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Abstract

The process of matrix clean-up and extraction of analytes has a significant influence on the 
detection and determination of the analyte, especially in trace amounts. Molecularly imprinted 
polymers (MIPs) are solid particles that can absorb specific molecules regarding the template 
molecule used in the synthesis process of each type of MIP. As a result, they can be used in more 
effective and more specific solid-phase extraction processes. On the other hand, mycotoxins are 
second metabolites of molds and fungus which are potentially cytotoxic and/or genotoxic even in 
trace amounts, and due to extensive consumption of cereals and the great concern of public health, 
several methods were developed and currently are in the process of development to detect and 
determine the presence and amounts of mycotoxins in cereals. This review is aimed to investigate 

the application and efficacy of MIPs in detecting and determination of mycotoxins in cereals.
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Introduction

The deleterious effects of several food 
contaminations on human and animal health 
have resulted in the ongoing development of 
analytical methods for enhanced detection 
and determination of food contaminations 
(1). Cereals are a group of nutrients 
consumed by billions of people which may 
contain toxic fungal metabolites such as 
mycotoxins as their natural contaminations 
(2, 3). Conventional methods such as high-
performance liquid chromatography (HPLC), 
liquid chromatography/mass spectrometry 
(LC-MS), liquid chromatography-tandem 
mass spectrometry (LC-MS/MS), gas 
chromatography-mass spectrometry (GC-

MS), and enzyme-linked immunosorbent assay 
(ELISA) have been used for the detection and 
determination of mycotoxins in cereals (4-7). 
Extraction and clean-up methods (e.g., Solid-
phase extraction methods) are important in the 
determination of trace amounts of mycotoxins 
(4, 8). This article reviews the application of 
molecularly imprinted polymers (MIPs) in the 
detection and/or determination of mycotoxins 
in cereals.
One of the approaches in utilizing imprinted 
polymers is through sensor technology. Among 
different types of sensors, electrochemical 
sensors are one of the most investigated 
sensors in the analysis of drugs and toxins (9-
11). Therefore, the combinatorial application 
of imprinted polymer and these sensors is also 
amongst hot topics in the analytical chemistry 
field. There have been an extensive number of 
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researches focused on using electrochemical 
sensors for the detection and analysis of 
mycotoxins. However, due to the presence of 
numerous recent reviews around this subject 
(12, 13), we have excluded electrochemical 
sensors from scopes of this review and 
only have focused on conventional analysis 
methods.

Cereals and mycotoxins
Cereals are defined as plants from grass 
family which produce edible seeds or grains 
(14). Cereals and grains contain complex 
carbohydrates, so they are a considerable part 
of the food pyramid in daily regimens (15).
The Food and Agriculture Organization (FAO) 
has categorized primary cereals to seventeen 
groups based on their genus, species and other 
factors. These seventeen groups are Wheat, 
Rice, Barley, Maize, white maize, Popcorn, 
Rye, Oats, Millets, Sorghum, Buckwheat, 
Quinoa, Fonio, Triticale, Canary Seed, Mixed 
Grain (grains which are harvested from plants 
with two or more genera), and cereals (16).
Twenty-five percent of crops all around the 
world are estimated to have been affected 
by molds, and mycotoxins are secondary 
metabolites of them (mostly Fusarium Spp. 
Aspergillus Spp., Penicillium Spp.) (17). Until 
2017 more than 500 mycotoxins have been 
identified and reported (18, 19).
During the years, our knowledge about 
mycotoxins has been developed. The major 
mycotoxins which are considered in legislation 
of agriculture products (or regulating systems) 
are: aflatoxin (Produced by Aspergillus spp.) 
(20-22), ergot alkaloids (mainly produced 
by Claviceps Spp.) (23), citrine (produced 
by Penicillium spp., Monascus spp., and 
Aspergillus spp.) (24-26), patulin (produced 
by Penicillium spp. and Aspergillus spp.) 
(27), fumonisins and zearalenone (produced 
by Fusarium spp.) (28, 29), trichothecenes 
(produced by various species of Fusarium, 
Myrothecium, Trichoderma, Trichothecium, 
Cephalosporium, Verticimonosporium, 
and Stachybotrys.) (30-32), ochratoxin A 
(produced by Aspergillus spp. and Penicillium 
spp.) (33, 34). The toxicity of mycotoxins may 
range from human genome damage which 
may result in cancer (35) to acute or chronic 
toxicity in humans and chronic toxicity is 

