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Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative condition characterized by a gradual onset and progressive
deterioration. Recent studies have demonstrated that certain antihyperglycemic drugs can slow down the progression of AD.
Objectives: This study aimed to investigate the effects of sitagliptin (SG) and metformin (MTF) on scopolamine (SCP)-induced
learning and memory impairment in both diabetic and non-diabetic mice.
Methods: This experimental study was conducted with two subgroups of mice, one diabetic and one non-diabetic. Over a 14-day
period, the animals received different doses of SG and MTF in addition to a combination of these two drugs. On the 14th day, SCP
was administered, followed by a memory impairment test (passive avoidance learning) conducted 45 minutes later. Subsequently,
the animals were sacrificed, and brain samples were collected to measure oxidative stress biomarkers, including malondialdehyde
(MDA), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD).
Results: The obtained findings revealed that intraperitoneal injection of SCP impaired learning and memory function and caused
brain oxidative damage in both diabetic and healthy mice. In healthy mice, the administration of high doses of MTF (500 mg/kg) and
SG (20 mg/kg), in addition to the combination of these two drugs, significantly reduced memory impairment and oxidative stress.
However, in the diabetic groups, only MTF and the combination of MTF with SG could reduce memory impairment and oxidative
stress.
Conclusions: The authors concluded that these antidiabetic drugs ameliorated oxidative stress by increasing antioxidant capacity
and improved scopolamine-induced memory impairment. Furthermore, the combination of these two drugs yielded more
favorable results.
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1. Background

Memory impairment diseases encompass conditions
that hinder a person’s ability to retain information.
Some common examples of memory impairment
diseases include Alzheimer’s disease (AD), dementia,
Parkinson’s disease, Huntington’s disease, and traumatic
brain injury (1). Alzheimer’s disease is a chronic
neurodegenerative condition that typically manifests
slowly and progressively worsens. It is an incurable,
debilitating, and often fatal disease that primarily
affects individuals over the age of 65 years. Alzheimer’s
disease accounts for 60% to 70% of dementia cases, with
the most common initial symptom being short-term

memory impairment and difficulty in recalling new
information and recent events (2). In AD, there is
a disruption in the transmission of messages in the
cholinergic nerves of the brain. Furthermore, a decrease
in the number of cholinergic neurons and a reduction in
acetylcholine transferase activity in the cerebral cortex
and hippocampus of Alzheimer’s patients have been
reported (3).

Scopolamine (SCP) is a muscarinic receptor antagonist
that induces temporary memory impairment. Studies
have demonstrated numerous similarities between
memory deficits in Alzheimer’s patients and animals
treated with scopolamine, making scopolamine a
valuable tool for creating an animal model of AD in
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pharmacological research (4).
Recent studies have shed light on the role of diabetes in

the development of AD. As individuals become resistant to
insulin, their brain tissue’s glucose tolerance diminishes,
hindering optimal glucose utilization by the brain. This
disorder can lead to nerve cell death and a decline in
the brain’s ability to process messages (5). Moreover,
beta-amyloid (Aβ) plaques, which accumulate in the
brains of Alzheimer’s patients, interfere with the normal
functioning of insulin receptors, reducing the brain
tissue’s sensitivity to insulin. Type 2 diabetes is now
considered a significant risk factor for AD, with the
prevalence of AD in type 2 diabetes patients reported to
range from 60% to 70% (6).

Additionally, oxidative stress plays a pivotal role in
the pathogenesis of AD. Oxidative stress arises when
there is an imbalance between the production of reactive
oxygen species (ROS) and their detoxification, resulting in
damage to cellular components, such as proteins, lipids,
and deoxyribonucleic acid (DNA). The accumulation of
Aβ protein in the brain is believed to trigger oxidative
stress, leading to neuronal damage and inflammation.
Furthermore, oxidative stress might contribute to the
formation of fibrillary tangles, a hallmark of AD (7, 8).

