
Original Article

Pixel Selection by Successive Projections Algorithm Method in 
Multivariate Image Analysis for a QSAR Study of Antimicrobial Activity 

for Cephalosporins and Design New Cephalosporins

Ahmadreza Amraeia, Ali Niazia,b* , Mohammad Alimmoradia and Bahram Delfanc

aDepartment of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran. bDepartment of 
Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran. cLorestan University 
of Medical Sciences, Department of Physiology and Pharmacology Khorramabad, Iran.

Abstract

Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis 
and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid 
dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of 
activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first 
pKa by different models. Bidimensional molecular structures (images) were used to calculate 
some pixel descriptors. The selection of pixels by successive projections algorithm (SPA) was 
done to achieve simple MIA-QSAR models; based on a small subset of pixels. In the present 
study, the performance of pixel selection technique using SPA for partial least squares (PLS) 
model was evaluated. The obtained model showed nice prediction ability with root mean 
square error of prediction (RMSEP) values of 0.402, 0.315, and 0.160 for principal component 
regression (PCR), PLS and SPA-PLS models respectively. Among the three methods, SPA-PLS 
was potentially useful in predicting the pKa of cephalosporins. The study showed the maximum 
structural efficacy is on pKa in a, b and c regions.
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Introduction

Cephalosporins (Cephems) are broad and 
they are chemically related to the β-lactam 
class of antibiotics with enormous medicinal 
applications (1). Cephalosporins exhibit good 
antibacterial properties against a broad class 
of bacteria including Gram-positive and Gram-
negative bacteria (2). Cephalosporins such 
as penicillin can prevent bacterial cell wall 
synthesis. The properties such as antimicrobial 
activity, chemical stability, solubility, and acid-

base properties depend on enormous extent on 
cephalosporin structures (1). The human body›s 
resistance against antibiotics is a major problem 
in the medical community; so, it is expedient 
that new cephalosporins be designed (3). The 
pKa play a fundamental role in the mechanism 
of activity of various biological fluids, primarily 
the blood, and its capability to interact with 
components of these fluids and other drugs can be 
investigated (1). The activities applied in models 
QSAR contain biological activity, chemical 
measurement, toxicity and bioavailability and are 
used as dependent variable in building a model 
(4-6). In order together useful information for 
medicinal chemistry, design of new drugs and 



toxicity, QSAR is one of the well-established 
key areas in chemometrics. The QSAR models 
were created with successful prediction of the 
activity and factors influencing the activity, and 
were used at the end to design compounds that 
were more effective (7-11). The steps necessary 
in obtaining a MIA-QSAR model include 
drawing molecular structures, molecular 
descriptors (pixels) calculation, splitting of data 
for training and validation sets, pixels selection, 
model build-up between selected variables and 
activity, and finally model validation (8). Due 
to the large number of descriptors in MIA-
QSAR, a major step in constructing the model 
is the selection of a subset of pixels to maximize 
information contents. Variable selection 
techniques in MIA-QSAR (12-17) play a key 
role in developing work of this nature because 
of the high dimensional data sets. Multivariate 
calibration model such as PCR and PLS is a 
technique that can be effective in dealing with 
the problem of undesirable increase in variable/
object ratio and collinearity (18). The SPA is a 
forward selection method that starts with one 
variable; and incorporates a new one during 
each iteration until a specified number (N) of 
variables is obtained. Previous studies have 
shown that SPA can be used successfully as 
a special variable selection method (19-23). 
In recent years, many applications for image 
analysis have been created to solve a variety of 
problems due to rapid low costanalysis. Image 
analysis is a wide field of study that encloses 
classical studies on gray scale or (red-green-
blue) RGB images. Esbensen and Geladi have 
demonstrated that multiple image analysis may 
provide useful information in chemistry; the 
descriptors do not have a direct physicochemical 
meaning since they are binaries (24). In MIA-
QSAR (25-27) bidimensional images have 
been shown to contain chemical information 
that allows the relationship between chemical 
structures and activities. In this study, emphasis 
was on the application of 2D images, which 
are the suitable structures of compounds that 
can be drawn with the help of any appropriate 
software, pixels images as descriptors in QSAR 
(28, 29).The obtained MIA-QSAR model was 
then tested with successful prediction of the pKa 
of 4 cephalosporin compounds.

Experimental

Hardware and Software 
The SONY Personal Computer (4 GB RAM) 

equipped with Windows 8 operating system and 
MATLAB (Version 7.8.0 (R2009), Math work 
Inc.) was used. The PLS calculus were carried 
out by using the PLS-Toolbox (Version 4.0) 
(Eigenvector Technologies). SPA program was 
written in MATLAB by M.C.U. Araujo et al. 
The source codes of the programs were made 
available by the authors upon our request and 
molecular structures were drawn by the use of 
Chem Office software (Version 2010). Kennard-
Stones programs were written in MATLAB 
according to the algorithm (30).