more common (17).
Aflatoxin B1 is known for having the strongest 
carcinogenicity effect among all mycotoxins 
(36, 37). Molds can be contaminating agents 
for cultivation products before or after 
harvesting and in the storing stage (38).
Accumulations of mycotoxins in cereals can 
become a great danger for human health. In 
the long term view, exposure to mycotoxins 
can cause considerable economic losses 
(39). Standard limits for each mycotoxin 
need to be set in order to control the health 
issues caused by mycotoxins. The standard 
limits for mycotoxins in foods and feedings 
are regulated by the Codex Committee on 
Food Additives and Contaminants (CCFAC). 
CCFAC has established limits and standards 
for mycotoxins in processed and unprocessed 
foods globally (40).

Molecularly imprinted polymers
Clearly, every molecule has a unique 
stereochemistry (41). There is only one way 
to find the Known fairy tale Cinderella by 
matching her glass shoes. If the unknown 
molecule is the missing princess, MIPs would 
be the unique glass shoe. Introducing the best 
way of sensing a molecule is fundamental 
for tracing an analytical process. In other 
words, molecularly imprinted polymers are 
synthetic antigen-antibody analogs. Through 
the interactions between the template and 
imprinted polymer, strong and specific bonds 
emerge. The strength of the interactions 
between different sets of templates and MIPs 
may differ based on the number and strength 
of bonds.
Due to the formation of a unique set of bonds 
between the template and imprinted polymer, 
MIPs are potentially selective and specific 
platforms for detecting the template and 
template-like molecules in various sample 
matrices (42-44).
History of MIPs began at 1930 when Polyakov 
(45) and Dickey (46) reported that silica matrix 
amasses together at the presence of small 
molecules and show affinity toward these 
molecules. In 1973 Wulff proposed a new 
concept “Enzyme-Analogue Built Polymers” 
and refreshed the idea of molecular imprinting 
(47, 48). However, the term “Molecular 
Imprinted Polymer” was stated by Mosbach 
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and Sellergren in 1984 (49, 50). These were 
very first steps of MIPs, and they opened a new 
door to different aspects of polymer science. 
Mosbach, et al. mainly focused on recognition 
of non-covalent bonds between the template 
and imprinted polymer, (51, 52), while 
Wulff, et al., were researching in the opposite 
direction and mainly tended to create covalent 
bonds between the template and Imprinting 
Polymer (53). The difference between these 
two methods is in their chemical base; through 
the covalent synthesis method, homogeneous 
rebinding cavities emerge and therefore make 
more selective and effective MIPs. Wulff used 
MIPs in catalytic reactions, and Mosbach 
used MIPs to develop a separation method for 
sensing various analyte (44, 55).

Fundamentals of MIPs
Imprinting technique is mainly based on 
the fact that a template molecule (the target 
molecule) or dummy-template molecule (a 
similar molecule to the target molecule) is 
also present in the polymerization matrices, 
and during the reaction, the template is 
surrounded by the synthesized polymer, and 
after the endpoint of the reaction, the template 
gets washed out of the polymer and results in 
a porous polymer with cavities similar to the 
stereochemistry of the template (56).
The formation of MIPs is divided into three 
different manners. The most prevalent method 
is the non-covalent method, mostly based on 
hydrogenic, ionic, Van der Waals, and π-π 
interactions between the template and forming 
polymer or monomers, and makes it rapid, 