Sitagliptin (SG) and metformin (MTF) are
anti-hyperglycemic medications utilized to regulate
blood glucose levels in diabetic patients. These drugs
operate by enhancing insulin secretion, augmenting
the sensitivity of pancreatic alpha and beta cells to
insulin, increasing beta cell mass and insulin production,
reducing the rate of gastric emptying and appetite,
enhancing insulin receptor sensitivity, and decreasing
glucagon secretion from the pancreas (9, 10). Previous
studies have demonstrated that SG and MTF can influence
the symptoms of AD by regulating blood glucose levels
and promoting the enhancement and fortification of
insulin function (11, 12).

2. Objectives

This study was designed to investigate the effect of SG
and MTF on learning and memory impairment induced by
scopolamine in diabetic and non-diabetic mice.

3. Methods

3.1. Drugs and Chemicals

Sitagliptin, MTF, SCP, and streptozotocin (STZ)
with a purity greater than 99% were purchased from
Sigma-Aldrich Co (St. Louis, MO, USA). All other chemicals
used were of analytical grade.

3.2. Animals

BALB/c male albino mice weighing 25 - 30 g were
utilized for the study. The animals were obtained from
the Animal House of Mazandaran University of Medical
Sciences, Sari, Iran, and were maintained at a temperature
of 23 ± 2°C with a 12-hour light/dark cycle. Food and water
were consistently provided to the animals, except during
the experiments, and each animal was used only once.

3.3. Experimental Protocol

The present study was conducted in two sections
involving diabetic and non-diabetic mice. In the
non-diabetic section, the mice were randomly divided
into 8 groups, with each group consisting of 8 animals.
These groups were as follows:

Group 1 (control): The animals received normal saline
for 14 successive days.

Group 2 (positive control): The animals received SCP
(20 mg) on the 14th day.

Groups 3 and 4: The animals received SG at doses of 10
mg and 20 mg, respectively, and SCP (20 mg) on the 14th
day.

Groups 5 and 6: The animals received MTF at doses of
250 mg and 500 mg, respectively, and SCP (20 mg) on the
14th day.

Group 7: The animals were given SG (10 mg/kg) and MTF
(250 mg/kg) for 14 successive days, along with 20 mg/kg of
SCP on the 14th day.

Group 8: The animals were given SG (20 mg/kg) and
MTF (500 mg/kg) for 14 successive days, along with 20
mg/kg of SCP on the 14th day.

In the diabetic section, blood sugar was measured
before the injection of STZ (time 0) and 2 weeks after STZ
treatment using an Accu-Chek Active glucometer (Roche,
Switzerland). The mice with blood sugar levels above 150
mg/dL were selected for testing and randomly divided into
5 groups, each consisting of 8 animals. These groups were
as follows:

Group 1 (control): Diabetic mice received normal saline
for 14 consecutive days.

Group 2 (positive control): Diabetic mice were treated
with SCP (20 mg) on the 14th day.

Group 3: Diabetic mice received MTF (500 mg/kg) for 14
successive days, along with 20 mg/kg of SCP on the 14th day.

Group 4: Diabetic mice received SG (20 mg/kg) for 14
successive days, along with 20 mg/kg of SCP on the 14th day.

Group 5: Diabetic mice received SG (20 mg/kg) and MTF
(500 mg/kg) for 14 successive days, along with 20 mg/kg of
SCP on the 14th day.

All drug doses were administered intraperitoneally
daily for 14 consecutive days. On the 14th day, the
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memory recall test was conducted 45 minutes after the last
administration using a shuttle box apparatus (13).

3.4. Diabetes Induction

To induce diabetes mellitus in mice, a dose of 90
mg/kg of STZ was administered intraperitoneally for 2
consecutive days following an overnight fasting period
(without food). One week after the STZ treatment, blood
samples (0.1 mL) were collected from the mice, and
their glucose levels were measured using a glucometer
that was approved by the United States Food and Drug
Administration (FDA) and the reference laboratory in
Iran (Accu-Chek Active, Roche, Switzerland). The mice
with glucose concentrations higher than 180 mg/dL after
receiving STZ were considered diabetic mice (13, 14).

