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Abstract

Epigenetic mechanisms are the most important factors contributing to both the development 
and metastasis of cancer cells. We aimed to scrutinize the role of epigenetic alternations of genes 
involved in cancer metastasis, including CD44v6 (metastasis indicator) and Nm23-H1 (a novel 
tumor suppressor), in the A549 lung cancer cell line. The A549 cells were cultured in the DMEM 
medium. Valproic acid (VPA) was used as a histone deacetylase inhibitor. Caspase-3 activity was 
assessed by adding DEVD-pNA substrate to the cell lysate. Gene expression was determined by 
real-time PCR. Finally, protein expression was assessed by western blot. The results showed that 
VA significantly decreased the expression of the CD44v6 gene and its protein level. This was 
further accompanied by lower expressions of MMP-2 and MMP-9 genes. On the other hand, the 
expression of Nm23-H1 and its protein were significantly increased in the cells accompanied by 
higher activity of caspase-3 (P ˂ 0.05). Our results showed that epigenetic regulation of CD44v6, 
Nm23-H1, MMP-2, and MMP-9 might be involved in the pathogenesis and metastasis of lung 
cancer. Therefore, the use of histone deacetylase inhibitors can be effective in the suppression of 
metastases and the treatment of these tumors.
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Introduction

Lung carcinoma represents high metastatic 
capacity, as well as a high rate of morbidity 
and mortality. These tumors comprise 17% 
of all human cancers per year (1). The 
predominant form of lung cancer is non-
small cell lung cancer (NSCLC), accounting 
for about 85% of all lung cancer cases (2). 
Metastasis is frequently encountered in 
NSCLC reported in about 30–40% of the 
patients (3). Multiple mechanisms and a 
variety of genetic interactions are involved in 
this process. In this regard, proto-oncogenes 

and tumor suppressors are master regulators in 
cancer pathogenesis and metastasis. Nm23-H1, 
also known as NDPK-A or NME1, has been 
identified tumor suppressor gene inhibiting 
metastasis in various cancers (4). Nm23-H1 
has been down-regulated in highly metastatic 
tumors as mice lacking the Nm23-M1 gene 
developed lung cancer more frequently than 
wild-type controls (5). The mechanisms of 
antitumor activities of Nm23-H1 are yet to be 
divulged. Nevertheless, modulation of multiple 
growth factors and matrix metalloproteinases 
(MMPs) may be involved (6).

The expression of Nm23-H1 is highly 
regulated by epigenetic factors including 
histone deacetylases (HDAC). Valproic 
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acid (VPA) is a promising and novel 
HDAC inhibitor and anti-cancer agent. The 
administration of VPA has been associated 
with the downregulation of Nm23-H1 and 
reduced proliferative capacity of breast cancer 
cells (7). 

Metastasis is a complex phenomenon 
involving the migration of cells through 
expressing transmembrane cell adhesion 
molecules (8). CD44 is a multifunctional 
transmembrane glycoprotein participating in 
cell–cell and cell–matrix interactions during 
tumorigenesis, angiogenesis, tumor growth, 
and metastasis (9). Particular attention has 
been given to CD44v6 which is involved in 
cell–cell and cell–matrix interactions during 
tumorigenesis (10). Studies have demonstrated 
the critical role of this protein in the motility 
and adhesion of cancerous cells to the base 
membranes (11). It has recently been noted 
that concomitant inhibition of CD44v6 and 
matrix metalloproteinase-9 (MMP-9) lowers 
migration of neoplastic cells (12). 

We here assessed the effects of VPA (as 
a new HDAC inhibitor) on the expression 
of Nm23-H1 and CD44v6 (as a novel 
tumor suppressor and a metastasis marker, 
respectively) in the A549 cell line of NSCLC. 

Experimental

Ethics Statement
The study was approved by the Baqiyatallah 

University of Medical Sciences (code: IR. 
BMSU.REC.1395.1203).

