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Abstract

In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-
approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales,
involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and obser-
vant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
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1. Context

In 1881, Curtius synthesized the firstN-protected dipep-
tides containing blocked amino groups like acyl, acetyl, or
benzoyl (1). Although, at that time, there was no partic-
ular way to deprotect the nitrogen atom without break-
ing the peptide bond. In 1901, Fischer and Fourneau de-
veloped the Gly-Gly dipeptide (2). This is why Emil Fischer
is called the "founding father" of peptide chemistry. His
significant impact on peptide development was using α-
chloro acid chloride to condense with an amino ester and
then replacing the Cl group with an amine to obtain a pep-
tide. Nonetheless, this synthesis gives racemate peptides
(3). Through this method, dipeptides, and later tripeptides
and polypeptides, were prepared.

It was in the midst of the progress of this discovery that
World War I began, and its progress was postponed for fifty
years. However, Bergmann and Zervas found that the Cbz-
protecting group kept the configuration of the chiral cen-
ter and prevented racemization during carbamate forma-
tion, which is a good replacement for N-acyl- or N-benzoyl-
protected amino acids (4). This was a revolutionary discov-
ery in the synthesis of peptides. After World War II, du Vi-
gneaud isolated and identified the amino acid sequence of
the polypeptide hormone ’oxytocin’ and then synthesized
it (5-7). Because of his discovery, du Vigneaud was awarded
a Noble Prize in 1955.

It is necessary to protect the amine groups and depro-
tect them in a timely manner to prevent the production of
by-products and self-condensation of amino acids. As men-
tioned above, Cbz-protected amines can be deprotected
through hydrogenolysis using Pd-charcoal or HBr (8). The
need for a cheaper protection-deprotection method led to
the discovery of the tert-butyloxycarbonyl (Boc) group in
1957 (9). The conventional methods for deprotection of N-
Boc amines are: (1) heating the solution in the presence of
HCl (10); and (2) dissolving the protected amine in a mix-
ture of HCl/TFA at room temperature (11). Once the prob-
lem of protecting amines was resolved, the efficient for-
mation of peptide bonds was another challenge. Mean-
while, Sheehan and Hess introduced a new method for the
efficient formation of peptide bonds using ‘dicyclohexyl
carbodiimide’ (DCC) as a coupling reagent (12). In 1972,
Carpino and Han found a new way of amine protection
using the 9-fluorenylmethoxycarbonyl protecting group
(Fmoc). However, deprotecting nitrogen atoms containing
the Fmoc group is rapidly performed in the presence of sec-
ondary amines, especially piperidine, in DMF (13). This de-
velopment is summarized in Figure 1.

Despite all these advances, until the early 1960s, the
synthesis of peptides was so difficult that a project took
one to two years until Merrifield’s innovation resulted in
a great revolution in peptide synthesis (14). In the solid
phase peptide synthesis (SPPS) method, an N-protected
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Figure 1. A schematic history of peptide developments

amino acid is bound to a resin or other substrates from its
C-terminus via an amide or an ester bond. After amine de-
protection, it is reacted with the carbonyl group of the sub-
sequentN-protected amino acid. This cycle is repeatable to
achieve the favorite peptide chain. Finally, the formed pep-
tide is cleaved from the resin (15, 16). Soon after, various
types of beads were introduced and commercialized, like
polystyrenes, BHA, and Wang resins (17).

Therefore, modified and improved synthetic peptides
have emerged on the market. When Novartis Pharmaceu-
ticals introduced lypressin, an antidiuretic hormone and
analogue of vasopressin to regulate the tonicity of body
fluids, in the 1970s, the therapeutic peptide business was
born. Most physiological processes are regulated by pep-
tides, and they may act as endocrine and paracrine sig-
nals, neurotransmitters, or growth factors. Although pep-
tides do not have all of the desirable characteristics of
an ideal medicine, they have properties like high affinity,
specificity, and the capability to stay on target longer due
to their size. Moreover, as therapeutic candidates, peptides
have a predominantly specific activity compared to small
molecules because peptides are simply destroyed in the
human body. According to these properties, peptides are
becoming more popular than other medicines for certain
diseases, disorders, and infections, where the direct intro-
duction of therapeutic peptides is desirable. Furthermore,
peptides generally have low adverse effects and have be-
come appealing medication design choices (18-21).