straightforward, and the most common. (57). 
However, in the covalent method the template 
molecule at first conjugates with a specific 
monomer and then renewed monomer goes 
through the polymerization process. This 
method is less favorable than the previous 
method due to the requirements of reversible 
condensation reactions which are limited and 
cannot be applied to a wide range of analytes.  
This method has also a low rate of bond 
formation, and the dissociation of the polymer 
and template is dependent on thermodynamic 
conditions (58).
The third method is a combination of the latter 
two ones. The process of polymerization is 
mainly based on the formation of covalent 
bonds. However, through non-covalent bonds, 
rebinding, and removal of the template will 
take place (59). (Figure 1). A template is a 
molecule with a unique stereochemistry and 
cavities inside the polymer, which mimic the 
conformation and configuration of the original 
molecule. . Generally, template and analyte are 
the same, but there may be some challenges, 
For example the original analyte is unstable 
and decomposes through the polymerization 
process or there is an incompatibility between 
the template and the other components present 
in the matrices. Therefore, a similar molecule 
is represented as the template, which mimics 
some of the template specific properties. 
Consequently, the created cavities have 
similarity to the analyte. These new templates 
are called dummy molecules or dummy 
templates.

 
 
 
Figure 1. Different procedures for MIP synthesis (A) Non-Covalent synthesis (B) Semi-Covalent Synthesis (C) Covalent synthesis. 

  

Figure 1. Different procedures for MIP synthesis (A) Non-Covalent synthesis (B) Semi-Covalent Synthesis (C) Covalent synthesis.
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Characteristics such as having stability through 
the polymerization process, and proposing 
specific functional groups which can interact 
or react with the monomers are required for 
template molecule. The template needs to 
have interference with the polymerization 
process (60).
The template molecules can be classified 
into three major categories. The first and 
the predominant type of templates are small 
organic molecules which are usually stable 
and contain specific functional groups. Most 
of the organic pollutants, pharmaceuticals, and 
pesticides whose extraction and detection are 
of high value, are categorized in this category. 
The second one is non-organic molecules, 
usually metals, which get imprinted in 
their ionic forms and they are called “ionic 
imprinting polymers” (IIP) instead of 
“Molecularly imprinted polymers” (MIP). The 
overall process is different and harder in these 
cases as monomers are required to be chelating 
agents, and the selectivity of these polymers is 
usually low as metal ions often possess similar 
physicochemical properties. The third type 
of templates is biological macromolecules. 
Due to their large and complex structures 
and susceptibility of their conformations, 
conventional methods cannot be practiced on 
them. However, recently some new methods 
have been introduced (61-66).
The very first step of MIP synthesis is 
determining a proper monomer that shows the 
best interaction with the template molecule in 
the pre-polymerization step. Mainly through 
the non-covalent method, hydrogen (donor or 
acceptor bonds) bonds emerge. On the other 
hand, Methacrylic Acid (MAA) contains a 

carboxylic acid functional group, so it is both 
donor and acceptor of hydrogen bonds. This 
made MAA the most common monomer in 
free radical polymerization (56, 67).
The other essential agent is crosslinker 
monomer which works as the rigidifying 
agent, and fixes the monomers around the 
template. Therefore, the shape of cavities 
and the position of functional groups in the 
polymer remain the same even after the 
removal of the template. The molecule which 
is used as the crosslinker is vital as it dictates 
the flexibility and the rigidity of the polymer. 
Even the concentration of the crosslinker is 
also important, since high amounts result in 
a decrease in the amount of the recognition 
sites, and low amounts result in mechanical 
instabilities in the polymer (67).
Initiation is a mandatory step for the beginning 
of the chemical process of polymerization. The 
most commonly used reaction is free-radical 
based ones in which the polymerization starts 
with the cleavage of the initiator’s azo or 
peroxide bonds due to sufficient thermal or 
ultra violet (UV) photonic activation energies. 
Free radical forms created through this 
process attack the monomer or the crosslinker 
vinyl groups due to its electrophilic properties. 
Azoisobutylnitrile (AIBN) is the predominant 
free radical polymerization initiator (Figure 2) 
(68).
Porogen is the solvent which works as the 
dispersion medium for the components of 
the polymerization process. The most critical 
parameter of the porogen is the polarity of 
the solvent. As the polarity of the solvent 
increases its interference with functional 
groups of the polymerization components and 

 
 
 
 
 
 
Figure 2. Mechanism of Radical Polymerization initiation. 