Data Set 
The first pKa of 31 cephalosporins were taken 

from the article of VG Alekseev (1). The chemical 
structure of these cephalosporins and their 
corresponding first pKa data are listed in Table1. 
In order to create a reliable MIA-QSAR model, 
data set was separated into the parts of training 
and prediction sets according to the Kennard-
Stone algorithm. Kennard-Stone algorithm is 
one of the ideal ways of splitting a set of known 
data. The Kennard–Stone algorithm selects a 
set of molecules in studied set of data, which 
are uniforhy distributed over the space defined 
by the candidates. This is a classic technique to 
extract a representative set of molecules from a 
given data set. In this technique the molecules 
are selected consecutively. The first two objects 
are chosen by selecting the two farthest apart 
from each other. The third sample chosen is the 
one farthest from the first two objects, etc (31).

Multivariate Image Analysis Descriptors
The descriptors in the MIA-QSAR method are 

the pixels of structure images. The pixels chosen 
by SPA were correlated with the dependent 
variables for building the MIA-QSAR model. 
The bi-dimensional structures of each compound 
in Table 1 were systematically drawn using the 
Chem Office software and then converted to 
bitmaps of 240 × 160 pixels workspace. All the 
cephalosporin structures were fixed accordingly; 
a pixel was fixed on the sulfur element in 
the 110 × 80 pixel coordinate since the whole 
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Table 1. Chemical structures of cephalosporins and their corresponding pKa.

Compound pKa Compound pKa

2.33 1.50

1.67 2.03

2.04 2.80

2.67 2.60

2.67 1.83

2.53 2.97

3.30 2.95

2.65 2.93

2.80 2.50

2.30 2.10

3.30 2.95
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images must be superimposed afterwards to 
obtain maximum similarity. Each structure had 
a 2D image; superposition (alignment) of the 31 
images gives a three-way array of 31× 240 × 160 
dimension, which was unfolded to a two-way 
array (matrix) of 31 × 38400 dimension. Many 
columns with zero variance were removed. 

Results and Discussion

Multivariate Image Analysis Descriptors
The MIA-QSAR model was made based on 

the correlation of these pixels with the activities 
of cephalosporin. The bi-dimensional structures 
of each cephalosporin in Table 1, were drawn 
using the Chem Office software as well as the 
same font and size, and thereafter, converted to 
bitmaps of 240 × 160 pixels workspace. All built 
molecular structures were systematically fixed in 
a given coordinate. In this study, the point fixed 
at the 110 × 80 coordinate (sulphur element) 
was used as reference in the alignment step as 
illustrated in Figure.1. Since each molecular 
image is a bi-dimensional image, alignment of 

Compound pKa Compound pKa

1.90 1.62

3.20 2.37

2.85 2.60

2.14 3.11

2.30

Test set
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the 31 images gives a three-way array of 31 × 
240 × 160 pixels which was unfolded into 38400 
rows and then the 31 images were grouped to 
form 31 × 38400 matrix. In order to minimize 
the memory, the columns with zero variance 
were eliminated, and at the end all pixels data 
were mean centered.

Principal Component Analysis of the Data 
Set 

The number of real dimensions of data sets 
was determined using PCA. It is also used for 
making 2, 3 dimensional plots of data for visual 
examination in order to diagnose collinearity, 
homogeneities in the data set and reduce high 
dimension as well as interpretation for detection 
of outliers and identification of clusters. PCA 
were performed within the calculated image 
descriptors space for the whole data set. The 
number of principal components is less than 
or equal to the number of original variables. 
The first PCs retained the greatest amount of 
variation and valuable information in the data 
set. A total of 248 pixel descriptors were initially 
calculated using PCA for the entire data set of 
31compounds. The PCA results showed that 
three PCs (PC1, PC2 and PC3) had a value of 
90.56% of the overall variability: PC1 = 67.66%, 
PC2 = 11.95% and PC3 = 10.72% (Figure.2) 
and thus the images domain may be expressed 

in terms of these 3 dimensions mainly. Since 
almost all variables can be accounted for by the 
three primary PCs, their score plot is a reliable 
tool for the spatial distribution of the points of 
the data set. As shown in Figure 2, there is no 
obvious clustering among the compounds. Good 
data distribution on the development of reliable 
and robust QSAR models is very important. The 
ability and qualityof the prediction depends on 
the data set used to build the model. In order to 
modeling, data set were divided into two groups; 
training set (23 data) and a prediction set (8 
data) according to Kennard-Stones  algorithm. 
According to Figure 2, the distribution of 
compounds in each subset of pixels appears 
somewhat well diffused over the space of the 
principal components.