Cell Culture 
The A549 human NSCLC cell line was 

purchased from Pasture Institute of Iran 
(Tehran, Iran). The cells were grown in 
Dulbecco’s modified Eagle’s medium (DMEM 
/F-12 with GlutaMAX, Gibco, 10565018; 
Thermo Fisher Scientific Inc., Waltham, MA), 
which was supplemented with 10% fetal 
bovine serum (Gemini Bio-Products, West 
Sacramento, CA), 100 U/mL penicillin G, and 
10 mg/mL streptomycin (Invitrogen, Carlsbad, 
CA). The culture bottles were incubated at 37 
°C and 5% CO2. The culture medium was 
refreshed every 3–4 days. The cells were 
detached from the old culture using 0.25 mg/
mL trypsin/EDTA (Invitrogen). 

 MTT assay
The viability of the A549 cells 

treated with VPA was assessed using the 
standard 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) assay. 
Briefly, the cells were seeded at 104/cells 
per well in a 96-well plate and incubated 
overnight at 37 °C and 5% CO2 for 24 h. 
After refreshing the culture medium, the cells 
were treated with various concentrations of 
VPA (0–16 mM) for either 24 h, 48 h, or 72 
h. Then, MTT reagent was added at the final 
concentration of 500 μg/mL to each well, and 
the plate was further incubated at 37 °C for 
4 h in the dark. Finally, the supernatant was 
discarded and 150 μL DMSO was added to 
each well. The absorbance was measured at 
570 nm with a reference filter of 630 nm using 
the Synergy H1 Hybrid Multi-Mode Reader 
(BioTek Instruments, Inc., Winooski, VT). 
The percentage of alive cells in the presence of 
VPA was determined respective to the control 
cells grown in the absence of VPA (13). The 
IC50 was determined using GraphPad Prism 
software version 7.03. 

 Measurement of caspase-3 activity
To measure caspase-3 activity, a caspase-3 

substrate (DEVD-pNA, BioVision, Inc., 
Milpitas, CA) was utilized. For this purpose, 
the cells treated with various doses of VPA 
were lysed using chilled cell lysis buffer 
(BioVision, Inc.). After measuring the protein 
concentration of the cell lysate using the 
bicinchoninic acid (BCA) method, equal 
volumes of protein (100 μg) were diluted to 
a total volume of 50 μL and mixed with 50 
μL of 2X reaction buffer (BioVision, Inc.). 
The DEVD-pNA substrate was then added 
to the diluted cell lysates and incubated at 37 
°C for 2 h (14). Finally, the absorbance of the 
released pNA was measured at 405 nm.

 RNA extraction and real-time polymerase 
chain reaction (RT-PCR)

According to the manufacturer’s guidelines, 
the total RNA was extracted using RNX Plus 
reagent (Cinnagen, Iran). The quality and 
quantity of the extracted RNA were assessed 
by measuring the absorbance ratios of 260/230 
nm and 260/280 nm, respectively (NanoDrop 
spectrophotometer, BioTek, USA). The 
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extracted RNA was further purified using 
DNase I (Thermo Fisher Scientific Inc.) 
digestion. Complementary DNA (cDNA) was 
synthesized using the PrimeScript RT reagent 
kit (Thermo Fisher Scientific Inc.). Real-time 
polymerase chain reaction (RT-PCR) was used 
to determine gene expressions using SYBR 
Green Master Mix (Parstoos, Iran) and ABI 
Step One Real-Time PCR System (Applied 
Biosystems, Foster City, CA). The primers 
sequences for the genes have been shown in 
Table 1. All reactions were done in triplicate 
under the following conditions: 10 min at 95 
°C (initial denaturation) followed by 30 cycles 
as 15 s in 95 °C (denaturation), and 30 s in 
60 °C (annealing) and 72 °C (extension). The 
melting curve analysis was performed within 
60 °C to 95 °C. The relative gene expression 
was calculated using 2–ΔΔCt method (15).

