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Abstract

Idiopathic Thrombocytopenic Purpura (ITP) is a multifactorial disease with decreased count 
of platelet that can lead to bruising and bleeding manifestations. This study was intended to 
identify critical genes associated with chronic ITP. The gene expression profile GSE46922 was 
downloaded from the Gene Expression Omnibus database to recognize Differentially Expressed 
Genes (DEGs) by R software. Gene ontology and pathway analyses were performed by DAVID. 
The biological network was constructed using the Cytoscape. Molecular Complex Detection 
(MCODE) was applied for detecting module analysis. Transcription factors were identified by the 
PANTHER classification system database and the gene regulatory network was constructed by 
Cytoscape. One hundred thirty-two DEGs were screened from comparison newly diagnosed ITP 
than chronic ITP. Biological process analysis revealed that the DEGs were enriched in terms of 
positive regulation of autophagy and prohibiting apoptosis in the chronic phase. KEGG pathway 
analysis showed that the DEGs were enriched in the ErbB signaling pathway, mRNA surveillance 
pathway, Estrogen signaling pathway, and Notch signaling pathway. Additionally, the biological 
network was established, and five modules were extracted from the network. ARRB1, VIM, SF1, 
BUB3, GRK5, and RHOG were detected as hub genes that also belonged to the modules. SF1 also 
was identified as a hub-TF gene. To sum up, microarray data analysis could perform a panel of 
genes that provides new clues for diagnosing chronic ITP.

Keywords:  Idiopathic Thrombocytopenic Purpura; ITP; Microarray; Gene expression; 
Biomarkers; Bioinformatics; System biology.

Introduction

Immune thrombocytopenic purpura (ITP) 
known as Idiopathic thrombocytopenic 
purpura is a multifactorial autoimmune 

bleeding disease associated with platelet 
destruction and discriminated by isolated 
thrombocytopenia (platelet count < 150,000 
u/L) that was reported in almost 2 per 100,000 
adults with a mean age of diagnosis of 50 years 
(1, 2). However, the vague pathogenesis, the 
abnormalities in the number and the function 
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of different immune cells can play a crucial role 
in this disease. ITP phenotype, characterized 
by dysfunctional T-lymphocyte immunity, 
dysregulation in pre-B-cell, and T cell 
immunophenotypic markers, was recognized 
in bone marrow lymphocytes of pediatric ITP 
(3, 4). Besides, it is believed that membrane 
glycoproteins IIb-IIIa of platelet was targeted 
by immunoglobulin G autoantibody which is 
confirmed significantly by elevated CRP levels 
in ITP patients (5,6). These autoantibodies 
are recognized in 40–60% of patients and 
provide condition to Kupffer cells and splenic 
macrophages in the liver phagocytosis platelets 
(7). Other mechanisms include impaired 
production of platelet stimulatory hormone, 
thrombopoietin, reduced expression of human 
leukocyte antigen-G and immunoglobulin-
like transcripts or secondary contributors such 
as childhood exposure to viruses, helicobacter 
pylori infection, and pregnancy (8-10). Zhang, 
et al., determined six marker proteins that 
separate primary ITP from secondary ITP, 
including NPS, EDN1, CORT, CLEC7A, 
CCL18, and NPPB. Most of the detected 
proteins related to the immune system act 
as up/down-regulator in macrophages and 
platelet (11). Platelets can be recognized with 
the expression of CD38 as a prognostic marker 
for ITP (2).

As mentioned before, ITP classified as 
acute and chronic types and sub-categorized 
by primary and secondary etiology (9, 10). 
Besides, the alternative classification by 
international consensus guidelines organized 
3 phases as newly diagnosed (up to 3 months), 
persistent (3-12 months’ duration), and chronic 
(over 12 months’ duration) (2, 6 and 11).

ITP patients were characterized by a 
decrease in platelet count of peripheral 
blood and variable bleeding symptoms. In 
severe cases, it may lead to fatal intracranial 
hemorrhage. Thus, prompt diagnosis and early 
therapeutic intervention are essential (12, 13).

There are no specific criteria for diagnosing 
ITP, and diagnosis is based on the exclusion 
criteria of the other diseases, such as lupus 
erythematosus, Von Willebrand disease type IIb, 
hemolytic uremic syndrome, Evans syndrome, 
disseminated intravascular coagulation, 
Posttransfusion purpura, paroxysmal nocturnal 
hemoglobinuria, myelodysplastic syndrome, 

lymphoproliferative disorders, Infections 
(viral, bacterial, parasitic), and drug-induced 
thrombocytopenia. Furthermore, antiplatelet 
antibody testing is not recommended because 
of high inter-laboratory variability and reduced 
sensitivity (14-16).