  

Figure 2. Mechanism of Radical Polymerization initiation.
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the template also increases, and it results in 
cavities that are less similar to the template 
molecule and, therefore, the sensitivity and 
adsorption capacity of the polymer decreases. 
Among common porogens, Dimethylsulfoxide 
(DMSO), Acetonitrile, Chloroform, N,N-
dimethylformamide (DMF), and toluene are 
mentioned (69, 70).

Approaches
There are different methods for the synthesis of 
molecularly imprinted polymers. Among these 
methods, bulk polymerization, suspension 
polymerization, precipitation polymerization, 
and surface-modified polymerization are 
commonly used.
Bulk polymerization is the most conventional 
and practiced method of MIP polymerization. 
Through this method, polymerization occurs in 
a solution, and a block of polymer is acquired; 
furthermore, the block is ground and sieved, 
which results in non-uniform particle size and 
shape. Throughout the grinding, some of the 
active sites may get destroyed, and throughout 
the sieving, some of the polymers are lost (71, 
72).
On the other hand, suspension polymerization 
is almost as simple as bulk polymerization. In 
this method, the solution is more diluted than 
bulk polymerization, and it results in uniform 
spherical polymers (73).
Precipitation polymerization is based on 
the coagulation of nanogels into uniform 
spherical particles, and these particles grow 
into larger ones by capturing oligomers in 
the solution. This method has a higher yield, 
but the downside is that it also requires 
higher amounts of template due to the low 
concentration of the solution (74).
Another method is surface modified 
polymerization. In this method, firstly, a core 
is synthesized which is usually getting coated 
by a thin layer of silica, and afterward, a thin 
layer of polymer is also getting coated on it. 
Due to the low thickness of the polymer, wash 
and adsorption processes are more efficient, 
and it usually results in high efficiency and 
low amount of template bleeding (75). In 
this method the surface or the core can be 
modified in variety of ways which make these 
particles to be useful in different systems and 
applications such as sensors, Drug delivery, 
and separation (76, 77).