3.5. Behavioral Test

3.5.1. Memory Assessments and Passive Avoidance Learning

The experiment was conducted in three stages using a
shuttle box apparatus.

The shuttle box apparatus consists of two plexiglass
chambers, one light and one dark, each with dimensions of
20× 20× 40 cm. These chambers are connected by an 8×
8 cm opening. Both sections have stainless steel metal bars
on the floor spaced 1 cm apart, through which an electric
shock can be delivered to the animal’s feet when in the dark
chamber. A 60-watt lamp was used to illuminate the light
chamber.

Stage 1. Acclimatization: Initially, all the animals were
familiarized with the shuttle box apparatus. Mice from
each group were individually placed in the shuttle box, and
after 5 seconds, the door separating the two chambers was
opened, allowing the mice to explore both the dark and
light chambers freely for 2 minutes. Typically, mice tend to
naturally move into the dark chamber during this stage. As
soon as a mouse entered the dark area, the door was closed,
and the mice were returned to their cages.

Stage 2. Acquisition: Thirty minutes after the
acclimatization phase, the acquisition phase began.
Initially, the mice were placed in the well-lit section of
the box, and they were given 2 minutes to enter the dark
compartment. Once a mouse entered the dark area, the
door was closed, and an electric shock with a frequency of
50 Hz and an intensity of 1.2 mA was applied to the animal’s
leg for 1.5 seconds. The mouse was then removed from the
dark chamber and returned to its cage. After a 2-minute
interval, the mouse was placed back in the well-lit area to
assess learning. Successful learning was defined as not
re-entering the dark area within 120 seconds. If the mouse
re-entered the dark compartment, the door was closed a
second time, and the shock was applied as before. This

process was repeated until the mice learned not to enter
the dark compartment. The number of attempts required
for each mouse to learn was recorded.

Stage 3. Retention: The retention test was conducted
24 hours after the training. During this phase, the mouse
was placed in the well-lit compartment, and 5 seconds
later, the door to the dark compartment was opened. The
time it took for the animal to enter the dark compartment
(step-through latency) and the duration it remained there
(time spent in the dark compartment) were recorded for a
period of 10 minutes (15, 16).

3.6. Sample Collection

Immediately after the behavioral test, the animals
were anesthetized using a combination of ketamine
(100 mg/kg, intraperitoneal) and xylazine (10 mg/kg,
intraperitoneal). Subsequently, the animals’ skulls were
opened, and their brains were rapidly isolated. The brain
tissue was preserved at -70°C and later utilized for tissue
antioxidant assays.

3.7. Biochemical Assay

For this purpose, brain tissue was initially
homogenized in a 0.1 M phosphate buffer with a
pH of 7.4 at a concentration of 10% using an FSH-2A
homogenizer. Subsequently, it was centrifuged at 1000
rpm for 10 minutes using a refrigerated centrifuge (Hettich
Zentrifugen, Germany) to remove unbroken cells and cell
debris. The Bradford method was employed to assess the
protein content of tissue homogenates (17). The tissue
homogenate was then utilized to measure oxidative stress
factors, including malondialdehyde (MDA), glutathione
(GSH), glutathione peroxidase (GPx), catalase (CAT), and
superoxide dismutase (SOD).

3.8. MDA and GSHMeasurement

In the present study, the Buege and Aust method
(18) was employed to determine the MDA levels.
Malondialdehyde concentration was determined using
tetraethoxypropane as a standard, and the results were
expressed in nmol/mg of protein. Glutathione content was
measured using the Ellman method (19). A GSH standard
was used to create the calibration curve, and GSH content
was expressed in nmol/mg of protein.