Microarray technology is a prevalent 
technique for studying the pattern of 
expression of a large number of genes to 
analyze a genome. Microarray data are 
important in many aspects of disease research, 
including  primary research, target discovery, 
biomarker identification, and prognostic test 
determination. The methods used to analyze 
the data can have a profound effect on the 
interpretation of the results (17, 18). Network 
analysis of high‐throughput data can be useful 
in breaking the gap between data production and 
drug targeting and helps to uncover biological 
complexity (19, 20). Therefore, to explore the 
molecular mechanism and discover specific 
biomarkers for chronic ITP compared with 
newly diagnosed in pediatrics, we applied 
bioinformatics techniques to analyze gene 
expression profiles of pediatric chronic ITP 
versus newly diagnosed and identify DEGs. 
For this aim, in the beginning, pediatric chronic 
ITP patients’ gene expression profiles were 
compared with pediatric newly diagnosed 
downloaded from GEO dataset. DEGs were 
identified using limma packages of the R 
software. The involvement of DEGs in the 
biological processes (BP), cellular components 
(CC), molecular functions (MF), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
were assessed with DAVID online tool.  DEGs 
visualized using Cytoscape software. We 
applied the network analysis using Cytoscape 
to predict probable biomarkers. The panther 
database was used for transcriptional 
regulatory network construction. These 
studies could help find crucial genes that 
might be applied for appropriate diagnostics 
and treatment strategies in ITP.

Experimental

Microarrays data
The Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo) is a public 
dataset for storage microarray, and next-
generation sequencing data is freely available 
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for users. In this study, ITP genomic data 
were obtained from GEO with the series 
accession number GSE46922 and the platform 
GPL570 (Affymetrix Human Genome U133 
Plus 2.0 Array). This dataset included data 
from thirteen blood samples: seven newly 
diagnosed and six chronic samples described 
by Margareta Jernas et al. (21).

Data processing
Data retrieved from GEO were analyzed 

with R software to discover significantly 
expressed genes by employing various 
statistical tests, mainly, the t-statistics and 
P-value. R software is a fascinating tool to 
discriminate two or more groups of samples 
to classify genes, differentially regulated 
following the same experimental condition. 
This software can estimate the P-value for 
significant outcomes by utilizing Limma R 
packages from the Bioconductor project. 
Benjamini false discovery rate was concerned 
in this outline. Here the genes were chosen for 
more evaluation with P-value < 0.05, and-0.5 
>M > 0.5 (M is log2 fold change).

Functional and pathway enrichment 
analysis

Up-regulated and down-regulated genes 
were analyzed separately by the DAVID 
enrichment database (version 6.8) (https://
david.ncifcrf.gov). The Database for 
Annotation, Visualization, and Integrated 
Discovery (DAVID) is a web-accessible 
program that provides a comprehensive set 
of functional annotation tools to disclose the 
biological meaning behind gene sets. DAVID 
contains numerous public sources of protein 
and gene annotation from more than 65,000 
species (22). Gene Ontology and KEGG 
pathway analysis were performed using the 
DAVID database for functional analysis of the 
gene lists. We used the functional annotation 
clustering; to reveal the clusters enriched in 
gene ontology and KEGG pathway terms with 
the enrichment score number. Gene Ontology 
(GO; www.geneontology.org) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG; 
www.genome.ad.jp/KEGG) enrichment 
analysis were performed to identify DEGs. 
GO was used for categorization, including 
biological process, molecular function, and 

cellular component, which is widely used in 
bioinformatics and increases the possibility of 
indentifying the most correlative mechanisms. 
KEGG was used for understanding the most 
relevant pathway of informative genes. 

Network construction and modules 
selection

DEGs interaction network can clarify the 
molecular mechanism of cellular processing. 
Functional interaction between DEGs was 
constructed with Cytoscape (version 3.5.1). 
In this study, the network was extended 
with the Cytoscape public database. Highly 
connected nodes were selected as hubs. Some 
nodes with the highest betweenness centrality 
were nominated as bottleneck nodes. Then, 
Molecular Complex Detection (MCODE) was 
used for screening modules. The functional 
enrichment analysis of DEGs in each module 
was performed by DAVID.

 Transcriptional regulatory network 
construction

In order to identify the transcription factor 
(TF) nodes in the network, the PANTHER 
Classification System database (http://
www.pantherdb.org/) was used (23). Then 
the transcriptional regulatory network was 
visualized by Cytoscape. 

Results

 Data screening
Based on P-value < 0.05 in comparison to 

newly diagnosed ITP/chronic ITP, 132 DEGs 
were identified, consisting of 78 up-regulated 
(Supplementary Table S1) and 54 down-
regulated genes (Supplementary Table S2). As 
shown in (Figure 1), the medians located at the 
same level after performing data normalization 
with R software, indicating a perfect effect. 

