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Abstract

Context: Functional neurological disorder (FND) is common in neurology outpatient clinics, affecting approximately 6% of

neurology patients. Functional neurological disorder is characterized by motor and sensory symptoms that cannot be

explained by organic or structural neurological issues. These symptoms often mimic those of recognized neurological

conditions, making diagnosis and treatment complex.

Evidence Acquisition: This study presents a comprehensive voxel-wise meta-analysis of structural brain changes in FND to

explore potential quantitative measurements that could serve as biomarkers for different FND types. In this investigation, we

systematically queried prominent academic databases using specific keywords: "FND", "somatization disorder", and "voxel-

based morphometry (VBM) ". Additionally, we employed the BrainMap database to identify VBM data pertaining to FND. Our

meta-analysis, performed using ES-SDM software, examined grey matter (GM) changes in FND patients. We also assessed the

robustness of the results via Jackknife analysis and investigated unexplained variability using heterogeneity analysis.

Results: Our meta-analysis revealed both positive and negative GM volumetric changes in different brain areas across various

FND types. The robustness of the results was confirmed, and the assessment of bias and publication bias yielded no significant

concerns.

Conclusions: These findings offer valuable insights into the neuroanatomical basis of diverse functional disorders, providing

potential biomarkers. Moreover, the identified regions are associated with pain modulation, emotional processing, and

cognitive functions, contributing to a better understanding of FND pathophysiology.
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1. Context

Functional neurological disorder (FND) is one of the

most common diagnoses in neurology outpatient

clinics, constituting roughly 6% of neurology contacts
and having community incidence rates of 4012 per

100,000 per year (1). Functional neurological disorder
exhibits a higher prevalence in women, with a peak

incidence between the ages of 35 - 50, but it is not rare in

men or throughout their lifespan (1). The FND is
clinically characterized by motor or sensory symptoms,

including limb weakness, dystonia, tremor, numbness,

pain, or seizures. According to the DSM-5 diagnostic

criteria for FND, a diagnosis requires the presence of one

or more symptoms indicating an alteration in voluntary
or sensory function. Clinical assessments must also
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reveal incompatibility between these symptoms and

recognized neurological or medical conditions (2).

Compared to other neurological disorders, FND is
associated with similar levels of disability and impaired

physical and mental quality of life (3). The prognosis for
FND is typically challenging, with up to 40% of patients

reporting outcomes that are either similar to or worse

than their initial condition during a recent review with
a 7-year follow-up (4). Traditionally, the diagnosis of FND

relied on the exclusion of organic causes for the
symptoms. However, recent evidence has provided new

insights into FND's pathophysiology, facilitating a more

comprehensive understanding and the identification of

potential biomarkers (5). In this study, a voxel-wise

meta-analysis was performed to investigate structural
brain changes in FNDs. Our aim was to determine

whether specific quantitative measurements could
serve as potential biomarkers distinguishing between

various types of FNDs.

2. Evidence Acquisition

We performed a comprehensive search of several

online databases—Web of Science, PubMed, Cochrane,

and Scopus—using a combination of keywords:

["functional neurological disorder" OR "FND" OR

"somatization disorder" OR "SD"] and ["morphometry"

OR "voxel-based" OR "VBM"] (Figure 1). Additionally, we

searched the BrainMap database for relevant voxel-

based morphometry (VBM) data related to FND.

Our inclusion criteria required studies to compare

grey matter (GM) changes between FND patients and

control groups. Included studies had to provide

coordinates for these comparisons using either

Talairach or Montreal neurological institute (MNI)

space. Studies were excluded if they lacked a control

group or did not provide detailed coordinates.

For each included study, we extracted data on

participant numbers, FND type, disease duration, any
additional reported symptoms, and the coordinates of

significant findings.

We used the ES-SDM software (version 6.11) for the

meta-analysis. This software creates an effect-size map

showing regional volumetric changes for each study

using a random-effects model. It accounts for factors

such as sample size, intra-study variability, and between-

study heterogeneity when calculating the weight of

each study. We used the ES-SDM software (version 6.11)

for the meta-analysis. The primary effect size of interest

was the standardized mean difference (SMD). The SMD

quantifies the magnitude of differences in GM volume

between FND patients and control groups, expressed in

standard deviation units. This effect size facilitates

comparison across studies with varying scales of

measurement and sample sizes.

We set our statistical threshold at P < 0.005 and used

a full width at half-maximum (FWHM) of 20 mm. These

parameters were chosen based on prior research to

balance sensitivity and specificity while controlling false

positives.

To assess the robustness of our results, we conducted
a Jackknife analysis, systematically excluding one study

at a time to ensure the stability of our findings.

Additionally, we performed a heterogeneity analysis

using a random-effects model and Q statistics to identify

and explore variability among the results from different

studies (7, 8).

