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Abstract

Epigenetics is the study of heritable modifications in gene expression and reversible forms of 
gene regulation. Recent in-vitro works have indicated that epigenetics plays a significant role in 
many types of human cancers e.g. hepatocellular carcinoma (HCC). Diverse cellular functions 
are regulated by histone acetylation and deacetylation. Histone deacetylases (HDACs) and 
histone acetylases (HATs) are enzymes involved in chromatin remodeling histone deacetylation 
and acetylation respectively. Aberrant protein acetylation, particularly histone deacetylation, has 
been reported in a broad range of human cancer types. Epigenetic modification  by inhibiting 
HDAC activity is an emerging approach in cancer treatment. HDACIs play their apoptotic 
roles through multiple mechanisms such as extrinsic/cytoplasmic and intrinsic/mitochondrial 
molecular mechanisms. Here, we summarize the major classes of HDACs and epigenetic 
compounds, HDACIs, and also their molecular mechanisms in HCC including intrinsic and 
extrinsic apoptotic pathways. An online search of different sources including PubMed, ISI, 
and Scopus was achieved to find suitable data on mechanisms and pathways of HDACs and 
HDACIs in HCC. The result demonstrated that the dysregulation of HDACs because of histone 
deacetylation induces HCC. The histone deacetylation can be reversed by HDACIs resulting 
in apoptosis induction. In conclusion, because histone deacetylation is a potentially reversible 
change, epigenetic histone modification represents new opportunities for cancer management 
by reactivation of gene silencing. The inhibition of HDACs by GDACIs can effectively induce 
apoptosis and suppress cancer cell proliferation. These compounds can engage both intrinsic and 
extrinsic apoptotic pathways. 
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Introduction

Epigenetics is the study of heritable 
modifications in gene expression and reversible 
form of gene regulation that is not due to 
changes in the DNA sequence, it is accepted as 
‘‘the assessment and study of changes in gene 
function that are meiotically and/or mitotically 
heritable without any structural changes 

in DNA strand. The epigenetic propose, as 
proposed by Conrad Waddington in the 1950s, 
is a branch of cell biology that evaluates the 
causal interactions between genes and their 
products, this definition points to all molecular 
mechanisms modulating the gene expression 
(1). Epigenetic alterations are crucial for the 
cell development and differentiation of the 
different cell types, as well as for normal 
cellular processes such as the inactivation 
of X-chromosome in female mammals and 
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gene silencing. These processes can involve 
chemical modifications include histone 
acetylation, DNA methylation, ubiquitination, 
and phosphorylation. Recent in-vitro studies 
have indicated that epigenetics plays a major 
role in many types of cancers (2-11) such as 
hepatocellular carcinoma (HCC) (12-16). 
HCC, the predominant form of adult liver 
cancer, is one of the most common cancer and 
remains a major health problem worldwide 
(17). The dysregulation of the epi-genome 
and epigenetic control lead to aberrant gene 
expression, which regulates cancer induction 
and progression. Therefore, the role of 
epigenetic compounds has become significant 
in reverting the malignant phenotype (18, 19). 
Various cellular actions, comprising tumor 
suppressor genes (TSGs) expression, cell 
proliferation, DNA repair, and cell apoptosis, 
are regulated by acetylation and deacetylation. 
Histone deacetylases (HDACs) and histone 
acetylases (HATs) are enzymes involved in 
chromatin remodeling histone acetylation and 
deacetylation respectively. These enzymes 
play an important role in gene expression. 
HDACs and HATs are used to regulate the gene 
transcription by removing and/or preserving 
the acetyl group on specific histones. This 
activity can condense or relax the conformation 
of the DNA, changing the accessibility zones 
for transcription machinery. These changes 
result in different cell biological functions, 
including cell proliferation and differentiation. 
Reversible acetylation is one of the most post-
translational modifications  in  eukaryotic 
cells.  Aberrant histone protein acetylation, 
particularly histone deacetylation, has been 
shown in numerous human cancer types, 
dysregulation of HDACs has been implicated 
in the histo-pathogenesis of cancers (20, 
21). Epigenetic modification  by inhibiting  
HDAC activity is an emerging approach 
in cancer treatment. Histone deacetylase 
inhibitors (HDACIs)  such as  panobinostat, 
valproic acid  (VPA),    vorinostat,    sodium 
butyrate, trichostatin A, belinostat, and romide-
psin have demonstrated antitumor efficacy via 
activation of various molecular mechanisms. 
These compounds have strong anti-cancer 
effects, inducing cell growth arrest, cell 
differentiation, cell apoptosis (programmed 
cell death), cell invasion, and suppressing 

angiogenesis (22, 23). HDACIs play their 
apoptotic roles through multiple mechanisms 
such as extrinsic/cytoplasmic and intrinsic/
mitochondrial molecular mechanisms (24-
26). The present review highlights the role of 
HDACs in hepatocellular carcinoma (HCC) 
and the molecular mechanisms through which 
HDACIs play their apoptotic effects on HCC 
including extrinsic and intrinsic molecular 
mechanisms.