Gene ontology and pathway enrichment 
analysis

Gene Ontology and Pathway functional 
enrichment analysis were performed according 
to the P-values < 0.05 on the identified DEG. 
The enriched term of BP for up-regulated genes 
was reported in (Table 1 and Supplementary 
Table S3). They were significantly involved in 
10 significant clusters of biological processes, 
associated with regulation of autophagy, 
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cell cycle checkpoint, regulation of gene 
expression, cellular component organization 
or biogenesis, positive regulation of cell 
projection organization, macromolecule 
metabolic process, sister chromatid 
segregation, the establishment of protein 
localization to the membrane, and regulation 
of protein tyrosine kinase activity. The up-
regulated genes were located in 5 clusters 
associated with the intracellular part, organelle, 
nucleus, intracellular non-membrane-bounded 
organelle, chromosome, centromeric region, 
and ciliary membrane (Supplementary 
Table S4). Significant Molecular function 
represented in (Supplementary Table S5) 
involved 2 cluster link to nucleic acid binding 
and protein kinase activity.  

Moreover, the gene ontology related 
to biological process terms were over-
represented in down-regulated DEGs with 
significant P-value which mainly involved 
in the modification of morphology or 
physiology of other organism involved in 
symbiotic interaction, cellular response to 
monosaccharide stimulus, programmed 
cell death, histone methylation, negative 

regulation of sequence-specific DNA 
binding transcription factor activity, and 
positive regulation of binding (Table 2 and 
Supplementary Table S6). 

The significant cellular components, 
related to down-regulated genes contained 
four clusters that were mainly involved in 
intracellular, organelle part, membrane-
bounded organelle, lysosomal membrane, lytic 
vacuole membrane, and chromosomal part. 
(Supplementary Table S7). Two significant 
molecular function clusters for down-regulated 
genes, represented in (Supplementary Table 
S8), were related to lipase activity, hydrolase 
activity, acting on ester bonds, and structure-
specific DNA binding.

The significant pathway represented in 
(Table 3) for up-regulated and down-regulated 
DEGs .the pathway enrichment analysis for 
up-regulated DEGs indicated these genes 
involved in the ErbB signaling pathway, 
mRNA surveillance pathway, and the Estrogen 
signaling pathway. Whereas, only the Notch 
signaling pathway is related to down-regulated 
genes. 

 
 

Figure 1. Box plot of expression data by analyzing GSE46922 that contain seven newly diagnosed 

ITP and six chronic ITP samples. 

  

Figure 1. Box plot of expression data by analyzing GSE46922 that contain seven newly diagnosed ITP and six chronic ITP samples.
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Table 1. Gene ontology enrichment analysis based on biological analysis of up-regulated DEGs. They were selected with significant value P < 

0.05. Enrichment Score is related the type of analysis in the DAVID database selecting the"functional annotation clustering" for analysis of gene 

lists. 

