dimensions extracted by PCA are demonstrated.
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Table 2. The Mean and Standard Deviation of Multiscale Entropy Features for Each Electroencephalography Channel for Each Group of Subjects a , b

Channels Control Group Positive Sub-group Negative Sub-group

FP1 0.54 ± 0.04 0.56 ± 0.22 0.38 ± 0.15

FP2 0.53 ± 0.04 0.54 ± 0.21 0.37 ± 0.13

F3 0.49 ± 0.04 0.58 ± 0.26 0.36 ± 0.13

F4 0.53 ± 0.03 0.57 ± 0.25 0.38 ± 0.15

C3 0.49 ± 0.04 0.60 ± 0.29 0.37 ± 0.14

C4 0.50 ± 0.03 0.56 ± 0.24 0.37 ± 0.14

P3 0.49 ± 0.03 0.56 ± 0.25 0.35 ± 0.13

P4 0.48 ± 0.03 0.53 ± 0.21 0.33 ± 0.11

O1 0.53 ± 0.03 0.50 ± 0.19 0.36 ± 0.11

O2 0.51 ± 0.04 0.50 ± 0.20 0.35 ± 0.11

F7 0.51 ± 0.03 0.55 ± 0.18 0.38 ± 0.10

F8 0.51 ± 0.03 0.53 ± 0.17 0.38 ± 0.12

T3 0.54 ± 0.04 0.53 ± 0.20 0.36 ± 0.12

T4 0.53 ± 0.04 0.53 ± 0.19 0.36 ± 0.12

T5 0.52 ± 0.04 0.50 ± 0.19 0.36 ± 0.15

T6 0.49 ± 0.04 0.50 ± 0.20 0.33 ± 0.12

Fz 0.51 ± 0.04 0.55 ± 0.21 0.34 ± 0.11

Cz 0.49 ± 0.04 0.56 ± 0.19 0.35 ± 0.10

Pz 0.53 ± 0.04 0.56 ± 0.20 0.35 ± 0.12

Total, over all channels 0.516 ± 0.025 0.547 ± 0.205 0.364 ± 0.117

a Values are expressed as mean ± SD.
b the mean and standard deviations over all channels for each group are also illustrated.

line with previous studies, differences were observed in the
delta and theta bands over the frontal regions between the
schizophrenic patients with positive and negative symp-
toms. Moreover, the differences between schizophrenic pa-
tients (both sub-groups) and age-matched controls were in
the delta, theta, alpha, and beta-2 bands. Such differences
in the band power of standard EEG bands imply variation
in the entropy value between the schizophrenic patients
with positive and negative symptoms. It should be men-
tioned that, similar to previous works, they reported no
classification rate between the two groups.

In contrast, they are similar to our work in terms of re-
porting the feature values on different EEG channels. In
our work, we have extracted the MSE features from each
channel and elicited features from 19 channels, and re-
duced their dimension by PCA. We finally apply them to
three Gaussian Naïve Bayes classifiers, each of which was
trained for one class. We should emphasize that none of
the previous work deploys an intelligent and statistical
classifier to differentiate their cases automatically. It is
confirmed that the entropy feature significantly varies be-

tween schizophrenic patients and healthy individuals (18,
19). The reason for choosing the entropy is that this feature
can reveal the captured irregularity and the roughness of
the EEG signals. Due to the differences in the interconnec-
tions between the two brain hemispheres in schizophre-
nia with positive and negative symptoms, different en-
tropy values for these two schizophrenia sub-groups are ex-
pected. Although schizophrenia affects several parts of the
brain, some parts are more affected because of their func-
tional role in the brain. For example, the temporal lobe,
which includes the limbic system and anatomical parts
that dopaminergic fibers pass, also has better P-values on
average in our method, as illustrated in Table 1.