PCR and PLS Modeling
The main step in the MIA-QSAR method 

is the relationship between several pixels and 
dependent variables. The PLS and PCR methods 
were used as the multivariate calibration 
methods. The root mean square error cross 
validation (RMSECV) was applied in finding the 
number of appropriate latent variables required 
for description of the best developed model 
(Figure 3). The F-statistical test was used to 
determine the significance of RMSECV values 
that are greater than the minimum. The values 
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of RMSECV were minimal when the optimum 
value of latent variables (LVs) were 7, 6 and 4 
for PCR, PLS and SPA-PLS, thus the optimum 
number of LVs for the training set of SPA-PLS 
method was chosen to be 4. Before modeling, 
the data set were mean centered.

SPA-PLS Modeling
As you know, one of the key problems in a 

modeling that is robust and fast is the selection of 
subset of molecular descriptors (pixels) instead 
of all set descriptors. SPA is a forward variable 
selection method. In order to obtain subsets of 
data set with small collinearity, employ simple 
operation in vector space of variables (pixels). 
Data sets were mean centered before the SPA-
PLS was performed. After pixels selection 
by SPA technique, these pixels were used for 

running the PLS. By running the SPA-PLS, the 
number of latent variables reduced to 4 (Figure 
3). The selected areas by SPA shown are in 
Figure.4. In this work, it has been shown that 
SPA can be a good, reliable and fast technique 
for pixel selection in MIA-QSAR. Using the 
chosen pixels by SPA, it was found that the 
most structure influence was on the pKa in a, b 
and c regions (Figure.4) and among these three 
regions, b in which there were more alterations 
by different functional groups had more influence 
on pKa than in other regions.

Model Validation and Prediction of pKa
In Table 2, the predicted values of pKa 

calculated by the PCR, PLS and SPA-PLS 
methods and the percent relative errors of 
prediction are presented. The correlation 

Table 2. Observation and calculation values of pKa using PCR, PLS and SPA-PLS models.

Number of 
compounds (Table 1)

Observation 
pKa

PCR PLS SPA-PLS

Predicted Error (%) Predicted Error (%) Predicted Error (%)

8 2.60 2.36 -10.17 2.51 -3.58 2.56 -1.56

24 1.62 1.97 17.76 1.90 14.73 1.83 11.47

27 2.85 2.51 -13.54 2.54 -12.20 2.81 -1.42

20 2.10 2.58 18.60 2.50 16.00 2.21 4.97

21 2.91 2.34 -24.35 2.53 -15.01 2.57 -13.22

25 3.20 2.60 -23.07 2.67 -19.85 3.07 -4.23

18 2.50 2.34 -6.83 2.6 3.84 2.42 -3.30

19 2.03 1.79 -13.40 2.17 6.45 1.97 -3.04

Figure 3. The RMSECV versus number of latent variables.
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Table 3. Comparison of the statistical parameters by different QSAR models for the prediction of the pKa.

Methods PCR PLS SPA-PLS

NLVa 7 6 4

RMSEP 0.402 0.3157 0.160

REP (%) 25.62 20.11 10.11

R2 0.4629 0.7375 0.9351

Q2 0.3340 0.5900 0.8960
a Number of latent variable 
Q2Coefficient for the model validation by leave-one-out.

Table 4. Structural modification of cephalosporins and predicted pka by SPA-PLS.

Number of Design Chemical structure pKa calculated by SPA-PLS

1 3.04

2 3.42

3 3.28

4 3.20

between reference and predicted pKa for SPA-
PLS was suitable with R2 =.9351 and intercept = 
5576. The statistical results presented in Table 2 
clearly indicate that the SPA-PLS model has good 

quality with low prediction errors. In addition, 
to evaluate the predictive ability of a different 
model, the root mean square error of prediction 
(RMSEP), relative standard error of prediction 
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(RSEP) and cross validated coefficient (Q2) can 
be used.
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Where ypred and yobs is the predicted value and 
observed value of the sample and n is the number 
of samples in the validation set. These statistical 
parameters with their goodness qualities are 
displayed in Table 3.

Molecular Design
As a created application method, we 

investigated SPA-PLS models to predict the 
pKa of 4 new cephalosporin compounds whose 
biological tests have not been performed with 
this application method. In Table 4, the chemical 
structure of 4 new cephalosporins compounds 
and their pKa calculated by this proposed method 
are presented.

Conclusion

In this work, using the SPA-PLS model, a 
QSAR model that was useful in the prediction of 
the pKa of 31 cephalosporins based multivariate 
image analysis alone have been proposed. In 
addition, the SPA-PLS model showed nice 
and accurate predictive values giving good 
correlation values in calibration. Pixels selection 
improved the predictive quality of the MIA-
QSAR model. Pixel selection using the SPA 
method unlike other methods appears to be fast 
and reproducible. Our study showed that pixels 
selection by the SPA method is useful for those 
designing novel cephalosporins.
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