Western blotting
The cells seeded in 6-well plates were 

scratched and transferred to a microtube. For 
protein extraction, the cells were suspended in 
RIPA lysis buffer (Santa Cruz Biotechnology, 
Inc., Dallas, TX) containing protease inhibitor 
(Sigma-Aldrich, St. Louis, MO). After that, 
the cells were sonicated and centrifuged for 
10 min at 14,000 rpm and 4 °C. The protein 
content of the supernatant was evaluated 
using the BCA method. For each group, 50 
µg protein was electrophoresed on 10% SDS-
PAGE. The protein bands were then transferred 
to nitrocellulose membranes (Millipore) 
using a semi-dry transfer membrane system 
(Cleaver Scientific Ltd, Warwickshire, United 
Kingdom). The blocking was performed using 

5% skim milk in TBS buffer (20 mM Tris–
HCl, 500 mM NaCl, pH 7.4). Mouse anti-
human NM23-H1 (Santa Cruz Biotechnology, 
Inc.) and mouse anti-human CD44v6 (Abcam, 
Cambridge, UK) antibodies were diluted 
(1:1000) in TBST buffer (20 mM Tris–HCl, 
500 mM NaCl, 0.5% Tween 20, pH 7.4). The 
membrane was incubated with the primary 
antibodies overnight at 4 °C. The secondary 
HRP-conjugated anti-mouse antibody 
(Santa Cruz Biotechnology, Inc.) diluted in 
TBST buffer (1:10000) was then added to 
the membrane and incubated for 1 h at 37 
°C. Finally, enhanced chemiluminescence 
(Thermo Fisher Scientific Inc.) was used 
followed by exposure to radiographic film to 
detect secondary antibody binding.

Statistical Analysis
Statistical analysis was performed in SPSS 

19. All the tests were done in triplicate. Data 
were expressed as mean ± SD. One-way 
ANOVA followed by post hoc Tukey test 
was used for comparisons between groups. 
P < 0.05 was considered as the statistical 
significance threshold. 

Results

Cytotoxicity of VPA against A549 Cells
The cells were exposed to different 

concentrations (0-16 mM) of AVP for either 
24, 48 or 72 h. The MTT results showed that 
VPA inhibited the growth of A549 cells in a 
concentration- and time-dependent manner 
(Figure 1). The IC50 values of VPA for A549 
cells were 10.5, 6.8 and 4.5 mM in 24, 48 and 
72 h incubations, respectively.

 

           Table 1. Primer sequences were used in RT-PCR. 

 

Gene F/R Primer sequences (5'-3') 

Nm23H1 
Forward TTAATCAGATGGTCGGGGAT 
Reverse GATCTATGAATGACAGGAGG 

CD44V6 
Forward GTCGATGCTAGCTAGCCGTAGCATG 
Reverse CGAGCTAGTCGTAGTCGATCGATCG 

MMP2 Forward TCTCCTGACATTGACCTTGGC 
Reverse CAAGGTGCTGGCTGAGTAGATC 

MMP9 Forward CCTTGTGCTCTTCCCTGGAG 
Reverse GGCCCCAGAGATTTCGACTC 

GAPDH Forward AATCCCATCACCATCTTCCA 
Reverse TGGACTCCACGACGTACTCA 

 

           Table 1. Primer sequences were used in RT-PCR.
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VPA promotes caspase-3 activity in A549 
cells

Caspase-3 activity, an early marker of 
apoptosis, was determined in A549 cells 
exposed to VPA. Accordingly, the cells 
exposed to 9 mM of VPA for 72 h showed 
significantly higher caspase-3 activity 
respective to other concentrations and periods 
(P ˂ 0.001, Figure 2).

VPA suppressed MMP-2 and MMP-9 genes 
expression

 As shown in Figures 3A and 3B, VPA 
significantly suppressed the expression of 
MMP-2 and MMP-9 in a dose-dependent 

manner (P ˂ 0.01 and P ˂ 0.001). 