3.9. SOD, CAT, and GPx Activity Assay

ZellBio commercial kit was used to measure CAT,
SOD, and GPx activity. These kits use standard protocols
for measuring the aforementioned enzymes (20, 21).
Additionally, the activities of CAT, SOD, and GPx were
expressed as units per gram of tissue.
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3.10. Ethics Statement

This experimental study was conducted according to
the Animal Ethics Committee Guidelines of Mazandaran
University of Medical Sciences, Sari, Iran (ethics code:
IR.MAZUMS.REC.1399.633).

3.11. Statistical Analysis

Statistical analysis was conducted using GraphPad
Prism software (version 6). The results were presented
as mean ± standard error of the mean (SEM). The
normality of data distribution was assessed using the
Kolmogorov-Smirnov test. One-way analysis of variance
(ANOVA) was employed to compare the means of the
groups, and post hoc analysis was performed using
Tukey’s test. A difference with a P-value of < 0.05 was
considered statistically significant.

4. Results

4.1. Effect of Metformin and Sitagliptin on Learning and
Memory Retrieval

The current study’s findings indicated that the
administration of SCP in both diabetic and non-diabetic
animals significantly decreased step-through latency
compared to the control group (P < 0.001). In non-diabetic
mice, the administration of high doses of MTF and SG (500
and 20 mg/kg, respectively) significantly increased this
parameter compared to the SCP group (P < 0.001).
Additionally, treatment with the combination of MTF and
SG in groups 7 and 8 significantly reversed the memory
impairment induced by SCP (P < 0.001). Notably, group
8, which was treated with a high dose of MTF and SG (500
mg/kg MTF + 20 mg/kg SG), showed the most favorable
results (Figure 1).

In diabetic mice, the administration of MTF (500
mg/kg), SG (20 mg/kg), and the combination of MTF
and SG (500 and 20 mg/kg, respectively) significantly
increased step-through latency compared to the SCP
group. Moreover, the best results were observed in the
groups receiving MTF and the combination of MTF and SG
(P < 0.001) (Figure 1).

A comparison between the similar treatment groups in
diabetic and non-diabetic mice showed a slight elevation
of this parameter in diabetic animals compared to
non-diabetic animals. However, this increase was not
statistically significant (P > 0.05).

4.2. Effect of Metformin and Sitagliptin on Tissue Oxidative
Stress Parameters

In the present study, to gain a deeper understanding
of the mechanism by which MTF and SG improve learning
and memory impairment, this study evaluated oxidative
stress parameters in brain tissue. Specifically, we measured
MDA levels, GSH content, and SOD, GPx, and CAT activities
in brain tissue (Figures 2-5).

4.2.1. Effect of Metformin and Sitagliptin on Malondialdehyde
Level in Brain Tissue of Mice Exposed to Scopolamine

In terms of lipid peroxidation, the current study’s
findings revealed that SCP administration in both diabetic
and non-diabetic animals significantly increased MDA
levels compared to the control group (P < 0.001). In
non-diabetic mice, the administration of high doses of
MTF and SG (500 and 20 mg/kg, respectively) significantly
decreased MDA levels compared to the SCP group (P <

0.001 and P < 0.01, respectively) (Figure 2). Treatment
with the combination of MTF and SG in groups 7 and 8
also significantly decreased MDA levels compared to the
SCP group (P < 0.001). Moreover, there was no significant
difference between groups 7 and 8 (P > 0.05).

In diabetic mice, the administration of MTF (500
mg/kg) and the combination of MTF and SG (500 and 20
mg/kg, respectively) significantly decreased MDA levels,
compared to the SCP group (P < 0.05 and P < 0.01,
respectively) (Figure 2). Comparing similar treatment
groups in diabetic and non-diabetic mice revealed that this
parameter was slightly higher in diabetic animals than
in non-diabetic animals; however, this increase was not
significant (P > 0.05).