3. Results

3.1. Summary of the Findings

Valet et al. (9) found significant reductions in GM in

the cingulate, prefrontal, and insular cortex in 14

women with pain disorders compared to 25 healthy
controls. Riederer et al. (10) observed increases in GM in

the right primary sensory cortex, thalamus, bilateral

temporal regions, and hippocampus in 23 patients with
non-dermatomal sensory deficits versus 29 controls. In a

separate study, they reported reduced left anterior
insula volume in 26 FND patients (11). Perez et al. (12)

identified decreased GM in the right anterior

hippocampus in 22 FND patients versus 27 controls.
Kozlowska et al. (13) found increased GM in the left

supplementary motor area, right superior temporal
gyrus, and dorsomedial prefrontal cortex in 25 FND

patients compared to 24 controls. Aybek et al. (14)

reported increased cortical thickness in the bilateral
premotor cortex in 15 motor conversion disorder

patients but found no correlation with symptom
severity or duration. Maurer et al. (15) observed

increased GM volumes in the left striatum, fusiform

gyrus, amygdala, cerebellum, and bilateral thalamus in
48 functional movement disorder patients, while the

left sensorimotor cortex showed decreased volume,
with no correlation to disease duration or severity.

3.2. Regional Differences in Grey Matter Volume

3.2.1. Positive Peaks

Patients with FND demonstrated an increase in

regional GM in the following areas (Figures 2 and 3).

- Cerebellar vermis lobules IV and V (SMD-Z = 1.653, P <

0.0001, number of voxels = 485, MNI coordinates: 0, -46,

-2).
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Figure 1. PRISMA 2020 flowchart for recent systematic reviews involving searches in databases and registers only (6); * if feasible, consider reporting the number of records
identified from each individual database or register searched, rather than presenting a cumulative total across all databases or registers; ** if automation tools were employed
in the screening process, specify the number of records excluded by human reviewers and the number excluded by the automation tools. To find more information, please visit
the following: http://www.prisma-statement.org/.

- Right postcentral gyrus (SMD-Z = 1.486, P < 0.0005,

number of voxels = 464, MNI coordinates: 60, 0, 18).

- Left supplementary motor area (SMD-Z = 1.134, P <

0.004, number of voxels = 14, MNI coordinates: 0, -16,

56).

- Thalamus (SMD-Z = 1.552, P < 0.0003, number of

voxels = 452, MNI coordinates: -2, 0, 6).

3.2.2. Negative Peaks

The voxel-wise meta-analysis revealed a significant

reduction in the right inferior longitudinal fasciculus

(SMD-Z = -1.488, P < 0.001, number of voxels = 86, MNI

coordinates: 42, -12, -12) in patients diagnosed with FND

compared to healthy control participants (Figure 4).
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Figure 2. Asymmetrical funnel plots illustration: Increase regional grey matter (GM) A, cerebellar vermis lobules IV and V; B, right postcentral gyrus; C, left supplementary motor
area; D, thalamus.

3.3. Heterogeneity and Risk of Bias

Although the funnel plots, when visually inspected,

may give the impression of publication bias, Egger's test

results showed no significant publication bias for each

specific peak location (Figure 5).

3.4. Jackknife Analysis

The Jackknife analysis confirmed the reliability of the

results, as they were replicable in 8 out of 8 studies.

3.5. Grey Matter Changes in Functional Movement Disorders

3.5.1. Positive Peaks

Increased GM in cerebellar vermis lobules IV/V (MNI:

0, -42, 0).

3.5.2. Negative Peaks

Reduced GM was observed in the left
cingulate/paracingulate gyri (MNI: 0, 0, 40).

https://brieflands.com/articles/ijpbs-148266
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Figure 3. Our meta-analysis identified several brain regions with significant volumetric changes in grey matter (GM) between patients with functional neurological disorder
(FND) and healthy controls. The results are categorized into regions exhibiting increased or decreased GM volume.

Figure 4. Illustration of asymmetrical funnel plot: Decrease in right inferior longitudinal Fasciculus in functional neurological disorder (FND) patients vs. healthy controls

3.6. Grey Matter Changes in Functional Neurological
Disorder with Sensory Symptoms

3.6.1. Positive Peaks

Increased GM was observed in the left supplementary

motor area (MNI: 0, -10, 58).

3.6.2. Negative Peaks

Decreased GM was observed in the left insula (MNI:

-42, 14, -2).

3.7. Grey Matter Changes in Functional Neurological
Disorder with Chronic Pain

https://brieflands.com/articles/ijpbs-148266
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Figure 5. Assessment of bias risk using the cochrane risk-of-bias tool: A, Bias-risk per study; B, bias-risk per domain summary

3.7.1. Positive Peaks

Increased GM was observed in the right anterior

thalamic area (MNI: 10, 4, 0), right middle frontal gyrus
(MNI: 32, 0, 56), and left cerebellum (MNI: -6, -48, 4).