Epigenetic Dysregulation in Cancer 
induction and Development

In human cancers, common epigenetic 
changes include histone modification, DNA 
hypermethylation, and noncoding RNA 
dysregulation. DNA hypermethylation of 
CpG islands has emerged as an epigenetic 
mechanism of silencing TSGs. Recent 
evidence suggest that cancer is associated 
with the accumulation of cells with 
aberrant CpG island hypermethylation. 
Increasing evidence show that DNA 
hypermethylation of CpG islands is a 
common molecular mechanism in cancer 
induction and progression (27). In addition 
to DNA methylation, numerous molecular 
mechanisms of histone modification 
contribute to regulating gene expression 
epigenetically. Histone acetylation neutralizes 
the negative charge of DNA strands leads 
to gene transcription and expression (28).  
Chromatin remodeling by histone modific-
ation is an example of epigenetic gene 
regulation. Histone deacetylases (HDACs) 
have recently been shown to modify a variety 
of other proteins that are involved in diverse 
cellular processes.  The activity of these 
enzymes results in chromatin compaction, 
TSGs silencing, and cancer induction (29). 
Subsequent characterization of TSGs revealed 
their involvement in cancers and various 
mechanisms that protect animals against 
tumorigenesis and tumor development (30).

Histone acetylases and histone deacetylases 
biological activity

Reversible  acetylation is one of the 
most abundant  post-translational histone 
modifications in eukaryotic cells.  Acetylation 

https://www.sciencedirect.com/topics/medicine-and-dentistry/acetylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/medicine-and-dentistry/eukaryotic-cell
https://www.sciencedirect.com/topics/medicine-and-dentistry/eukaryotic-cell
https://www.sciencedirect.com/topics/medicine-and-dentistry/epigenetic-modification
https://www.sciencedirect.com/topics/medicine-and-dentistry/panobinostat
https://www.sciencedirect.com/topics/medicine-and-dentistry/sodium-valproate
https://www.sciencedirect.com/topics/medicine-and-dentistry/vorinostat
https://www.sciencedirect.com/topics/medicine-and-dentistry/butyric-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/butyric-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/trichostatin-a
https://www.sciencedirect.com/topics/medicine-and-dentistry/belinostat
https://www.sciencedirect.com/topics/medicine-and-dentistry/romidepsin
https://www.sciencedirect.com/topics/medicine-and-dentistry/romidepsin
https://www.sciencedirect.com/topics/neuroscience/tumor-suppressor-protein
https://www.sciencedirect.com/topics/medicine-and-dentistry/acetylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-processing
https://www.sciencedirect.com/topics/medicine-and-dentistry/eukaryotic-cell


326

Epigenetic Histone Modification in Hepatocellular Carcinoma

and deacetylation of histone are achieved by 
the opposite actions of two groups of enzymes 
comprising  HATs and HDACs.  Abnormal 
expression of HDACs has been indicated in 
various cancers. The acetylation of histone 
neutralizes the positive charge of the histone, 
relaxes the chromatin strands to facilitate the 
binding of transcription factors, relaxing the 
DNA strands and enabling greater accessibility 
of the transcription machinery, and 
subsequently gene transcription. In contrast, 
histone deacetylation induces  chromatin 
compaction  and gene silencing (31, 32). 
The role of HATs and HDACs on chromatin 
conformation has been shown in Figure 1.

Histone deacetylases classification

There are 18 HDACs in humans divided 
into four classes comprising classes I, II, 
and IV. Based on structure, Class III and the 
yeast Sir2 protein are homologous, both of 
which require NAD+ as a cofactor instead 
of Zn2+. Class III HDACs include seven 
mammalian sirtuins (SIRT1–7), localized in 
the mitochondria (SIRT3-5), nucleus (SIRT1, 
and SIRT6-7), and cytoplasm (SIRT2) (33-
35). Class I (located within the nucleus) 
comprises HDACs 1- 3, and 8. Class II can 
travel between the cytoplasm and the nucleus 

and can be further subdivided, class IIa and 
IIb (36). The structure and classification of 
HDACs are indicated in Figure 2 (37).