4.2.2. Effect of Metformin and Sitagliptin on Glutathione
Content in Brain Tissue of Mice Exposed to SCP

The results indicated that the administration of SCP
in both diabetic and non-diabetic animals significantly
reduced GSH content compared to the control group
(P < 0.001) (Figure 3). In non-diabetic mice, the
administration of high doses of MTF and SG (500 and
20 mg/kg, respectively) and a combination of MTF and SG
(250 and 10 mg/kg, respectively) led to a slight increase
in GSH content compared to the SCP group (P > 0.05).
However, treatment with the combination of high doses
of MTF and SG (500 and 20 mg/kg, respectively) in group
8 significantly increased GSH content compared to
the SCP group (P < 0.001) (Figure 3). In diabetic mice,
pretreatment with a combination of MTF and SG (500
and 20 mg/kg, respectively) significantly increased GSH
content compared to the SCP group (P < 0.05) (Figure 3).
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Figure 2. Effect of metformin (MTF) and sitagliptin (SG) on malondialdehyde (MDA) level each value represents the mean ± standard error of the mean (SEM) for 8 mice. *
Significantly different from the control group (* P < 0.05, ** P < 0.01, *** P < 0.001). # Significantly different from the scopolamine (SCP) group (# P < 0.05, ## P < 0.01,
### P < 0.001).

4.2.3. Effect of Metformin and Sitagliptin on Antioxidant
Enzymes Activity in Brain Tissue

Comparison of antioxidant enzyme activity in
different groups revealed that SCP administration in both
diabetic and non-diabetic animals significantly decreased
the activities of SOD, GPx, and CAT compared to the control
group (P < 0.001) (Figures 4 and 5). When measuring the
activity of antioxidant enzymes in non-diabetic mice, it

was observed that the administration of MTF (250 and
500 mg/kg), SG (20 mg/kg), and a combination of MTF and
SG (250 and 10 mg/kg, 500 and 20 mg/kg) significantly
increased GPx activity, compared to the SCP group (P <

0.001). Additionally, pretreatment with MTF (500 mg/kg)
and the combination of MTF and SG (250 and 10 mg/kg,
500 and 20 mg/kg) significantly elevated CAT activity
in brain tissue, compared to the SCP group (P < 0.001).
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Moreover, pretreatment with MTF (500 mg/kg), SG (20
mg/kg), and the combination of MTF and SG (250 and 10
mg/kg, 500 and 20 mg/kg) significantly increased SOD
activity in comparison to the SCP group (P < 0.001) (Figure
4).

In diabetic mice, the group receiving a combination
of MTF and SG (500 and 20 mg/kg, respectively) showed
a significant increase in GPx activity compared to the
SCP group (P < 0.05). Regarding CAT and SOD activities,
pretreatment with MTF (500 mg/kg) and the combination
of MTF and SG (500 and 20 mg/kg) significantly elevated
the activities of these enzymes in brain tissue, compared
to the SCP group (P > 0.05 and P < 0.001, respectively)

(Figure 5). Furthermore, when comparing similar
treatment groups in diabetic and non-diabetic mice,
it was observed that the levels of GSH, CAT, GPX, and SOD in
diabetic animals were lower than in non-diabetic animals,
although this difference was not statistically significant (P
> 0.05).

5. Discussion

In the current study, we assessed the impact of
SG and MTF as single and combined treatments on
scopolamine-induced learning and memory impairment
in both diabetic and non-diabetic mice. The results
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revealed that the intraperitoneal injection of 20 mg/kg of
SCP induced learning and memory impairment in both
healthy and diabetic mice. These findings align with prior
research, where the administration of SCP was observed to
increase oxidative stress and induce memory impairment
in mice (22, 23).

There is compelling evidence suggesting that certain
antidiabetic drugs, such as MTF and SG, might have a
beneficial effect in the treatment of AD. These drugs have
been shown to reduce brain inflammation and improve
cognitive function in animal studies (24-26). Although
there is limited research on the combined use of MTF
and SG specifically for improving cognitive function,
both drugs have individually demonstrated potential
benefits for cognitive function and memory impairment.
Metformin has been shown to enhance cognitive function
in some studies, possibly by reducing brain inflammation
and oxidative stress (27). Sitagliptin has also been shown
to mitigate neuroinflammation and oxidative stress in the
brain while enhancing neurotransmitter levels (28, 29).