In 2015 and 2020, the market for therapeutic peptides
was valued at $17,568.0 and 28,510.60 million, respectively,
which is expected to increase to $51,360.30 million in 2026
(22). Now, eighty FDA-approved therapeutic peptides are
on the market, and hundreds of peptides are in clinical
and preclinical trials (23). As a result, peptide and protein-
based pharmaceuticals are rapidly becoming an impor-
tant class of medications. They are likely to replace many
existing small-molecule pharmaceuticals in the very near
future.

2. Peptide Synthesis

There are two conventional methods for peptide syn-
thesis, the liquid (solution) phase peptide synthetic ap-
proach and the solid phase peptide synthetic approach.
This increases the need to pay attention to developing
waste reduction methods. Here below, we briefly explain
these methods.

2.1. Liquid Phase Peptide Synthesis

This is the method that Fischer used to synthesize the
first dipeptide Gly-Gly. Through the protection of the car-
boxylic acid group of the first amino acid and the amino
group of the second one, a peptide bond is formed between
the free amine and carboxyl groups. This process is re-
peated to achieve the desired sequence and is finalized by
the selective deprotection of the two protecting groups,
which gives the free peptide. This classical methodology
is not preferably suited to the synthesis of long-chain pep-
tides due to their low solubility and difficult purification.
Isolation and purification of the intermediates are the ma-
jor drawbacks of this approach. However, some di-, tri-, and
tetra-peptides are prepared using the liquid phase method
(24, 25).

In the case of dipeptide synthesis, especially Gly-Pro,
the protected carboxyl neighboring the α-amino group
has a high tendency to be cyclized to form diketopiper-
azine (Figure 2A) (26). Moreover, peptides comprising Gly
and benzyloxycarbonyl, as a protecting amine group, can
be cyclized under basic conditions to give hydantoin (Fig-
ure 2B) (27).

2.2. Solid Phase Peptide Synthesis

The summary of solid phase peptide synthesis (SPPS) is
shown in Figure 3. This method was developed by Merri-
field (15, 28). The SPPS concept is based on the attachment
of the first amino acid to a swelled solid polymer/resin by
a covalent bond. The free sites of the loaded bead must be
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Figure 2. Some side reactions during LPPS

capped to avoid undesired reactions. After washing, depro-
tection of the loaded amino acid is performed. The cou-
pling reaction with the next protected amino acid is ac-
complished after washing. Again, washing, deprotection,
washing, and coupling reaction are repeated to assemble
the desired peptide sequence. The synthesis is finalized
by deprotection and detachment from the bead using TFA
(29).

Since the assembling peptide chain is firmly attached
to an insoluble but swollen bead, it can be easily filtered off
and washed to remove the reagents and by-products. Con-
sequently, the intermediate peptides can be completely
purified by dissolving away the impurities, not by re-
crystallization. Therefore, this procedure is straightfor-
ward and fast. The main challenge with SPPS is using
large amounts of expensive beads, protected amino acids,
reagents, and solvents as they raise the overall manufac-
turing cost (30). However, informed by this knowledge,
chemists can now manufacture their favorite peptide se-
quences.

Although the SPPS approach is the most widely used
for peptide synthesis, it is not without flaws. Even when
all instructions are correctly followed, depending on the
type of amino acid used in the peptide sequence, or the
type of synthetic strategy of Boc/Bzl or Fmoc/t-Bu, various

side reactions may occur (31). Since an undesirable cycliza-
tion reaction is likely to occur before the binding of the
third amino acid, the synthesis of carbon-terminated pep-
tides requires a particular approach. This cyclization reac-
tion results from the intramolecular addition of the free
amine group on the di-peptide-resin to the peptide-resin
ester bond, forming a cyclic peptide, diketopiperazine (Fig-
ure 4A) (32).

Cyclization of aspartic acid and formation of aspar-
timide are other side reactions in SPPS. Fortunately, these
side reactions occur when only Asp-Ser, Asp-Ala, and Asp-
Gly sequences are present (Figure 4B) (33). In amino-
terminus peptides, intramolecular cyclization of the glu-
tamine in the presence of acid leads to the formation of py-
roglutamic acid. This side reaction only occurs in Boc/Bzl
approaches (Figure 4C). It is better to use HCl for Boc-
deprotection to prevent such unwanted cyclization (34,
35).