Category Term P-Value 

Annotation Cluster 1 Enrichment Score: 1.6089173346492356  

GO:1902589 single-organism organelle organization 0.005313 

GO:0000226 microtubule cytoskeleton organization 0.020728 

GO:0007017 microtubule-based process 0.026109 

Annotation Cluster 2 Enrichment Score: 1.5454786370206883  

GO:0010506 regulation of autophagy 0.003125 

GO:0010508 positive regulation of autophagy 0.03688 

Annotation Cluster 3 Enrichment Score: 1.1276637957883262  

GO:0000075 cell cycle checkpoint 0.010137 

GO:0022402 cell cycle process 0.010174 

GO:0000077 DNA damage checkpoint 0.017372 

GO:0007049 cell cycle 0.017944 

GO:0031570 DNA integrity checkpoint 0.020624 

GO:0007093 mitotic cell cycle checkpoint 0.020967 

GO:0045930 negative regulation of mitotic cell cycle 0.047204 

Annotation Cluster 4 Enrichment Score: 1.0524732568167308  

GO:0016043 cellular component organization 0.03475 

GO:0006996 organelle organization 0.046543 

GO:0071840 cellular component organization or biogenesis 0.04844 

Annotation Cluster 5 Enrichment Score: 0.9254147029064898  

GO:0031344 regulation of cell projection organization 0.004985 

GO:0010975 regulation of neuron projection development 0.018065 

GO:0030030 cell projection organization 0.020064 

GO:0031346 positive regulation of cell projection organization 0.02586 

GO:0031175 neuron projection development 0.030331 

GO:0030182 neuron differentiation 0.035135 

Annotation Cluster 6 Enrichment Score: 0.9097209940740182  

GO:0043170 macromolecule metabolic process 0.001037 

GO:0010468 regulation of gene expression 0.008941 

GO:0060255 regulation of macromolecule metabolic process 0.008953 

GO:0019222 regulation of metabolic process 0.011749 

GO:0044260 cellular macromolecule metabolic process 0.014544 

GO:0010467 gene expression 0.017106 

GO:0010558 negative regulation of macromolecule biosynthetic process 0.033922 

GO:0009892 negative regulation of metabolic process 0.038268 

GO:0010605 negative regulation of macromolecule metabolic process 0.041577 

GO:0031327 negative regulation of cellular biosynthetic process 0.043543 

GO:0031324 negative regulation of cellular metabolic process 0.044105 

GO:0009890 negative regulation of biosynthetic process 0.047731 

GO:0051172 negative regulation of nitrogen compound metabolic process 0.048092 

Table 1. Gene ontology enrichment analysis based on biological analysis of up-regulated DEGs. They were selected with significant 
value P < 0.05. Enrichment Score is related the type of analysis in the DAVID database selecting the”functional annotation clustering” 
for analysis of gene lists.
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Category Term P-Value 

Annotation Cluster 8 Enrichment Score: 0.7138986023041735  

GO:0007062 sister chromatid cohesion 0.011798 

GO:0000819 sister chromatid segregation 0.049886 

Annotation Cluster 11 Enrichment Score: 0.5802981069084664  

GO:0090150 establishment of protein localization to membrane 0.046903 

Annotation Cluster 17 Enrichment Score: 0.42916203800540753  

GO:0018108 peptidyl-tyrosine phosphorylation 0.009263 

GO:0018212 peptidyl-tyrosine modification 0.00948 

Annotation Cluster 18 Enrichment Score: 0.40498640863411367  

GO:0018108 peptidyl-tyrosine phosphorylation 0.009263 

GO:0018212 peptidyl-tyrosine modification 0.00948 

GO:0044260 cellular macromolecule metabolic process 0.014544 

GO:0061097 regulation of protein tyrosine kinase activity 0.023351 
 

  

Table 1. Continued.

Network construction and modules 
selection

Based on public databases existing on 
Cytoscape, the PPI network of DEGs was 
established. Network analysis was shown 
consisting of 1137 nodes and 2647 edges 
(Figure.2A). The cut-off criterion of hub gene 
selection was set at ≥ 40 degrees. Based on 
this cut-off, twenty hubs are recognized in 
the network. Therefore, regarding the cut-
off criteria, seventeen genes of DEGs were 
selected as hub nodes. They consisted of 
eleven up-regulated (ATF2, VIM, PAK2, SF1, 
BUB3, PCF11, PCF12, FBXW7, GSPT1, 
CLIP1, ABL2) and six down-regulated 
(ARRB1, KPNA2, GRK5, TUFM, RHOG, 
TEX264) genes (Table 4). 

  Twenty of the highest betweenness 
centrality including fifteen genes of DEGs 
were selected as bottleneck containing nine 
up-regulated (BBS2, RPRD1A, FNBP4, 
TUBE1, ABCA5, EIF4E3, TNRC6A, TBC1D5, 
VIM) and six down-regulated (TMEM214, 
COPRS, MAU2, MRPL45, TBC1D9B, 
ARRB1) genes (Table 5). Two of the mentioned 
genes,including VIM and ARRB1, appeared 
among hub nodes. These two genes were 
dentified as hub-bottleneck genes. Which 
confirms the important role of these two genes.

The functional modules were assessed 
using the MCODE plugin. Five modules were 
identified including thirty nodes and 36 edges 

that comprised Module 1 (ZNF324, ZNF224, 
ZNF382, TRIM28), module 2 (BUB3, 
CDC42, GRK5, PSMC2, SF1, HDAC6, 
SRPK1, CLIP1), module 3 (VIM, MEN1, 
GFAP), module 4 (APP, EIF4E2, ARRB1, 
ARRB2, ADRB2, YWHAE, USP33), module 
5 (ATG7, GSPT1, RALBP1, MIZF, RPD3L1, 
ARHGAP25, RHOG) (Figure 2B).

We found six DEGs existing in both hub 
genes and modules, which have significant 
P-value (P-value < 0.05) for enriched BP. 
These genes included three up-regulated genes 
and three down-regulated genes (Table 6). 

Transcriptional regulatory network 
construction:

One hundred twenty-one nodes with TF 
function have been identified from 1137 
network nodes using the panther database. By 
using Cytoscape, these 121 nodes have been 
visualized in a regulatory network.

Five genes of thirty genes existing in 
modules are TF, including ZNF224, ZNF382, 
TRIM28, MIZF, and SF1. ZNF382, TRIM28, 
ZNF224 belong to module one, SF1 belongs 
to module two, and MIZF belongs to module 5.

Further analysis of potentially remarkable 
modules was performed by detecting TFs with 
a high degree of connections with other nodes, 
the so-called hub-TFs.