Determination of mycotoxins using MIP
In 2006, Urraca, et al. used MIPs for clean-
up and detection of Zearalenone and its 
metabolite, α-Zearalenol, in several types of 
cereals and swine feed samples. They used 
a rationally designed zearalenone analog, 
cyclododecyl 2,4 di hydroxybenzoate 
(CDHB), as a dummy template and HPLC 
with a fluorescent detector for analysis. Limit 
of detections (LODs) via this procedure was 
lower than accepted MRL, and similar to 
LODs reported using immunoaffinity columns 
and LC-MS (78).
De Smet synthesized a Fumonisin B1 MIP 
for extraction of Fumonisin B analogs in rice, 
bell paper, and cornflake samples. The cross-
reactivity study results demonstrated that 
these MIPs are specific to Fumonisin B (FB) 
analogs and do not offer retention capabilities 
for other types of mycotoxins except for 
Ochratoxin A (79).
In 2010, a study compared the crushed 
monolith and micro-bead Ochratoxin A 
MIPs in order to extract Ochratoxin A from 
wheat samples. This evaluation indicated that 
the micro-bead format MIPs had stronger 
retention capabilities. They also compared 
Ochratoxin A immunoaffinity cartridges with 
MIP beads. The results showed that unlike 
immunoaffinity chromatography (IAC), 
MIP beads are tolerant of overloading and 
saturation due to significantly higher capacity 
(80).
De Smet, et al. also synthesized a MIP for 
selective detection of T-2 toxin in 3 types 
of cereals: maize, barley, and oat. They 
used T-2 toxin as the template through bulk 
polymerization procedure and compared 
the results with IAC and OASISHLB® 
column clean-up methods. This comparison 
demonstrated that recovery rates obtained 
using OASISHLB® columns were higher 
than those obtained with IAC and MIP. 
However, in the case of the LOD and limit of 
quantification (LOQ), MIPs offered the lowest 
LOD and LOQ, which is more suitable for the 
detection and quantification of T-2 toxin in 
grain samples (81).
Lucci, et al. made an imprinting polymer 
cartridge for the extraction of Zearalenone 
based on the concept previously used for 
other molecules, i.e., AFFINIMIPTM. 
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A dummy molecule, cyclododecyl 
2,4-dihydroxybenzoate (CDHB) was chosen 
as the template based on the previous works 
of Urraca,. et al. and the capability of these 
polymers in the absorption of Zearalenone 
in wheat and corn samples were measured, 
and the recoveries ranging from 82%-
90% were also demonstrated (78, 82). The 
capacity of these imprinted polymers was 
also compared with ZearalatTest™, which is 
an immunoaffinity based column. Due to the 
saturation of active sites in ZearalatTest™, 
Zearalenone could not be measured accurately 
in the amount of higher than 2000 µg/kg. 
On the other hand, ZearalatTest™ resulted 
in much cleaner chromatograms. They also 
determined the selectivity of these polymers 
using a cross-reactivity test by α-Zearalenol, a 
toxic metabolite of Zearalenol which is really 
similar to Zearalenol and Ochratoxin A. It was 
shown that these polymers could also absorb 
α-Zearalenol and it showed a high recovery 
between 87%-93%. However, the Ochratoxin 
A was not absorbed by the polymer at all 
which shows this polymer has high specificity 
toward Zearalenol and α- Zearalenol (83).
Lenain, et al. (2012) produced a general 
imprinted polymer for the extraction of ergot 
alkaloid from barley. They used Metergoline 
as their template and assessed the ability of 
their polymer in the extraction of 12 ergot 
alkaloids, ergotamine (Et), ergotaminine 
(Etn), ergocornine (Eco), ergocorninine 
(Econ), ergocryptine (Ekr), ergocryptinine, 
(Ekrn), ergocristine (Ecr), ergocristinine 
(Ecrn), ergosine (Es), ergosinine (Esn), 
ergometrine (Em), and ergometrinine (Emn). 
Recoveries ranged from 56%-79%. Although 
the recoveries are not as high as other 
imprinted polymers, due to using a dummy 
molecule to represent 12 alkaloids, it is 
almost in the acceptance range of European 
commission (EC) 401/2006 guideline which 
is 60% to 120%. This research group used 
two different synthesis methods including 
suspension polymerization, which resulted 
in almost uniform and spherical polymers 
and the bulk synthesis which resulted in 
amorphous polymers, and they showed 
that polymers obtained from suspension 
polymerization method are far more efficient 
than the bulk. Different varieties of washing 

solvents were also studied and it was found 
out that the best solvent, which resulted in 
the most diminishment of the matrix effect, 
is water. Furthermore, in the cross-reactivity 
test, 25 common mycotoxins were tested, 
and the compounds were categorized into 
three groups of low, medium, and high cross-
reactivity (84).
Díaz-Bao, et al., in 2016, attempted creating 
an imprinted polymer for the extraction of 
5 Aflatoxins (M1, B1, B2, G1, G2) from 
Cereal based Babies’ foods. They used 
5,7-Dimethoxycoumarin as a dummy template 
molecule, and they made these polymers 
around magnetic beads so an external magnet 
could easily collect them. However, the 
recovery results were not satisfactory, and 
they only got 39%-44% recovery. The team 
concluded that these results were due to the use 
of a dummy molecule and the matrix effect. 
The team suggested that these results show 
the possibility of making imprinted polymers 
for aflatoxins, but theirs is not to substitute 
conventional methods in practice (85).
Hu, et al. produced a core-shell structure 
with a magnetic core (ferroferric oxide) and 
a polydopamine-based molecularly imprinted 
polymer shell as a method for extraction of 
different types of ochratoxins (ochratoxin A, 
ochratoxin B, and ochratoxin C). The template 
molecule used to form the polymer cavities for 
all three types of ochratoxins was ochratoxin 
A. Polymerization process was carried out 
in Tris-HCl buffer pH 3.0. No crosslinkers 
were mentioned in the polymerization 
process. The recovery percentage was 
reported in rice samples as 71.0%. Cross-
reactivity of Aflatoxin B1, fumonisin B1, and 
Zearalenone was tested to check the affinity 
of MIP synthesized in this study. In a similar 
concentration of ochratoxin, peak area of 
Aflatoxin B1 and fumonisin B1 was less than 
± 5%, and peak area of Zearalenone was less 
than ± 2% of the original peak area (86).
Huang, et al. developed a MIL-101@
molecularly imprinted polymer core-shell 
for extraction of Zearalenone in three grains 
(corn, wheat, and rice). The functional 
monomer was MMA, coumarin-3-carboxylic 
acid acted as a dummy molecule, and 
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ethylene glycol dimethacrylate hydroxyethyl 
methacrylate was used as a crosslinker in the 
polymerization process. After the production 
of MIL-101@MIPs, they were packed into a 
self-made cartridge. Solid phase extraction 