The use of HF to detach peptides comprising His(Boc)
from the resin surface leads to forming formaldehyde.
Therefore, the side chains of sensitive amino acids can be
methylated in the presence of the formed formaldehyde
(36). However, using resorcinol as an absorber of formalde-
hyde may help avoid side reactions (37). Furthermore,
some peptides, especially those containing Met and Asp-
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Figure 3. The schematic of SPPS process. Washing and coupling steps are the repetitive steps, consuming large amounts of solvents.

Pro, are sensitive to HF, resulting in the fragmentation of
their sequences (38).

3. Chemical Wastes of Peptide Synthesis

As already mentioned, SPPS is one of the most popular
peptide synthesis methods. Let’s take a glimpse at the pro-
cess. From the beginning, we will notice that most of the
used chemical substances pollute the environment and in-
crease the cost of peptide production.

3.1. Resin Swelling

First, various resins are employed in the SPPS tech-
nique, among which polystyrene (PS), pure cross-linked
polyethylene glycol (PEG), and PS-functionalized PEG are
the most popular resins. The PS resins are cheaper and
suitable for producing short- to medium-length peptides.
The polystyrene resin, with an initial loading of up to 1.5

mmol g-1, is cross-linked with divinylbenzene and is com-
patible with DCM and DMF, although it is not compatible
with water. In contrast, PEG-based resins are more expen-
sive and are frequently used in the synthesis of medium-
and long-length peptides, as well as peptides comprising
challenging sequences. The PEG-PS resins, with an initial
loading of up to 0.6 mmol g-1, are compatible with most
solvents, such as PEG, DCM, DMF, THF, and even EtOH and
water. Therefore, PEG-based beads are good candidates for
use under green conditions, but they need higher amounts
of solvent per mass to be swelled (39). Aside from consid-
erable solvent consumption and, in many cases, the use of
hazardous and environmentally contaminating solvents,
recycling these resins has long been a matter of concern.

North et al. investigated the swelling factor of relevant
resins used for SPPS in 25 solvents, including DMF, DCM,
and NMP, to find the best green solvent (40). Nine common
resins (Merrifield, Jandajel, Paramax, TentaGel, ArgoGel,
HypoGel, NovaGel, ChemMatrix, and SpheriTide) were cho-

4 Iran J Pharm Res. 2022; 21(1):e123879.



Haji Abbasi Somehsaraie M et al.

Figure 4. The side reactions occur during SPPS

sen to test in 25 green solvents for analyzing resin swelling
ability in green solvents. The average swelling of experi-
mented resins in these solvents is demonstrated in Figure
5. The swelling of each resin in solvents was evaluated us-
ing Griffith et al.’s method (41), and solvents covered a wide
range of polarities. ChemMatrix demonstrated the best re-
sult with average swelling < 5 mLg-1; for the solvents, DCM
and DMF demonstrated the best results. However, in green
solvents, cyclopentanone represented promising results.
It showed slightly lower swelling properties than DCM but
had a better average than DMF and NMP.

Despite little research focusing on its applicability in
SPPS, the poly-ε-lysine resin can be used as an appropriate
bead in peptide synthesis (42, 43). The biodegradable poly-
ε-lysine resin is prepared by microbial fermentation and
is widely used in food industries, highly water absorbable
hydrogels, anticancer formulations, biodegradable fibers,
drug carriers, and agriculture (44).

Besides, modifying resin types or using biodegradable
ones can reduce the waste from the beads. Colzani et al.
functionalized the biodegradable poly-lactide-co-glicolide
(PLGA) with small peptides to be studied as a drug delivery
system (45). This polymer is widely employed for encap-
sulation or formulation of peptides (46-49). However, the
poly-lactide-co-glicolide may act as a green bead in peptide
synthesis.

3.2. The Coupling Reagents

Unfortunately, forming an amide bond is
not easy, and coupling reagents are used to in-
crease its efficiency. Carbodiimide compounds,
such as N,N′-dicyclohexylcarbodiimide (DCC), N,N′-
diisopropylcarbodiimide (DIC), and 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC), and oxime
or N-hydroxy compounds, like 1-hydroxy-1H-benzotriazole
hydrate (HOBt), COMU, Oxyma Pure, Oxyma-B, (Figure 6)
and their derivatives, are commonly used as coupling
reagents in the formation of peptide bonds. Among them,
COMU and DIC are the most expensive reagents, while DCC
and Oxyma Pure are the cheapest ones. These coupling
reagents can increase the efficiency of peptide bond for-
mation and prevent amino acid racemization. However,
the formation of water-soluble urea is one of the biggest
problems in their use (50).