It should be noted that SF1 is the hub node 
in the transcriptional regulatory network. SF1, 
as a TF encoding gene is a hub-TF (Figure.3). 
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Category Term P-Value 

Annotation Cluster 2 Enrichment Score: 0.7613112520752194  

GO:0044267 cellular protein metabolic process 0.011896 

GO:0043412 macromolecule modification 0.01846 

GO:0019538 protein metabolic process 0.018791 

GO:0006807 nitrogen compound metabolic process 0.019514 

GO:0009059 macromolecule biosynthetic process 0.021932 

GO:0043170 macromolecule metabolic process 0.028871 

GO:0044249 cellular biosynthetic process 0.033903 

GO:0034641 cellular nitrogen compound metabolic process 0.034934 

GO:0044237 cellular metabolic process 0.043685 

GO:0008152 metabolic process 0.044952 

GO:0044238 primary metabolic process 0.04675 

GO:0006464 cellular protein modification process 0.047376 

GO:0036211 protein modification process 0.047376 

GO:0009058 biosynthetic process 0.048575 

GO:0071704 organic substance metabolic process 0.04992 

Annotation Cluster 3 Enrichment Score: 0.7085147802867421  

GO:0051817 modification of morphology or physiology of other organism involved in symbiotic interaction 0.023652 

GO:0035821 modification of morphology or physiology of other organism 0.033336 

Annotation Cluster 5 Enrichment Score: 0.5438770693729118  

GO:0016570 histone modification 0.005122 

GO:0016569 covalent chromatin modification 0.012772 

GO:0006325 chromatin organization 0.012912 

GO:0090630 activation of GTPase activity 0.017421 

GO:0032092 positive regulation of protein binding 0.017839 

GO:0006996 organelle organization 0.019368 

GO:0018205 peptidyl-lysine modification 0.01994 

GO:0051817 modification of morphology or physiology of other organism involved in symbiotic interaction 0.023652 

GO:0071333 cellular response to glucose stimulus 0.026068 

GO:0071331 cellular response to hexose stimulus 0.027564 

GO:0071326 cellular response to monosaccharide stimulus 0.027564 

GO:0051276 chromosome organization 0.029444 

GO:0006915 apoptotic process 0.030391 

GO:0071322 cellular response to carbohydrate stimulus 0.032253 

GO:0035821 modification of morphology or physiology of other organism 0.033336 

GO:0001678 cellular glucose homeostasis 0.034432 

GO:0012501 programmed cell death 0.042073 

GO:0016571 histone methylation 0.0443 

GO:0006464 cellular protein modification process 0.047376 

GO:0036211 protein modification process 0.047376 

GO:0043433 negative regulation of sequence-specific DNA binding transcription factor activity 0.048006 

GO:0051099 positive regulation of binding 0.0499 
 

  

Table 2. Gene ontology enrichment analysis based on biological analysis of down-regulated DEGs. They were selected with 
a significant value P < 0.05. Enrichment Score is related the type of analysis in the DAVID database, selecting the “functional 
annotation clustering” for analysis of gene lists.
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Figure 2. (A) network with 1137 nodes and 2647 edges. Unregulated hub genes were shown with red triangle nodes while down-
regulated represented with green color (B) Significant modules selected from the network. Pink modules illustrated up-regulated 
genes, while green nodes illustrated down-regulated genes. Seed nodes are shown in rectangular shape.
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Table 3. KEGG Pathway enrichment analysis of up-regulated and down-regulated DEGs. They were selected with a significant value P < 0.05 in 

the DAVID database.  

 Term Description P-value Genes 
Up-regulated DEGs 

1 hsa04012 ErbB signaling pathway 0.033682 PAK2, ABL2, AKT3 
2 hsa03015 mRNA surveillance pathway 0.036574 PCF11, GSPT1, MSI2 
3 hsa04915 Estrogen signaling pathway 0.042636 FKBP5, AKT3, ATF2 
Down-regulated DEGs 

1 hsa04330 Notch signaling pathway 0.009201 HDAC1;MFNG;DTX1 
 

  

Table 3. KEGG Pathway enrichment analysis of up-regulated and down-regulated DEGs. They were selected with a significant value 
P < 0.05 in the DAVID database. 

Table 4. Hub gene with the cut-off criterion degrees ≥ 40. Three genes did not excist in DEGs and were added by Cytoscape software. Bottleneck 

genes showed by star in the betweenness centrality column. 