3.7.2. Negative Peaks

No significant reductions.

4. Conclusions

Our study represents the inaugural voxel-wise meta-

analysis investigating volumetric changes in FNDs.

Unfortunately, the data available so far are relatively

limited. However, the present study has shown

important findings. Functional neurological disorders

appear to impact specific brain regions, including the

cerebellar hemispheres and cerebellar vermis, the right

postcentral gyrus, the left supplementary motor area,

the thalamus, the right longitudinal fasciculus, the

median cingulate gyrus, the insula of Reil, and the

inferior and middle frontal gyri.

https://brieflands.com/articles/ijpbs-148266
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Patients with FND, particularly those presenting with

predominant sensory symptoms, exhibited statistically

significant findings, including a reduction in GM

volume in the left insula and an augmentation in GM

volume in the left supplementary motor cortex.

The insula and cingulate cortex are regions involved

in emotional processing and are also thought to be

connected with stress-mediated neuroplasticity (11, 16,

17). The insula functions with other brain areas,

including the ventrolateral prefrontal cortex and the

anterior cingulate cortex (18, 19). It plays a pivotal role in

both cognitive and emotional domains, serving as a

receiver and interpreter of emotions within the context

of cognitive and sensory-motor information (20).

The posterior insula processes input from the

spinothalamic tract and contributes to the initial

response to nociceptive (painful) stimuli (21). The

prefrontal cortex and insular cortex are actively

engaged in pain processing and can further amplify and

exacerbate the pain experience in the context of mood

and emotional state (22, 23). Perez et al. (24)

demonstrated a connection between the volume of the

left insular cortex and the increase in symptom severity,

particularly in the context of childhood abuse, among

women with FND. Neurons in the supplementary motor

area (SMA) respond to tactile, auditory, and visual

stimuli when these stimuli are used as signals to initiate

a movement or a series of movements. The SMA exhibits

modulated activity and alterations in functional

connectivity with the parahippocampal area during

emotional contexts (25). Moreover, it appears to

generate an efferent signal that enhances

somatosensory processes, regardless of the number of

sensory inputs reaching the somatosensory areas (25,

26). The SMA also plays a crucial role in timing sensory

and motor tasks (27).

Overall analysis and the comparison between FMD

patients and controls showed significantly increased

GM volume in the lobules IV and V of the cerebellar

vermis and a decrease in the cingulate gyrus volume.

The cerebellum, especially the posterior lobe of the

cerebellar hemispheres and the midline vermis, are

implicated in modulating cognitive and affective

functions. These regions are related to aversive

responses and negative emotional processing (28).

Previous studies have also shown structural and

functional abnormalities in the cerebellum in FND

patients (29, 30). Perez et al. (12) also reported reduced

left anterior cingulate cortex thickness in patients with

FMD and high somatoform dissociation scores

compared to controls.

Significant differences in GM volume were also

observed in the primary somatosensory cortex

(postcentral gyrus) and thalamus. Patients experiencing

chronic pain displayed an increase in GM volume in the

right anterior thalamic area, the right middle frontal

gyrus, and the left cerebellar hemispheres.

The thalamus is a critical relay station in pain

pathways. Nociceptive inputs are transmitted from the

spinal cord to the dorsal thalamus, either directly via

the spinothalamic tract or indirectly through pathways

like the spinoreticular, spinomesencephalic, or medial

lemniscal pathways to the thalamus (31). Both the left

and right lobules VI and VIIb of the cerebellar

hemispheres can exhibit overlapping activity during

pain and motor processing. Functional connectivity

analyses revealed significant correlations between

multimodal cerebellar regions and sensorimotor

regions within the cerebrum, including the

supplementary motor area, anterior midcingulate

cortex, and thalamus. Coombes et al. (32) proposed that

the posterior cerebellum may play a crucial role in

understanding pain-related adjustments in motor

control. Egloff et al. (33) reported hypometabolism in

the somatosensory cortex, thalamus, and lateral

postcentral regions in patients with non-dermatomal

somatosensory deficits. They also documented reduced

activation in the contralateral primary sensory cortex,

thalamus, and basal ganglia in patients with a non-

dermatomal somatosensory deficit (33-35). Notably, this

diminished activation was observed to be reversible

following symptom recovery, coinciding with an

increase in GM within the postcentral gyrus and

thalamus (33-35).

Different FNDs are characterized by changes in GM

volumes in different brain areas.

The GM changes found in the current meta-analysis

are consistent with the outcomes of previous functional

neuroimaging studies. These changes could represent

the structural background to functional impairment

that causes the symptoms in FNDs, but they may also

indicate compensatory changes.
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