There is no doubt that benzotriazoles like HOBt and
their derivatives are explosive, making handling, preserv-
ing, or scaling-up difficult (51). In 2008, Hayes et al. iden-
tified DIC and DCC as irritants and contact sensitizers (52).
Although Oxyma, as an alternative to HOBt, is commonly
used as a mixture with a carbodiimide (53), McFarland et
al. reported the release of hydrogen cyanide from the reac-
tion of Oxyma Pure and DIC in DMF at room temperature
(54). Using an Oxyma and COMU mixture could solve this
problem (55), but COMU is not stable in DMF and is the least
preferred reagent in SPPS (56, 57). In general, these cou-
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Figure 5. The average swelling factor of nine relevant resins in 25 solvents

Figure 6. The structure of some commonly used coupling reagents in SPPS
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pling reagents display an inferior atom economy.
Lastly, we need to develop and find alternative greener

methods for forming peptide bonds and improving atom
economy and compatibility of coupling reagents with var-
ious solvents, especially green ones (58).

3.3. The Protected Amino Acids

The important hidden aspect of the protected amino
acids is that the protection process stands on the many
environmental contaminations. Fluorenylmethyloxycar-
bonyl chloride (Fmoc-Cl) is utilized in the protection
of amine groups. It is manufactured by reacting 9-
fluorenylmethanol 1 with phosgene (Figure 7) (13). The
latter is one of the most poisonous chemicals and was
the cause of 85,000 deaths during World War I (59). Fur-
thermore, considering the preparation of precursors, var-
ious solvents are used during the synthesis, purification,
and recrystallization of all these compounds. Besides, 20%
piperidine in dimethylformamide is the way of Fmoc de-
protection, both of which are not sustainable. However, in
this case,γ-valerolactone is a green alternative to DMF (60).
As illustrated in Figure 7, compound 2 is the by-product of
the Fmoc deprotection and must be considered as contam-
ination because it is useless and is deposed (61).

In some cases, di-tert-butyl dicarbonate (Boc2O) is em-
ployed to protect those amine groups that must not be
bonded with a carboxyl. Correspondingly, phosgene is one
of the precursors of Boc2O production. The Boc-protected
amines are finally deprotected using a solid acid, such as
TFA or HCl in methanol. TFA is almost non-degradable in
the environment and is toxic to aquatic life (62, 63). The
hazardous nature of methanol is evident.

So far, various protecting groups have been designed
but never widely or industrially used (64-66). For example,
Carpino et al. designed and utilized protecting group 1,1-
dioxobenzo[b]thiophene-2-ylmethyloxy carbonyl, abbrevi-
ated as Bsmoc, in the aquatic phase peptide synthesis
(APPS). They found a mechanism for the deprotection pro-
cess leading to the efficient removal of Bsmoc (67). It has
been used in some academic research, while its industrial
usage is costly (68). Knauer et al. could commercialize new
Boc-, Fmoc-, and Cbz-analogs (SBoc, Smoc, and SCbz, respec-
tively) comprising the sulfonic acid group (Figure 8). These
protecting groups are compatible with water and act effi-
ciently in the APPS technique, leading to the elimination
of toxic solvents. The deprotection is performed using sul-
foacetic acid or sulfobenzoic acid, showing the sustainabil-
ity of this newborn achievement (69).

3.4. The Solvents

As mentioned in the introduction section, the SPPS
contains a repetitive sequence of coupling, washing, de-

protection, and washing. Therefore, large amounts of sol-
vents, mostly DCM, THF, and DMF, are used during peptide
synthesis. Although recycling these solvents reduces en-
vironmental contamination, the use of low boiling point
DCM always has its drawbacks, especially for the ozone
layer.