The present study’s findings indicated that in healthy
mice, high doses of MTF (500 mg/kg) and SG (20 mg/kg)
and their combination (MTF + SG) significantly improved
learning and memory impairment induced by SCP. In
the second stage of the research involving diabetic mice,
intraperitoneal injections of MTF and SG, both individually
and in combination, improved the learning and memory
impairment in diabetic mice. However, the combination
of MTF (500 mg/kg) with SG appeared to have a more
pronounced effect.

Oxidative stress is another factor that plays a crucial
role in the development and progression of memory

impairment. In the brain, oxidative stress can impair
neuronal function and communication, disrupt synaptic
plasticity, and promote neuroinflammation. These effects
can ultimately lead to cognitive deficits and memory
impairment. Therefore, reducing oxidative stress might
be a potential strategy for preventing or treating memory
impairment (30, 31).

In the present study, various biomarkers of oxidative
stress, including MDA, GSH, CAT, SOD, and GPX, were
measured. Given that SCP toxicity generates reactive
oxygen metabolites, the measurement of MDA and GSH
content can be valuable in diagnosing SCP neurotoxicity.
The results demonstrated that SCP administration
significantly increased MDA levels and depleted GSH
content in brain tissue, indicating oxidative stress. These
findings are consistent with other studies’ findings
that have reported significant GSH depletion and MDA
elevation due to SCP intoxication (32, 33).

In this study, pretreatment with different doses of MTF
and SG restored GSH content, with the most significant
effect observed in the combination of SG (20 mg/kg) and
MTF (500 mg/kg). Regarding MDA, high doses of SG (20
mg/kg), MTF (500 mg/kg), and the combination of these
drugs significantly reduced MDA formation in healthy
mice. However, in diabetic mice, only the administration
of 500 mg/kg MTF and the combination of MTF and SG
significantly reduced MDA formation.

The antioxidant system of living organisms consists
of non-enzymatic antioxidants, such as GSH, and
endogenous antioxidant enzymes, such as GPx, SOD,
and CAT, which protect cells against oxidative stress (34).
The current study’s results revealed a significant decrease
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in the activities of antioxidant enzymes, GPx, CAT, and
SOD, in the brain tissues of SCP-treated mice, compared
to the control group, indicating that SCP induced severe
oxidative stress.

Furthermore, the administration of scopolamine in
diabetic mice resulted in slightly more oxidative stress
and memory impairment than in healthy mice. This
finding highlights the potential role of diabetes as a
risk factor in the development of neurological disorders.
In non-diabetic mice, pretreatment with high doses of
MTF and SG, in addition to combinations of SG and
MTF, significantly increased GPx, CAT, and SOD activity.
However, in diabetic mice, the administration of only 500
mg/kg MTF and the combination of MTF and SG restored
antioxidant enzyme activity.

Overall, the results of this study demonstrated that in
healthy mice, both high doses of MTF and SG, in addition to
the combination of these two drugs, significantly reduced
oxidative stress. However, in the diabetic group, only MTF
and the combination of MTF with SG were able to reduce
oxidative stress. Therefore, the authors conclude that
these drugs might reduce oxidative stress and inhibit lipid
peroxidation in brain tissue by increasing its antioxidant
capacity. These findings are consistent with previous
studies’ findings. For example, in a study by Zhao et al.,
intraperitoneal injection of 200 mg/kg MTF for 14 days
suppressed the development of chemical kindling created
by pentylenetetrazol (PTZ), reduced brain oxidative stress
and improved cognitive impairment caused by PTZ (35).
These results are also in line with previous research
conducted by Alzoubi et al., who demonstrated that oral
gavage of MTF over a period of 4 weeks in rats prevented
cognitive damage caused by L-methionine by reducing
oxidative stress in the hippocampus (36).