Epigenetic dysregulation in hepatocellular 
carcinoma

HCC is characterized by the presence 
of epigenetic changes, including post-
translational modifications of histone and 
promoter DNA hypermethylation, which 
affect the expression of numerous genes 
critical for cancer induction and progression. 
Strong data suggest that histone deacetylation 
plays an important role in HCC (38). It is now 
possible to analyze epigenetic abnormalities 
associated with various cancers (e.g. HCC). 
Various histone modifications are considered 
with transcriptional regulatory mechanisms 
associated with gene expression changes in 
HCC (39). 

Histone deacetylases in HCC

Recent works on TSGs suggest that 
HDACs are involved in tumor formation 
and progression of HCC. The expression of 
HDACs has been linked to clinicopathological 
factors in HCC. The common HDACs reported 
in HCC have been shown in Table 1 (40-47).  

 

 

Figure 1. The role of HATs and HDACs on chromatin conformation and gene transcription.  

  

Figure 1. The role of HATs and HDACs on chromatin conformation and gene transcription. 
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Histone Deacetylase Inhibitors

Histone acetylation has been 
demonstrated to be an important molecular 
mechanism that controls gene expression. 
Acetylation and deacetylation of histones 
cause chromatin decondensation and 
condensation respectively (48). Steady-
state of acetylation results from the balance 
between the acetylation and deacetylation of 
histone which determines the level at which a 
gene is expressed (49). The changes in HAT/
HADC activity balance have effect on: (1) 
alteration in gene expression profile as well 
as to the change of some signaling pathways; 
(2) proteasomal degradation; (3) protein 
kinase C activity and (4) DNA methylation 
status.  In numerous cancers, the shift to an 
increased acetylation/deacetylation ratio 
increases chromatin structure relaxation and 
gene transcription. HDACIs are a diverse 
group of agents, which vary in biological 
activity, structure, and specificity. Generally, 
these compounds contain a capping group, 

a zinc-binding domain, and a straight-chain 
linker connecting the two parts (Figure 3). 
HDACIs act specifically against HDACs. 
Based on their chemical structures, they can 
be classified into five classes: (1) short-chain 
fatty (aliphatic) acids; (2) hydroxamic acids 
(hydroxamates); (3) cyclic tetrapeptides; 
(4) benzamides; and (5) sirtuin inhibitors 
(50). They may also be classified according 
to their specificity for HDACs. The pan‐
deacetylase inhibitors comprising vorinostat, 
panobinostat,  belinostat, trichostatin A, and 
resminostat. Valproate and butyrate inhibit 
class I and IIa HDACs, whereas entinostat, 
mocetinostat, and romidepsin are considered 
to be the class I specific. Tubacin is HDAC6 
specific (51). The HDACIs classification 
has been indicated in Table 2 (52-54). The 
chemical structure of common HDACIs used 
in HCC has been demonstrated in Figure 4.

Target and molecular mechanisms of 
HDACIs in HCC

The level of histone deacetylation 
is associated with cancer induction and 
progression. HDACIs play their roles through 
inhibition of HDACs activity in HCC. The 
target of HDACIs in HCC has been shown in 
Table 3 (55-60) and also various molecular 
mechanisms by which these compounds affect 
HCC have been indicated in Table 4 (61-67).

 

 

Figure 2.  The molecular structure and classification of HDACs.  

  

Figure 2.  The molecular structure and classification of HDACs. 

Table 1. The common HDACs reported in HCC. 
 

Class Member Localization 
class I HDAC 1-3, and 8 Nucleus 
IIa HDAC4-7, and 9 Nucleus/cytoplasm 
IIb HDAC6 and 10 Cytoplasm 
IV HDAC 11 Nucleus 

 
  

Table 1. The common HDACs reported in HCC.
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Epigenetic therapy with Histone 
deacetylase inhibitor

There are several strategies related to 
epigenetic therapy in the field of cancer 
of which is based on the use of HDACIs. 
These compounds play their roles through 
various pathways one of which is based 
on selective induction of apoptosis via 

the intrinsic pathway and by influencing 
the expression of proteins such as Bcl-2, 
Bcl-XL, Mcl-1, and XIAP (68), as well as 
through activation of the DR5, DR4, and 
Fas (69). Additionally, HDACIs can engage 
the extrinsic apoptotic pathway through 
upregulation of DRs expression, reductions 
in c-FLIP, and upregulation of ligands such 
as TRAIL (70).