Solvents like ketones, esters, ethers, and alcohols
can be used in resin swelling. Among ketones, includ-
ing 1,3-dioxolan-2-one, dihydrolevoglucosenone (Cyrene),
2-butanone, 4-methyl-2-pentanone, and cyclopentanone,
the latter shows the highest swelling that is comparable to
DCM (70). Therefore, cyclopentanone is a good alternative
to DCM in peptide synthesis. Alcohols and phenols show
the lowest swelling effect, while NMP, DMF, DCM, esters,
and ethers are the best swelling solvents. Among them, γ-
valerolactone is a green solvent that can be used as an alter-
native to DMF that shows a moderately high swelling effect
and can dissolve amino acids and reagents (71). PolarClean
is a by-product of Nylon-66 manufacturing. Kumar et al.
realized that it could highly dissolve all Fmoc-amino acids
and critical coupling reagents and additives. PolarClean is
a valuable solvent for swelling polystyrene and ChemMa-
trix resins (72).

4. Sustainable Methods

Isidro-Llobet et al. published a comprehensive re-
view discussing the sustainability of peptide synthesis in
scale-up methods (73). They presented novel green indus-
trial methods, including peptide synthesis in flow (74, 75),
greener tag-assisted liquid phase peptide synthesis (76,
77), nanofiltration (78), membrane-enhanced peptide syn-
thesis (79, 80), enzymatic peptide synthesis (81, 82), and
mechanochemistry (83, 84). Moreover, Martin et al. thor-
oughly reviewed the green approaches for SPPS (85).

4.1. Flow Chemistry in Peptide Synthesis

Due to the green features of flow chemistry, it has be-
come one of the most used methods for future peptide pro-
duction. The benefits, including safety, space-saving abil-
ity (reaction space < 1 mm), and production capacity, make
flow chemistry a useful method for peptide synthesis. Con-
tinuous flow begins with two or more feeds. For instance,
reagents and reactants are pumped into a micro reactor or
tube. Then, they are mixed and react with each other. Due
to the small size of the chamber and shafts in the reactor,
synthesis can be accomplished by using a slight amount of
reagents (Figure 9). Thus, this technique reduces the use
of solvent and reagents, making it a cost-effective method.
Moreover, it facilitates heat transfer and reduces reaction
time (86, 87).
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Figure 7. Synthesis of Fmoc-Cl and its use as a protecting agent

Figure 8. The structure of analogs of traditional protecting groups
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Figure 9. The schematic of flow chemistry in peptide synthesis
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In this way, researchers have done several studies yield-
ing significant results. Fuse and co-workers showed that
applying the continuous flow method significantly re-
duced reaction time and made strongly activated amino
acids like acid anhydrides perform coupling efficiently.
Due to low and controlled volume flow, the least racem-
ization is observed. The solvents used in this process were
DMF and MeCN, and tetra to dipeptides were synthesized
with good yields. They have also demonstrated that mi-
croflow reactors can synthesize amino acids such as N-
carboxy anhydrides (NCAs) with the aid of triphosgene (88-
91).

NCAs are an effective method for peptide synthesis,
and Jolley and co-workers demonstrated that NCAs played
a significant role in large-scale peptide synthesis. In addi-
tion, it was shown that flow peptide synthesis was suitable
for short peptide synthesis and those synthesis methods
not common in batch methods (92).

Pentelute et al. demonstrated the flow-based SPPS
method as an approach that facilitates the synthesis pro-
cess and saves time. The automatic control option allows
this method to incorporate each amino acid residue ev-
ery 48 seconds. Low reaction volume allows continuous
delivery of heated solvent, and a UV detector monitors
the whole process. This method was employed to synthe-
size several peptides, and the same result as a batch tra-
ditional method was obtained. It was demonstrated that
SPPS could be a rapid process utilizing continuous flow
and obtained faster results than microwave-assisted pep-
tide synthesis. Drowning sealed vessel into a temperature
bath provided solvent with desired heat in contact with
resins (93).

In their later study, Pentelute and co-workers surveyed
an automated, flow-based method for solid-phase synthe-
sis for polypeptides. The amide bond was formed in 7 sec-
onds, and the total synthesis took about 40 seconds per
amino acid residue. Crude peptide purities and isolated
yields were comparable to standard-batch solid-phase pep-
tide synthesis.