 UniProtKB ID Gene name Degree Betweeness centrality 

Up-regulated 

1 P15336 ATF2 124 0.095148 

2 P08670 VIM 111 0.123853* 

3 Q13177 PAK2 101 0.07973 

4 Q15637 SF1 90 0.084552 

5 O43684 BUB3 85 0.058294 

6 O94913 PCF11 77 0.037986 

7 Q9Y243 PCF12 62 0.03668 

8 Q969H0 FBXW7 53 0.025345 

9 P15170 GSPT1 49 0.037137 

10 P30622 CLIP1 46 0.012378 

11 P42684 ABL2 42 0.023944 

Down-regulated 

1 P49407 ARRB1 125 0.121072* 

2 P52292 KPNA2 81 0.066201 

3 P34947 GRK5 59 0.036356 

4 P49411 TUFM 56 0.035678 

5 P84095 RHOG 40 0.028479 

6 Q9Y6I9 TEX264 40 0.055543 

Added by network 

1 Q13547 RPD3L1 202 0.236783* 

2 Q71U36 Tubulin B-alpha-1 134 0.135022* 

3 Q7L7X3 PSK2 42 0.017018 

 

 

  

Table 4. Hub gene with the cut-off criterion degrees ≥ 40. Three genes did not excist in DEGs and were added by Cytoscape software. 
Bottleneck genes showed by star in the betweenness centrality column.
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Figure 3. Visualization in Cytoscape of interactions between TFs, modules and hub-TFs. TFs are shown as triangle. Hubs are displayed 
in red ellipses. Modules showed by number with different color that contains the nodes are hub (red node), seed (green node) and TF 
(yellow and red triangle). There is just one red rectangle in module No.2 related to the node that is hub-seed gene. Red triangle related 
to the nodes are hub-TFs and green triangle is a node related seed-TFs. SF1 and ATF2 are hub-TFs and ZNF382 is a seed-TF. ZNF382 
and SF1 are the members of modules No.1 and No.2 respectively.
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Table 5. The genes with the highest betweenness centrality were selected as the bottleneck. Five genes did not excisted among the DEGs and were 

added by cytoscape software. Stars in degree column show the importance of these gnes as hub genes. 

 UniProtKB ID Gene name Betweenness centrality Degree 

Up-regulated 

1 Q9BXC9 BBS2 1 27 

2 Q96P16 RPRD1A 1 24 

3 Q8N3X1 FNBP4 1 6 

4 Q9UJT0 TUBE1 1 2 

5 Q8WWZ7 ABCA5 1 2 

6 Q8N5X7 EIF4E3 1 2 

7 Q8NDV7 TNRC6A 0.44370861 27 

8 Q92609 TBC1D5 0.48979592 11 

9 P08670 VIM 0.41453744 111* 

Down-regulated 

1 Q6NUQ4 TMEM214 1 13 

2 Q9NQ92 COPRS 1 8 

3 Q9Y6X3 MAU2 1 5 

4 A0A087X2D5 MRPL45 0.807327 37 

5 Q66K14 TBC1D9B 0.76268116 14 

6 P49407 ARRB1 0.12107173 125* 

Added by network 

1 Q13618 CUL3 0.48846676 2 

2 Q13547 RPD3L1 0.23678326 202* 

3 Q9H492 MAP1LC3A 0.23550725 2 

4 Q9H0R8 GABARAPL1 0.23550725 2 

5 Q71U36 Tubulin B-alpha-1 0.13502234 134* 

 

  

Table 5. The genes with the highest betweenness centrality were selected as the bottleneck. Five genes did not excisted among the 
DEGs and were added by cytoscape software. Stars in degree column show the importance of these gnes as hub genes.
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Discussion 

Diminished platelet production and 
enhanced platelet destruction are the familiar 
characters of ITP (24). However, the first hit 
for dysregulation of the immune system in 
ITP remains unknown (25). Understanding the 
molecular and physiopathological mechanisms 
of ITP requires many efforts to design new 
preventive and therapeutic strategies. Due to the 
interaction of genes and environmental factors 
in common human diseases, a more integrated 
biological approach is needed to solve these 
complexities (26). DNA microarrays are 

used as a powerful technique in biomedical 
research. This method has attracted much 
attention from scientists because of its ability 
to identify thousands of genes and even the 
entire genome simultaneously (26). Systemic 
network analysis of high-throughput data is the 
most useful technique to explain the important 
implications of life science. Network features, 
such as composition and topology are highly 
relevant to vital cellular functions, so they 
are critical in biological science research 
(27). This study tries to find essential genes 
and mechanisms by bioinformatics analysis 
of GSE46922 microarray data, which are 

Table 6. Key genes related to chronic ITP that selected based on multiple criteria of data analysis. Hub gene with the cut-off criterion degrees ≥ 40 

which are also existed in modules selected as potential biomarkers for chronic ITP. The fold change in expressed genes in microarray selected 

based on M index that is log2 fold change. 