(SPE) optimization was done to increase the 
response, and three different linear ranges 
were obtained for each grain, all between 6.25 
to 250 μg per kg. Recoveries ranged from 82.0 
to 84.8% (87).
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Recently, Lhotská, et al. prepared selective 
citrinin molecularly imprinted polymer. The 
structural monomer was acrylamide, and as 
for dummy molecule, 1-hydoxy-2-naphtoic 
acid was chosen due to the toxicity of citrinin. 
After the preparation of MIP and non-
imprinted polymer (NIP), both were packed 
into steel cartridges and coupled to the on-
line SPE-HPLC system. The SPE conditions 
were optimized and the application in the real 
sample was investigated in barley and wheat 
specimens. Recovery achieved in this study 
reached to 82.0% with a relative standard 
deviation (RSD) of 1.5% (88). 
Munawar et al. have introduced a new method 
for detection and extraction of Fumonisin 
B1 (FB1) mycotoxin in maize. Their paper 
suggests a developing molecularly imprinted 
polymer nanoparticle based assay (MINA) 
method. In this work, FB1-derivatized glass 
beads were produced, and after preparing a 
mixture of 5 monomers in polymerization 
solution, the polymerization was done on the 
surface of mentioned glass beads. Therefore, 
the derivatized beads acted as a template 
molecule. Then they are all packed into a 
cartridge. Molecularly imprinted polymer 
nanoparticle based assay (MINA) was 
compared with HPLC and ELISA method and 
showed a dilution factor of 80% compared to 
20 and 5% of HPLC and ELISA, with recovery 
of 108-113% (89).
Rui, et al. prepared a selective MIP in the form 
of a core-shell for extraction and enrichment 
of 4 different types of aflatoxins (G1, G2, B1, 
and B2). FDU-12@MIPs were synthesized 
first by preparing and modifying of FDU-
12 and then dispersing it in a solution of 
7-acetoxy-4-methylcoumarin as the monomer, 
MAA and EDMA as crosslinkers and azo-
butyronitrile as initiator. FDU-12@NIPs were 
also prepared under the same condition but 
without the monomer. Three grains responded 
to this method (wheat, rice, and corn) with 
recovery rang of 82.6–116.7% and RSD of 
2.73 -4.21% (90).
All synthesis and analytical method validation 
information are summarized in Tables 1 and 2.

Conclusion

This review has successfully highlighted 

the application of MIPs for the extraction, 
detection, and determination of mycotoxins in 
cereal samples. MIPs synthesized by different 
approaches have been introduced as a powerful 
tool in the sample extraction efficiency and 
selectivity enhancement over the target 
mycotoxins. The developed MIPs gained lower 
limits of quantification and detection (LOQ 
and LOD) and better extraction recoveries in 
comparison with conventional extraction and 
sample preparation methods (Table 2). 
MIPs offer high selectivity, reusability,  
stability, and low cost preparation. 
There is no doubt about practicality of the 
MIPs in extraction and sample preparation. 
However, template removal requires large 
amount of organic solvent and it is probably 
a time-consuming procedure. Future 
perspectives of MIPs can be improved 
synthesis with more efficient template removal 
and also capability of multi-analyte extraction, 
along with direct sample application in 
analysis method. 
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