Overall, it is believed that continuous flow peptide syn-
thesis can be applied for large-scale peptide production in
the near future if the proper requirements are provided.
One of the flow methods gaining attention is automated
fast-flow peptide synthesis (AFPS) provided by Pentelute et
al. which is represented as an approach more adaptable to
large-scale peptide synthesis and supply chains. The first
description of AFPS was reported in 2014 (94). Further-
more, in their later article published in a scientific jour-
nal, the highly efficient usage of AFPS for synthesizing large
peptides up to 164 amino acids long over 327 consecutive
reactions was reported (95). Automated fast-flow peptide
synthesis was utilized to synthesize nine different peptides

from 86 to 164 amino acids in only 6.5 hours maximum.
There are still some problems, such as reactor capacity that
is only up to 0.49 mmol g-1, which could be a big draw-
back for synthesis on a large scale. Another subject that
makes this method not the best choice is the usage of haz-
ardous solvents; the development of AFPS was based on
DMF, which should be replaced to reach a sustainable ap-
proach. Hence, by finding a greener alternative for DMF,
this method can be one of the most beneficial and sustain-
able approaches for future peptide synthesis.

4.2. Microwave Irradiation in Peptide Synthesis

Microwave-assisted peptide synthesis is commonly
used for two main reasons: heating the solvent and the re-
action mixture and overcoming the solubility of the pro-
tected amino acids in organic solvents such as DMF and
rapid coupling process. The result is process time reduc-
tion and total cost reduction of peptide production. The
difference between conventional heating and microwave
irradiation method is that the latter heats the reaction
mixture directly. In contrast, the former first warms up
the containing vessel and then transfers heat to the mix-
ture. Microwave irradiation can be used in solution-phase
peptide synthesis, solid-phase peptide synthesis, and even
peptide synthesis in water (96, 97). It is noteworthy that
microwave irradiation is a proper technique to remove
Fmoc protecting agent (98). CEM Corporation was founded
based on microwave drying concepts in 1978 and today is
a leading company in producing microwave peptide syn-
thesizers. An automated peptide synthesizer uses Fmoc-
protected amino acids as reactants and microwave irradi-
ation as the energy source to promote the reaction. In this
way, reactions that take hours or even days to complete can
be performed in minutes.

Another advantage of microwave-assisted peptide syn-
thesis is the privilege of using green solvents instead of
prevalent solvents like DMF. For instance, Albericio et al.
investigated using GVL as a solvent with microwave irradi-
ation (99). In addition, for peptide synthesis in solution-
phase, Jain et al. surveyed MAOS in neat water (100). More-
over, it was reported as an environmentally friendly, free
racemization method that could be beneficial for bio pep-
tide synthesis. Also, for SPPS, Albericio et al. investigated
using water for coupling and deprotection steps with mi-
crowave irradiation combined with Boc-protected amino
acids and numerous coupling reagents (101).

4.3. Membrane-Enhanced Peptide Synthesis

One of these recently developed methods utilizes
membrane for peptide synthesis. This method, called
membrane-enhanced peptide synthesis (MEPS), combines

Iran J Pharm Res. 2022; 21(1):e123879. 9
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solution-phase peptide synthesis and organic solvent
nanofiltration. Thus, MEPS benefits the advantages of
solution-phase peptide synthesis and organic solvent
nanofiltration to alleviate the problems facing SPPS. In
this method, the peptide chain is assembled through cou-
pling reaction, following by washing step to remove the ex-
cess reagents by passing the solvent through the diafiltra-
tion membrane. Then, the deprotection step is performed
by adding the deprotection reagents and passing again
through the diafiltration unit to remove residues. The priv-
ilege obtained from this method is that there is no need
for changing solvent or adding new solvent, and in addi-
tion, this process is easy to scale up beyond kilogram for
mass-product in facilities (80, 102, 103). The problem fac-
ing MEPS was that the star-shaped molecules could pass
through pores of ultrafiltration. Using globular polymers
instead of linear PEG was recommended to solve this prob-
lem (Figure 10) (104).

In their publication, Todorovic and Perrin discoursed
green catalytic approaches in forming the amide bond
(56). Much progress has been made in direct amidation,
starting from carboxylic acids and amines. Some cat-
alytic systems promote and accelerate the amidation re-
action, including Ti and Zr transition metals (105, 106)
and organoboron catalysts (107-113). There are also indi-
rect amidation methods in which an ester is treated with
an amine in the presence of a catalyst, such as Ni (114-116),
Nb2O5 (117, 118), tantalum alkoxide (119), and lanthanide
complexes (120). These approaches are inspiring in terms
of greening the peptide synthesis and reducing its wastes.