 

 Gene 
name 

Gene 
ID Degree Betweeness 

centrality M Biological process 

Up-regulated 

1 VIM P08670 111 0.12385346 1.077912156 positive regulation of protein ubiquitination involved in ubiquitin-
dependent protein catabolic process (GO:2000060) 

2 SF1 Q15637 90 0.08455183 2.419055031 
mRNA splice site selection (GO:0006376),spliceosomal complex 

assembly (GO:0000245),mRNA 3'-splice site recognition 
(GO:0000389) 

3 BUB3 O43684 85 0.05829374 0.846438817 regulation of translation (GO:0006417) 

Down-regulated 

1 ARRB1 P49407 125 0.12107173 -1.855926621 

regulation of Notch signaling pathway (GO:0008593), negative 
regulation of sequence-specific DNA binding transcription factor 

activity (GO:0043433), negative regulation of NF-kappaB 
transcription factor activity (GO:0032088), positive regulation of 

histone H4 acetylation (GO:0090240), desensitization of G-protein 
coupled receptor protein signaling pathway (GO:0002029), 
regulation of histone H4 acetylation (GO:0090239), positive 

regulation of cellular metabolic process (GO:0031325), contractile 
actin filament bundle assembly (GO:0030038), stress fiber 
assembly (GO:0043149), negative regulation of cytokine 

production (GO:0001818), positive regulation of peptidyl-lysine 
acetylation (GO:2000758), negative regulation of interleukin-8 

production (GO:0032717), modification-dependent protein 
catabolic process (GO:0019941) 

2 GRK5 P34947 59 0.03635575 -0.896145434 

tachykinin receptor signaling pathway (GO:0007217), regulation 
of signal transduction (GO:0009966), positive regulation of cell 

proliferation (GO:0008284), regulation of cell proliferation 
(GO:0042127) 

3 RHOG P84095 40 0.02847864 -1.37279767 

Rac protein signal transduction (GO:0016601), activation of 
GTPase activity (GO:0090630), positive regulation of GTPase 
activity (GO:0043547), positive regulation of cell proliferation 

(GO:0008284), engulfment of apoptotic cell (GO:0043652), 
phagocytosis, engulfment (GO:0006911), neutrophil degranulation 
(GO:0043312),neutrophil activation involved in immune response 

(GO:0002283), neutrophil mediated immunity (GO:0002446), 
regulation of cell proliferation (GO:0042127) 

 

 

  

Table 6. Key genes related to chronic ITP that selected based on multiple criteria of data analysis. Hub gene with the cut-off 
criterion degrees ≥ 40 which are also existed in modules selected as potential biomarkers for chronic ITP. The fold change in 
expressed genes in microarray selected based on M index that is log2 fold change.
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different between the newly diagnosed and the 
chronic ITP. This study identifies, 131 DEGs, 
consisting of 78 up-regulated genes and 53 
down-regulated genes, which are differentially 
expressed between, the newly diagnosed ITP 
and chronic ITP-.

Our enrichment analysis of the up-
regulated DEGs showed that autophagy played 
a significant role in ITP. There is evidence that 
the positive regulation of autophagy is the most 
relevant biological process in ITP associated 
with the expressed genes in the chronic phase. 
Autophagy induces to the maintenance of 
platelet life and physiological functions (28). 
Improper expression of molecules in the 
autophagy pathway has been also determined 
in ITP patients lymphocytes (29). Elevating 
platelet autophagy has been also shown to 
diminish platelet destruction by prohibiting 
apoptosis and amending platelet viability 
(28). Besides, particular evidence implied 
that megakaryocytes undergo autophagy 
in ITP patients (30). The apoptotic process 
was diminished in accordance with activate 
autophagy process in chronic ITP. 

Our study has shown that down-regulated 
genes in the chronic phase were mainly 
enriched in the Notch signaling, closely 
related to hematopoiesis, which involves the 
evolving hematopoietic system to generate 
hematopoietic stem cells and the development 
of immune cells like in T-cells or progress 
several autoimmune diseases like ITP (32). 
Rania Mohsen Gawdat et al. found the 
correlation of Notch1/Hes1 gene expression 
levels in Egyptian paediatric patients with 
newly diagnosed and persistent primary ITP 
(31, 32). We detected this pathway in newly 
diagnosed ITP while down-regulated in the 
chronic phase, and this data has shown that 
the Notch pathway is replaced by the ErbB 
signaling pathway, mRNA surveillance 
pathway, and Estrogen signaling pathway over 
time to display the chronic phase symptom. 
Also molecular crosstalk among Notch 
signaling pthway with ErbB and Estrogen 
signaling pathways was acknowledged in 
breast cancer (33). This study also confirms 
the crosstalk between emerging ErbB and 
Estrogen pathway and inhibition of the 
Notch signaling pathway in ITP. The mRNA 
surveillance pathway was enriched by the up-

regulated genes related to the quality control 
mechanism that targets aberrant mRNAs 
for degradation (34). This pathway was not 
reported for ITP but confirm this mechanism 
in autoimmune disease and cellular defense 
against virus invasion. Mutations affecting the 
mRNA surveillance machinery cause chronic 
activation of defense programs, resulting 
in autoimmune phenotypes. The Systemic 
lupus erythematosus (SLE) as a human 
autoinflammatory and autoimmune disorders 
are notably linked to this system deviation 
(34). ITP manifests several symptoms of 
mimicking diseases like SLE; therefore, one 
might be aware of this similarity emphasizing 
with several investigations. Besides, this 
pathway enriched from down-regulated genes 
in the chronic phase; it implies that the chronic 
phase of ITP can be due to perturbations in the 
pathways.