 VPA promoted Nm23H-1 and alleviated 
CD44v6 expression in A549 cells

The expressions of Nm23-H1 and CD44v6 
andtheir protein levels, were investigated 
in A549 cells treated with VPA for 72 h. 
VPA treatment significantly alleviated the 
expression of CD44v6 gene (Figure 4A, P 
< 0.001) and protein (Figure 5A) in a dose-
dependent way (P < 0.001). On the other hand, 
the cells exposed to 9 mM VPA represented 
significantly upregulated Nm23-H1 gene 
(Figure 4B, P < 0.001) and protein (Figure 
5B).

 

Figure 1. The effect of VPA (0-16 Mm) on the cell viability of A549 cells after 24, 48 and 72 h incubation. Results are expressed as means ± 

SEM, n = 3. 

  

Figure 1. The effect of VPA (0-16 Mm) on the cell viability of A549 cells after 24, 48 and 72 h incubation. Results are expressed as 
means ± SEM, n = 3.

  

 

Figure 2. Relative caspase 3 activity was determined in 549 cell line treated with 2.2, 4.5 and 9 mM of VPA for 72 h. *(P ˂ 0.01), **(P ˂ 0.001) 

compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA. 

  

Figure 2. Relative caspase 3 activity was determined in 549 cell line treated with 2.2, 4.5 and 9 mM of VPA for 72 h. *(P ˂ 0.01), 
**(P ˂ 0.001) compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA.
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Figure 3. Effect of different concentrations of VPA on the expression of MMP-2 and MMP-9 gene after 72 h incubation. *(P ˂ 0.01), **(P ˂ 0.001) 

compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA. 

  

Figure 3. Effect of different concentrations of VPA on the expression of MMP-2 and MMP-9 gene after 72 h incubation. *(P ˂ 0.01), 
**(P ˂ 0.001) compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA.

 

Figure 4. Effect of different concentrations of VPA on the expression of Nm23-H1 and CD44v6 gene after 72 h incubation. *(P ˂ 0.01), **(P ˂ 

0.001), compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA. 

 

 

  

Figure 4. Effect of different concentrations of VPA on the expression of Nm23-H1 and CD44v6 gene after 72 h incubation. *(P ˂  0.01), 
**(P ˂ 0.001), compared to control cells, #(P ˂ 0.001) compared to 2.2 and 4.5 mM of VPA.
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Discussion

In this study, we assessed the effects of VPA, 
a histone deacetylase inhibitor, to determine 
its effects on the expression of genes involved 
in tumor metastasis in the A549 lung cancer 
cell line. Histone acetylation is one of the most 
important epigenetic mechanisms modulating 
gene expression. We observed here that VPA 
decreased the viability of A549 cells upon 72 h 
incubation in a dose-dependent manner. Inline, 
a dose-dependent increase was observed at 
both gene and protein levels of Nm23-H1, a 
tumor suppressor in the cancerous cells. On 
the other hand, the expression of metastatic 
tumor indicators, CD44v6, MMP-2, and MMP-
9 decreased in A549 cells exposed to VPA. 
These changes further were accompanied by 
increased caspase-3 activity in VPA treated 
A549 cells. 

Nm23-H1 is a multifunctional protein 
with nucleoside diphosphate kinase, histidine 
kinase, and DNase activities (16). Studies have 
shown the antineoplastic activity of HDACs 
in hematologic and solid malignancies. 
Scientific evidence also supports the key 
role of HDACs in down-regulating of genes 
involved in tumor metastasis and invasion 
both in-vitro and in-vivo (17, 18). HDAC 

inhibitors can suppress tumorigenesis by 
halting cancer cells migration, invasion, and 
growth, as well as by inducing apoptosis (19, 
20). In this study, we showed that VPA as an 
HDAC inhibitor, induced the expression of 
Nm23-H1, a tumor suppressor downregulated 
in highly metastatic cancers (4). Nm23-H1 
upregulation can induce DNA damage and 
subsequently genomic instability (21). Based 
on our findings and the effects of VPA on 
Nm23-H1, epigenetic alternations of this gene 
in A459 cancer cells may also be a mechanism 
involved in the metastatic behavior of lung 
cancer cells. Therefore, applying HDACs 
inhibitors, particularly VPA, may provide a 
therapeutic option in this type of cancer. 