In the second research category, the research findings
illustrated that schizophrenic patients were differentiated
from healthy subjects or other mental illnesses. In this re-
gard, Boostani and Sabeti (9) showed the differences ar-
eas among the aforementioned groups by observing the
fMRI and PET images of healthy subjects and schizophrenic
subjects. In another study, Boostani and Sabeti (35) devel-
oped the brain map of schizophrenic and control subjects,

Iran J Psychiatry Behav Sci. 2022; 16(3):e118000. 9
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Table 3. The P-Values for Schizophrenic and the Healthy Subjects Over All Channels a

Channels
Significance of P-Values Between Schizophrenic Patients and Control Subjects

Schizophrenic Patients (Both Groups) vs. Control Group Schizophrenic Patients with Positive Symptoms vs.
Schizophrenic Patients with Negative Symptoms

Fp1 ×
√

Fp2 ×
√

F3 ×
√

F4 ×
√

C3 ×
√

C4 ×
√

P3 ×
√

P4 ×
√

O1
√ √

O2
√ √

F7 ×
√

F8 ×
√

T3
√ √

T4
√ √

T5
√ √

T6
√ √

Fz ×
√

Cz ×
√

Pz
√ √

a The
√

symbol indicated P < 0.05, while the× symbol indicated P > 0.05.

Table 4. Classification Accuracy Between the Schizophrenic Patients with Different Dominant Symptoms and Also Between Schizophrenic Patients and Healthy Subjects

Healthy Subjects Versus Schizophrenic with
Positive Symptoms Versus Schizophrenic with
Negative Symptoms (Three Classes); %

Schizophrenic Patients Versus Healthy Subjects
(Two Classes); %

Schizophrenic Patients with Positive and
Negative Symptoms (Two Classes); %

77.8 94.5 65

and optimized the band power differences on 20 chan-
nels acquired from 20 schizophrenic patients and 20 age-
matched controls. They could classify schizophrenic pa-
tients and control subjects using their brain map features
with 84% accuracy.

Oscillatory activity among the neurons and the tem-
poral synchronization of neurons (36) are effective factors
in cognition and perception. It is demonstrated that in
schizophrenic patients, the synchronization of their EEG is
reduced during the visual integration and attention task
(37). Visual integration means the ability to form a three-
dimensional reconstruction of a spatial object (global ob-
ject) from its side or local elements. Their visual integra-
tion is assessed by measuring their event-related poten-
tials (ERP) (38), especially by characterizing the compo-

nents of P100, N100, and P200. The function of visual path-
ways seems to be affected in schizophrenic patients.

Moreover, the synchronization in the gamma band
(30 - 60Hz) declined in the schizophrenic patients (37).
Nonetheless, nothing is reported about the differences
among the visual evoke potential (VEP) features of patients
with positive and negative symptoms. Evidently, the neu-
ral synchronization is distorted in schizophrenic patients;
therefore, entropy-based EEG features from different chan-
nels can differentiate healthy subjects from schizophrenic
patients (18, 19). Although schizophrenia symptoms af-
fect the oscillatory activity of the EEG signals, the link be-
tween these symptoms and the EEG variation is unknown
yet. Two different attempts have been made to differen-
tiate schizophrenic patients and bipolar manic depres-
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sion (BMD) patients. In one attempt, the synchroniza-
tion of two-by-two EEG channels is used as the EEG fea-
tures, and in the other one, steady-state VEP (SSVEP) have
been extracted from the EEG signals and then characterize
these templates to classify these two groups (39, 40). They
reported convincing results when using synchronization
measures and extracting the SSVEP features to distinguish
schizophrenic patients finely. We hope that these two in-
dicators, along with the functional features of brain con-
nectivity (41), can help the psychiatrists better distinguish
schizophrenic patients with positive and negative domi-
nant symptoms.

The limitation of this study is the medium size of the
participants, which was caused by the lack of time and fi-
nancial issues. More studies with larger groups of partici-
pants are needed to evaluate such methods better. More-
over, the EEG signals are acquired in the resting state. If
we had an EEG setup equipped with audio and visual stim-
uli, we could record the audio and VEP, and we may find
more discriminating information on the evoke potentials
of these three groups and increase their classification rate.
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