The network analysis also demonstrated 
that there are interactions among the DEGs. 

Our network analysis revealed a set of 
candidate genes (three up-regulated and 
three down-regulated) for the investigation 
of biomarkers or molecular mechanisms of 
ITP, which was significantly correlated with 
chronic ITP, including BUB3, GRK5, SF1, 
VIM, ARRB1, and RHOG. 

Our network analysis also verifies the Notch 
signaling pathway in ITP. In this study, ARRB1 
was considered a hub-bottleneck protein with 
a high degree and high betweenness centrality 
value. This protein is strongly related to the 
Notch signaling pathway. Due to its unique 
features, it has an attractive advantage for drug 
targeting. 

One of the essential genes that play 
an indispensable role in the maturation of 
hematopoietic precursors is Vimentin (VIM) 
that belongs to hub-bottleneck protein. 
Alteration in expression of VIM has been 
recognized in the maturation process of the 
megakaryocytic, granulomonocytic, erythroid, 
and lymphoid lineages (35). Up‐regulated VIM 
has been also shown in the formation of fully 
active macrophage‐like cells and macrophage 
polykaryons (36). Rho GTPases (RhoG) is 
one of the crucial members of our analysis, 
which has a central regulatory role in platelet 
production and megakaryocyte maturation 
(37).
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One of the most important genes in this 
research was SF1. In addition to being a 
hub, integrating TF’s expression data into 
Cytoscape indicated that SF1 is also a TF. 
Kenichi Yoshida et al. reported that there is a 
mutation in SF1 in hematologic malignancies, 
but its frequency was not at confidence level 
for presentation to clinical associations (38).

The G-protein-coupled receptor kinase 5 
(GRK5) is a critical member of the threonine/
serine kinase family that phosphorylates and 
regulates the G-protein-coupled receptor 
(GPCR) signaling pathway. GRK5 has a 
key role in several diseases; for example, 
GRK5 is a decisive pathogenic factor in early 
Alzheimer’s disease, hepatic steatosis and 
metabolic disorders such as type II diabetes 
and obesity, injured and failing heart and 
cancer (39-44). GRK5 also has multiple 
roles in TLR (Toll-Like Receptor) signaling, 
which were described as a family of receptors 
involved in recognizing pathogen-associated 
molecular patterns (PAMPs) derived from 
microbes. Moreover, the importance of TLRs 
has been identified in several inflammatory 
diseases, including non-infectious diseases 
(45, 46). In addition, detection of GRK5 
expression provides a target for determining 
the effectiveness of drugs and determining 
patient prognosis in cancer (47).

The BUB3 is one of the mitotic checkpoint 
proteins specified by a group of evolutionarily 
conserved genes. It is believed that the failure 
of the BUB gene family as a surveillance system 
is a critical components of the regulatory 
process which causes genomic instability. This 
gene family encodes proteins that are a part 
of a large multi-protein kinetochore complex 
(48, 49). The BUB3’s importance was found 
in colorectal cancer at a young age and in low-
grade breast cancers (50, 51).

The use of omics technology to identify 
the mechanism of disease and the discovery 
of biomarkers has received much attention 
in recent years. Microarray and proteomics 
approaches can help to solve biological 
complexities by creating an extensive list of 
expressed transcripts that are simultaneously 
(52). As mentioned in the introduction, Zheng 
and his colleagues were able to introduce 
six important markers for the diagnosis of 
ITP by using Proteomics technology in 2016 

(11). However, they have not yet been used 
in the clinic. Our study using microarray data 
analysis introduces six new markers that can 
clarify the pathogenesis of the ITP and need 
many examinations for clinic application.

Conclusion

The current study has obtained DEGs using 
comprehensive bioinformatics analysis of 
high-throughput data released from microarray 
analysis to find the possible biomarkers. In 
summary, a total of 132 DEGs were screened, 
and six genes, including BUB3, GRK5, SF1, 
VIM, ARRB1, and RHOG, previously have not 
been reported as signature genes in ITP; here 
we found that they might play critical roles 
in chronic ITP. This research contributes new 
insights into the molecular mechanisms of 
newly diagnosed ITP and chronic ITP. These 
six genes together could be considered as a 
panel of biomarkers to differentiate newly from 
chronic ITP. Thus, additional investigations 
are needed to focus on the clinical application 
of these genes.
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