 

Figure 3.  The molecular structure of HDACIs (e.g., SAHA).  

  

Figure 3.  The molecular structure of HDACIs (e.g., SAHA). 

Table 2. HDACIs classification. 
 

Class Member Target (HDAC specifity) 

Short-chain fatty acids Valproic acid, 
Sodium butyrate 

I, IIa 
I, II 

Hydroxamic acids 

TSA 
SAHA 

CHR-3996 
Belinostat 
Givinostat 

Panobinostat 
Resminostat 
Quisinostat 
Abexinostat 
Rocilinostat 
Practinostat 

Tubacin 

Pan 
Pan 

I 
Pan 
Pan 
Pan 
Pan 
Pan 
Pan 
II 

I, II, IV 
IIb 

Cyclic tetrapeptides Romidepsin 
Apicidin 

I 
I 

Benzamides 

4SC202 
MS-275 

Mocetinostat 
MGCD0103 
Entinostat 

Tacedinaline 
CI-994 

I 
I 

I, IV 
I 
I 
I 
I 

Sirtuins inhibitors 

EX-527 
Cambinol 
Sirtinol 

Nicotinamide 

SIRT 1 
SIRT 1, and 2 
SIRT 1, and 2 
3 (all classes) 

 
  

Table 2. HDACIs classification.
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Apoptotic regulators

Over the last decade, the role of apoptosis 
regulators such as the BCL-2 family and their 

molecular mechanisms has attracted attention. 
This family can be classified into two groups: 
a group modulates mitochondrial action 
and another group regulates the activity of 

 

Figure 4. The structures of the most common HDACIs used in HCC.  

  

Figure 4. The structures of the most common HDACIs used in HCC. 

Table 3. The target of HDACIs in HCC.  
 

Class Member Target 
HDAC class Cell line Reference 

short-chain fatty acids Valproic acid (VPA), class I, IIa hepatocellular carcinoma HepG 2 cells A 
Aliphatic fatty acid sodium butyrate class I, IIa SMMC-7721 and HepG2 cells B 
Aliphatic fatty acid sodium butyrate class I, IIa HCC SMMC-7721 and HepG2 cells C 
Hydroxamic acid TSA Pan HCC SMMC-7721 and HepG2 cells C 
Hydroxamic acid trichostatinA (TSA) Pan Hep3B,HepG2, Hep3B D 
Hydroxamates (SAHA) Pan Bel-7402, HepG2 E, F 

 
  

Table 3. The target of HDACIs in HCC. 

Table 4. HDACIs pathways in HCC. 
 

Class Member Apoptosis 
pathway Tissue or cell line Reference 

short-chain fatty 
acids Valproic acid (VPA), Intrinsic HepG2, BEL-7402, and SMMC-7721 A 

Aliphatic fatty acid sodium butyrate 
Intrinsic 

And 
Extrinsic 

HuH-6, HepG2, HuH-6, HuH-7, Hep-
G2, and PLC/PRF/5 cells B, C 

Hydroxamic acid TrichostatinA (TSA) Intrinsic HepG2, MH1C1, Hepa1–6 and Hep1B D 

Hydroxamates 
Suberoylanilide 
hydroxamic acid 

(SAHA) 
Intrinsic HCCLM3,  7703K,  SMMC7721, 

BEL7402, and HepG2 cell lines E, F, G 

 
  

Table 4. HDACIs pathways in HCC.
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caspases. These proteins regulate the intrinsic 
apoptotic pathway.  Several proteins of the 
second group, e.g. XIAP or FLIP block the 
activity of caspases. Cross-talk between the 
extrinsic and intrinsic pathways exists (71). 

Apoptosis is regulated by intrinsic and 
extrinsic ligands. This process is controlled 
by the diversity cell signals pathway and 
is involved in the regulation of cell fate 
survival or death. As the cross-talk organelles, 
the mitochondria can connect the different 
apoptosis pathways (72).

The apoptotic pathways

There are two major molecular mechanisms 
of cell death including necrosis and apoptosis. 
The cells undergo necrosis because of external 
injury, while apoptosis is a programmed cell 
death because of internal or external stimuli 
which are controlled by  numbers of complex 
proteins. It occurs through two main pathways 
comprising extrinsic and intrinsic apoptotic 
pathways. 