4.4. Native Chemical Ligation Peptide Synthesis

The prospect of native chemical ligation (NCL) was of-
fered to react unprotected thioesters with N-terminal Cys
peptides in 1994 by Kent et al. (Figure 11) (121).

The chemoselective ligation of unprotected peptides
and proteins has drawn particular attention in peptide
and protein chemistry. The solid-phase peptide synthesis
is unsuitable for peptides with more than 50 amino acids
or large peptides. Thus, investigations have focused on de-
veloping chemoselective ligation and modification strate-
gies to link synthetic peptides to larger synthetic and bio-
logically macromolecules (122, 123). In recent years, there
have been promising developments for this method, with
Staudinger ligation being one of the most important ones
(124).

It was demonstrated that ligation synthesis had signif-
icantly improved for producing complex and large pep-
tides and APIs. In addition, it has to be noted that this ap-
proach is considered a green approach for peptide produc-
tion. Hopefully, this method will play a vital role in peptide
production on a large scale in the near future.

4.5. Novel Technology in Peptide Synthesis

MIT University reported a novel technology that offers
fast peptide synthesis. This system can make a dipeptide
in 37 seconds and can generate peptides comprising about
60 amino acids in just one hour. This research investi-
gated the capability of rotating bed reactors (RBRs) pro-
duced by SpinChem. An RBR (Figure 12) can enhance the
ratio of solid-phase to liquid, resulting in less solvent con-
sumption and minimizing the wastes for peptide synthe-
sis. The efficiency of this system was measured by ionic
adsorption at the lab and commercial scales, demonstrat-
ing approximately similar results. At the lab scale, the de-
crease of ions was on average 86.5% after 15 seconds, and
at the industrial scale, ion reduction was 92.9% after pass-
ing 20 seconds. Moreover, it was observed that solvent con-
sumption was reduced by about 82% using RBRs compared
with relevant approaches of SPPS (125). This method is
cost-effective for peptide synthesis, even in high-scale pro-
cesses. It also brings peptide synthesis one step closer to
the more sustainable and environmentally friendlier zone.
This method shows that using new technologies can saves
time and is more cost-effective.

Finally, refer to Table 1 to better comprehend the advan-
tages and disadvantages of the various sustainable meth-
ods for peptide synthesis.

5. Conclusions

In this review, we showed that therapeutic peptides
were alternatives to other chemical medicines due to their
lower side effects. Therefore, peptide-based pharmaceu-
ticals have been expanded in the recent decade. How-
ever, there are concerning issues as many harmful wastes
are produced during peptide synthesis. The used resins,
solvents, the protecting groups of amino acids, and cou-
pling agents produce waste that may be unrecyclable. The
design of sulfonic acid functionalized protecting groups
opened a window to develop water-based methods of pep-
tide synthesis that solve many problems. In addition, the
development of methodologies for the formation of amide
bonds may help improve the sustainability of peptide syn-
thesis.
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Figure 12. The schematic of rotating bed reactor

Table 1. Advantages and Disadvantages of the Various Sustainable Methods for Peptide Synthesis

Methods Advantages Disadvantages

Continuous-flow chemistry (1) Safety, (2) Least solvent consumption, (3) Compact and
space saving, (4) Time saving

(1) Low reactor capacity, (2) Consumes DMF as the main
solvent

Microwave irradiation (1) Intensive reduction of reaction duration, (2) Uniform
and direct heat transfer, (3) Adaptable with green
solvents, (4) Adjustable with novel methods

(1) Systems with microwave irradiation might be
expensive, (2) Adjustable only for lab-scale synthesis

Membrane-enhanced peptide synthesis (1) Same solvent can be used repetitively in the cycle, (2)
Ease in scale-up

(1) Some molecules and components can pass through
membrane pores

Chemical ligation peptide synthesis (1) Suitable for intricate and large peptide synthesis (1) More investigation and development is required to
turn this method to a practical one for large-scale peptide
synthesis

Rotating bed reactor (RBR) (1) Intensively reduces solvent consumption, (2) Time
efficient method, (3) Adaptable to larger scales
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