HDACs also can induce apoptosis in cancer 
cells (19, 20). Accordingly, it has been shown 
that VPA-induced apoptosis may involve an 
increase in acetylation of histones and tubulin, 
a study conducted in a gastric cancer cell 
line (22). In our study, the apoptotic effect of 
VPA on the lung cancer cell line A549 was 
accompanied by an increase in caspase-3 
activity. This result agreed with a previous 
study that reported the up-regulatory effect of 
VPA on caspase-3 (23). 

CD44 is a cell-surface glycoprotein 
involved in cell–cell and cell–matrix 

 

Figure 5. Effect of VPA on the expression of Nm23-H1 and CD44v6 protein in A549 cell line. VPA increased and reduced the expression of 

Nm23H1 and CD44v6 protein in A549 after 72 h, respectively. 

 

Figure 5. Effect of VPA on the expression of Nm23-H1 and CD44v6 protein in A549 cell line. VPA increased and reduced the 
expression of Nm23H1 and CD44v6 protein in A549 after 72 h, respectively.
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adhesion, cell migration, and metastasis. 
Among all CD44 isoforms, CD44v6 harboring 
a mutation in exon 11 plays an important role 
in enhancing the adhesive ability of tumor 
cells (24). The adhesion of cancer cells to the 
basal epidermal components such as collagen, 
integrin, and fibronectin is mediated by 
CD44v6. An evidence-based report showed 
that an increase in the expression of CD44v6 
altered the physicochemical properties of 
tumor cells and increased their metastatic 
potential (25). CD44v6 the We showed the 
inhibitory effects of VPA on CD44v6 at both 
gene and protein levels in the A459 cell line in 
the present study. This observation indicates 
a potential inhibitory impact for VPA on 
tumorigenesis in lung cancer. 

Our results also revealed an inhibitory 
effect for VPA on the expression of MMP-
2 and MMP-9 genes in the A459 cell. Type 
I collagenases such as MMP-2 and MMP-9 
participate in cancer growth and invasion by 
degrading extracellular matrix (ECM) (26). 
MMP-2 and MMP-9 are zinc-dependent ECM 
degrading enzymes involved in the metastatic 
activity of tumor cells (27). According to the 
effects of VPA on the expression of these 
genes in A459 cells observed here, HDACs 
and epigenetic mechanisms may be involved 
in lung cancer progression. Therefore, HDACs 
inhibitors such as VPA can provide a viable 
therapeutic agent in these cancers. 

In the present study, the up-regulation 
of Nm23-H1 upregulation was seen in 
concomitant with the down-regulation of 
MMP-9. This phenomenon can promote a 
potent anti-metastatic effect on cancer cells. 
The interaction between Nm23-H1 and MMP-
9 is controversial. Nm23-H1 has been shown 
to increase MMP-9 gene expression and its 
gelatinolytic activity (28). In another report, 
however, Nm23-H1 did not modify MMP-
9 expression (29). Moreover, Nm23-H1 
upregulation has been related to MMP-9 
suppression in yet another report (30). In our 
study, increased Nm23-H1 expression was 
seen in parallel to decreased expression of 
CD44v6, MMP-2, and MMP-9. This event, 
along with elevated caspase-3 activity, can 
finally result in apoptosis in A549 human lung 
cancer cells. 

In conclusion, our study demonstrated the 

antitumor activity of VPA against the A549 
lung cancer cell line. One possible mechanism 
may be the Inhibition of HDAC, which 
increased Nm23-H1 expression. Furthermore, 
VPA-treated A549 cells showed decreased 
expression of CD44v6, MMP-2, and MMP-9 
considered as metastasis indicators in cancer. 
The underlying inhibitory mechanisms of VPA 
on tumor cells and its potential therapeutic 
role in cancer are yet to be investigated.
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