The extrinsic (death receptor) apoptotic 
pathway is triggered through the Fas death 
receptor (73). The intrinsic (mitochondrial) 
apoptotic pathway results in the release of 
cytochrome‐c from the mitochondria which 
activates the death signal (74). Both pathways 
lead to a final common pathway which activate 
caspases that cleave regulatory molecules, 
lead up to the death of the cell (Figure 5) (75).

Extrinsic pathway or death receptor 
pathway

The extrinsic apoptotic pathway includes 
numerous protein members comprising the 
death receptors (DRs), the Fas ligand, the Fas‐
associated death domain, the Fas complexes, 
caspases 8, and 10 (Figure 5). The extrinsic 
pathway is initiated with the ligation of cell 
surface receptors.  DRs may belong to the 
tumor necrosis factor family (TNF), which is 
composed of several members. Fas is a TNF 
and is also called Apo‐1 or CD95. Currently, 
six DRs are known, comprising TNF receptor 

 

Figure 5. Apoptotic pathways, intrinsic and extrinsic. The extrinsic pathway is triggered through 
the death ligand. While the intrinsic pathway is triggered by cell stress or DNA damage. Both 
pathways lead to a final common pathway which activate caspases that cleave regulatory 
molecules, lead up to the death of the cell. 

  

Figure 5. Apoptotic pathways, intrinsic and extrinsic. The extrinsic pathway is triggered through the death ligand. 
While the intrinsic pathway is triggered by cell stress or DNA damage. Both pathways lead to a final common pathway 
which activate caspases that cleave regulatory molecules, lead up to the death of the cell.
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1, Fas, p55, p60, DR3, TNF-related apoptosis-
inducing ligand receptor 1, TRAIL-R2, and 
DR6 (76).  

The extrinsic/death receptor pathway is 
initiated via binding of the cell surface death 
receptors, DRs, with their ligands. After 
activation, the intracellular domains of these 
receptors bind to the adaptor protein Fas-
associated death domain (FADD) or TNFR1-
associated death domain protein (TRADD) 
to form the death-inducing complex with 
the recruitment of pro-caspase 8. Then, the 
activated procaspase 8 serves as the ‘initiator’ 
caspase, further activating downstream 
effectors such as caspase 7 to initiate 
apoptosis induction (77). In some cell types, 
the activation of caspase 8 may be the only 
requirement to execute death (78).

Intrinsic pathway or the mitochondrial 
pathway

The intrinsic pathway is activated via the 
loss of cell growth factor signals or in response 
to intracellular stimuli. Mitochondria have an 
outer membrane (OM), an inner membrane 
(IM), and an intermembrane space (IMS). The 
IMS includes several proteins involved in cell 

apoptosis and cell death induction, such as 
cytochrome c, Smac/DIABLO, Omi/HtrA2, 
apoptosis-inducing factors, and EndoG.

 The stimuli change the permeability of the 
inner mitochondrial membrane and release the 
pro-apoptotic proteins from the intermembrane 
space into the cytoplasm. After the release of 
these proteins into the cytoplasm, cytochrome 
c stimulates apoptosome formation followed 
by caspase 9 activation. Caspase 9 activates 
caspases 3, 6, and 7 leads to cell death (Figure 
5) (79). The intrinsic pathway is controlled 
through interactions between the members of 
the Bcl-2 protein family. This family contains 
20 proteins divided into 3 groups: one anti-
apoptotic group and two pro-apoptotic groups. 
The members of this family can be identified 
via Bcl-2 homology domains (BH1 to BH4).  
Each of the BH domains has a different action. 
Whereas most anti-apoptotic proteins comprise 
all domains and protect cells exposed to 
various conditions (Figure 6). These proteins 
are divided into two subgroups. The first 
group contains BH3-only domain proteins 
whereas the second group contains the BH 1-3 
domains. Anti-apoptotic proteins exert their 
function by binding the member’s Bak and 
Bax, preventing mitochondrial damage (80). 

 

Figure 6. Overview of the BCL2 protein family. This family is divided into three groups 
including (A) multi-domain pro‑apoptotic BCL2 family proteins; (B) multi‑domain 
anti‑apoptotic BCL2 family proteins; and (C) BH3‑only pro‑apoptotic BCL2 family proteins. 