In another study by Civantos et al., the role of SG
in oxidative stress and its underlying mechanisms were
investigated in diabetic rats. The aforementioned study’s
findings indicated that SG effectively reduced oxidative
stress in experimental diabetic nephropathy through the
downregulation of miR-200a, a novel Keap-1 inhibitor, and
miR-21 (37).

Several mechanisms have been mentioned in relation
to the beneficial effects of these drugs in improving
memory impairment. Hettich et al. showed that
metformin significantly reduces the activity and
expression of the beta-secretase-1 enzyme in the cell
culture medium, thereby reducing the products of the
beta-secretase-1 enzyme (Aβ) (38).

Some researchers have suggested that MTF, due to its
anti-inflammatory and anti-oxidative properties and its
ability to reduce interleukin 1, can increase the survival
of brain neurons and improve cognitive function (39).

Additionally, Li et al. demonstrated that MTF treatment
reduces the production of hyperphosphorylated tau
proteins, one of the pathological signs of AD, in the brains
of diabetic rats (40).

Recent studies have also indicated the potential
beneficial effects of SG on cognitive function and memory
impairment. Although the precise mechanism by which
SG improves cognitive function and memory impairment
is not fully understood, it is believed to work by reducing
inflammation in the brain and enhancing the levels of
certain neurotransmitters.

Brain inflammation is a common feature of
many neurodegenerative diseases, including AD and
Parkinson’s disease. Sitagliptin has been shown to
reduce brain inflammation by inhibiting the activity of
dipeptidyl peptidase-4 (DPP-4), an enzyme involved in
the inflammatory response. By reducing inflammation,
SG might protect brain cells from damage and improve
cognitive function (28).

Additionally, SG has been observed to increase
the levels of certain neurotransmitters in the brain,
including acetylcholine and dopamine. Acetylcholine
plays a role in learning and memory; nevertheless,
dopamine is involved in motivation and reward. By
boosting these neurotransmitter levels, SG might enhance
cognitive function and memory (29). Dong et al. have
suggested that SG activates two signaling pathways,
glucagon-like peptide-1 and brain-derived neurotrophic
factor-tropomyosin receptor kinase B (BDNF-TrkB), which
are involved in protecting neurons and improving
cognitive function (12).

Furthermore, the findings of this study indicated
that combination therapy with MTF and SG was more
effective than single therapy. Combination therapy is
often employed in the treatment of complex diseases,
such as cancer, uncontrolled diabetes, or hypertension
(41, 42). Metformin and SG are commonly used in the
treatment of type 2 diabetes mellitus. Metformin reduces
glucose production in the liver and enhances insulin
sensitivity; however, SG increases insulin secretion and
reduces glucagon production. When used together, these
drugs can act synergistically to improve glycemic control
by targeting multiple pathways involved in glucose
metabolism (43). Several studies have demonstrated
that improved glycemic control is associated with the
amelioration of cognitive impairment in patients with
diabetes (44). Combination therapy might also reduce the
risk of side effects associated with high doses of a single
drug (42, 43).

8 Iran J Psychiatry Behav Sci. 2023; 17(4):e138984.



Arimi A et al.

5.1. Conclusions

The current study’s findings revealed that
intraperitoneal injection of SCP in diabetic and healthy
mice impaired learning and memory function and
caused brain oxidative damage. However, the mentioned
damages were more pronounced in diabetic mice. In
healthy mice, the administration of MTF and SG in high
doses, in addition to the combination of these two drugs,
significantly reduces memory impairment and oxidative
stress. However, in the diabetic groups, only MTF and
the combination of MTF with SG could reduce memory
impairment and oxidative stress. Finally, the authors
concluded that these antidiabetic drugs reduced oxidative
stress by increasing antioxidant capacity and improved
scopolamine-induced memory impairment. Additionally,
the combination of these two drugs was more fruitful.
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