 

Figure 6. Overview of the BCL2 protein family. This family is divided into three groups including (A) multi-domain 
pro‑apoptotic BCL2 family proteins; (B) multi‑domain anti‑apoptotic BCL2 family proteins; and (C) BH3‑only 
pro‑apoptotic BCL2 family proteins.
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The function and classification of the BCL-2 
family have been shown in Table 5 (81-88).

Conclusion

Histone acetylation and deacetylation 
are important mechanisms to regulate gene 
expression.  The level of HDACs is generally 

Table 5. The function and classification of the BCL-2 family 
 
Group Member Mechanism of action Subcellular localization Domain 

Anti-apoptotic 
BCL-2 proteins 

BCL-2 
(B-cell lymphoma protein 2) 

It inhibits apoptosis by the 
preservation of mitochondrial 

membrane integrity. 

(1) Nuclear envelope 
(2) Outer mitochondrial 

membrane 
(3) Membrane of the 

endoplasmic reticulum 
membrane (ER) 

 
 
 
 
 
 
 

Contain four BH 
(1-4) domains 

BCL-W 
(Bcl2-like protein 2) 

It reduces cell apoptosis under 
cytotoxic conditions. 

Exclusively on the 
mitochondrion 

BCL-XL 
(BCL-extra long) 

It inhibits cytochrome c release 
that inhibits activation of the 

cytoplasmic caspase cascade by 
cytochrome c 

The transmembrane 
molecule in the 
mitochondria 

MCL1 
 

(myeloid cell leukemia-1) 
 

It interacts with Noxa, BAK1, 
BCL2L11, Bcl-2-associated death 

promoter, PCNA. 
Nucleus, mitochondria 

pro-apoptotic 
proteins 

BAK 
(BCL-2-antagonist/killer-1) 

It undergoes conformational 
changes to form larger aggregates 

during apoptosis 

Integral mitochondrial 
membrane protein 

 

Contain three 
conserved BH 

domains 

BAX 
(BCL-2-associated×protein) 

Release of apoptogenic factors like 
cytochrome c, activation of 

caspase cascade 
Cytosol 

BOK 
(BCL-2 related ovarian 

killer) 
 

Major functions of BOK are 
exerted on the ER membranes and 

the Golgi and that it induces 
apoptosis in a manner dependent 

on BAK  and BAX. 

Nucleus 

pro-apoptotic 
BH3-only 
proteins 

BID 
(BH3 interacting domain 

death agonist) 

Bid, free ‘activator’ type BH3 only 
protein, which can then activate 

Bak and Bax. 
Mitochondria 

 
BH3-only 

proteins that have 
homology to the 
BCL-2 family 

proteins in only a 
single domain, 

the BH3 domain 

BIM 
Bim (Bcl-2 interacting 
mediator of cell death) 

It promotes cell death. The mitochondrial outer 
membrane (MOM) 

BAD 
(BCL-2 associated death 

promoter) 

Dephosphorylated BAD forms a 
heterodimer with Bcl-xL, and Bcl-
2, and Bcl-xL, inactivating them 

and thus allowing Bax/Bak-
triggered apoptosis 

Free in mitochondria 

BIK 
(BCL-2 interacting killer) 

It promotes Ca2 release from, 
activation of ER-localized Bax/ 

Bak. 
ER 

BMF 
BCL-2 modifying factor 

(BMF) 

It acts as an initiator of the 
intrinsic apoptosis pathway. MOM 

HRK 
(Hara-kiri) 

Hrk is a critical downstream 
effector of the JNK dependent 

mitochondrial apoptotic signaling 
pathway. 

MOM 

NOXA 
(Latin for “damage”) A selective inhibitor of MCL1 MOM 

PUMA 
(p53 upregulated modulator 

of apoptosis) 

It promotes ER Ca2 pool depletion 
during thapsigargin-induced 

apoptosis with a Bax-dependent 
mechanism. 

MOM 

 
 

Table 5. The function and classification of the BCL-2 family

dysregulated in HCC, it is well accepted that 
epigenetic events, such as histone modification 
play an important role in normal biological 
processes and tumorigenesis and that the 
epigenetic status is altered during cancer 
initiation. Because histone deacetylation 
is a potentially reversible change, the 
epigenetic histone modification represents 
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new opportunities for cancer management by 
reactivation of gene silencing. The inhibition 
of HDACs by GDACIs can effectively 
induce apoptosis and suppress cancer cell 
proliferation. These compounds can engage 
both intrinsic and extrinsic apoptotic pathways. 
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