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Abstract

Glucagon and the glucagon receptor are most important molecules control over blood glucose 
concentrations. These two molecules are very important to studies of type 2 diabetic patients. 
In literature, several classes of small molecule antagonists of the human glucagon receptor 
have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and 
improve glucose control in diabetic patients. In this research, to identify novel and diverse leads 
for use in potent glucagon receptor antagonist design, a ligand-based pharmacophore modeling, 
was developed using the best conformations of training set compounds. The best five features 
pharmacophore model, called Hypo1, includes, hydrogen bond acceptors, two hydrophobic, and 
positive ionizable features, which has the highest correlation coefficient (0.805), cost difference 
(64.38), low RMS (2.148), as well as it shows a high goodness of fit and enrichment factor. The 
generated pharmacophore model has been validated by using a series of similar structures with 
varying affinities for the glucagon receptor. Then, the developed model has been applied as a 
search query in different database searching with the main objective of finding novel molecules 
which have the potential to be be modified into novel lead compounds. As a result, some hit 
molecules were introduced as final candidates by employing virtual screening and molecular 
docking procedure simultaneously. The results from pharmacophore modeling and molecular 
docking are complementary to each other and could serve as a useful way for the discovery of 
potent small molecules as glucagon receptor antagonist. 
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Introduction

G-Protein coupled receptors (GPCRs), a 
superfamily of membrane proteins, are important 
targets for drug and in pharmaceutical research 
too (1). Based on recent reports, GPCRs account 
for 40–50% of all current drug targets (2-4). 

These membrane receptors also are targets of 26 
out of the 100 top-selling drugs in market (2-4). 
It must be noted that the GPCR superfamily is 
the largest gene family in the human genome as 
GPCRs is inclusive about 5% of human genes 
(5, 6), Based on what is mentioned above, 
developing new lead compounds for human 
GPCRs is very important and attractive. Due to 
technical problems in determine the 3D structure 
of these membrane receptors at the atomic level, 
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traditional computer-aided drug design for 
GPCRs heavily rely on ligand-based modeling 
approaches (7, 8). 

Glucagon is key hormone that acts as the 
major counter-regulatory hormone to insulin in 
the control of glucose homeostasis (9, 10). When 
the glucagon is bound to the G-protein coupled 
glucagon receptor, hepatic glycogenolysis 
and gluconeogenesis are stimulated. Studies 
propose that molecules with glucagon receptor 
antagonism property could decrease hepatic 
glucose output and improve glucose control in 
diabetic patients. It has also been shown that a 
small molecule glucagon receptor antagonist 
can effectively block the glucose response to 
a glucagon challenge in healthy humans (13). 
Therefore, glucagon receptor antagonism is 
being followed as a hopeful approach to treat 
type 2 diabetes. Given the role of glucagon in 
the development and maintenance of diabetes 
in both humans and animals, inhibition of the 
glucagon signaling pathway may represent a 
potential new approach for diabetes treatment 
(14, 15). 

Computer-aided drug design (CADD) is a 
very useful approach in logical drug design and 
development to reduce the time and cost for 
identification, characterization and structure-
optimization for novel drug candidates (19-
22). CADD can also be useful for logical plan 
of prodrugs. Prodrugs are generally designed 
to increase the specificity or bioavailability 
of the main drug molecules (23-25). In the 
first report by Paul Ehrlich in early 1900, a 
“pharmacophore” is defined as a “molecular 
framework that takes (phoros) the essential 
features responsible for a drug’s (pharmacon) 
biological activity” (26). With the increase 
in generation and in knowledge of the three-
dimensional structure of molecules, this notion 
protected to also set the required of arrangement 
of essential molecular “features”, e.g. steric, and 
electrostatic characteristics or hydrogen-bonding 
abilities (27). The pharmacophore model can be 
derived either from a receptor binding site (direct 
method), or from a set of active ligands (indirect 
method) (28).

Ligand-based pharmacophore modeling 
has become a key computational strategy for 
simplify drug discovery in the absence of a 

macromolecular target structure (32, 33). It is 
often performed by extracting ordinary chemical 
features from 3D structures of a set of known 
ligands envoy of necessary interactions between 
the ligands and a special macromolecular target. 
In general, pharmacophore generation from 
multiple ligands (generally called training set 
compounds) involves two main phases: creating 
the conformational space for each ligand in the 
training set to show conformational flexibility 
of ligands, and equaling the multiple ligands 
in the training set and specifying the necessary 
usual chemical features to make pharmacophore 
models (34). Ligand-based drug design is an 
indirect method to simplify the development 
of pharmacologically active compounds by 
studying molecules that interact with the 
biological target of interest (35). Ligand-based 
drug design methods are beneficial in the lack of 
an experimental 3D structure (27, 36-38). Due to 
the loss of an experimental structure, the known 
ligand molecules that bind to the drug target are 
studied to find out the structural and physico-
chemical properties of the ligands that correlate 
with the demanded pharmacological activity 
of those ligands (35). In this study, several 
structural from Maybridge database were filtered 
by using the drug-like ADMET properties, such 
as Lipinski′s rule of five (39). Afterward, a 
qualitative pharmacophore model was developed 
based on glucagon receptor antagonists that were 
acquired from the recently published research 
(40, 41) and was successfully used in the further 
screening of the database compounds. The lead 
molecules were chosen based on their best fit 
values and then subjected to docking analyses to 
refine the list of retrieved hits. This research has 
resulted in to introduce a set of hit molecules as 
possible candidates for the designing of potential 
glucagon receptor antagonists. 

Experimental

Dataset
A sufficiently large set of molecules with 

their glucagon receptor antagonist activity 
data is required for pharmacophore model 
generation. Using published data in literature 
(40, 41)  the compounds were found to have 
IC50 values identified using the same biological 
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assay conditions. The IC50 value is defined as 
the concentration of a compound needed to 
inhibit 50% of the glucagon receptor activity. 
ChemDraw and Chem3D sprograms were 
applied to drawn 2D structure and conversion 
into 3D structure. Then, energy minimization 
procedure was carried out using PM3 approach 
for each compound. The generated 3D structure 
was manually investigated to ensure that the 
chirality of the chiral molecule is correctly 
prepared and no structure of molecules was 
duplicated. The molecular structures were 
optimized using the Polak-Ribiere algorithm 
until the root mean square gradient was 0.01 kcal 
mol-1. The selection of an appropriate training set 
is one of the most main steps in pharmacophore 
modeling procedure. This step is responsible 
for the quality of the generated pharmacophore 
hypothesis. The test set, which is not employed 
in model building step, but in the pharmacophore 
validation procedure, has equal weight.

Using Kenard and Stone algorithm the data 
set was split into a training set and a test set. 
In running of Kennard and Stone algorithm 
the calculated features matrix were used as 
input (42). Molecules were further separated 
into the training (20 compounds), and test (39 
compounds) sets.The studied molecules and 
structural details are reported in Table 1.

Molecular docking enabled pharmacophore 
modeling

Every pharmacophore modeling study that 
employs the “3D Pharmacophore Generation”or 
“Common Feature Pharmacophore 
Generation”protocols of Accelerys Discovery 
Studio (ADS) conventionally starts with the 
diverse conformation generation step. The 
conformations of the selected molecules were 
generated using the “best conformer generation” 
method with a cut off value of 20 kcal/ mol 
from the local energy minimum conformation 
(23, 43, 44). Pharmacophore model generation 
was performed using generated conformations 
of each training set molecule. “Feature 
Mapping”protocol was applied to identify the 
chemical features present in all training set 
molecules. Pharmacophore model generation 
was performed by choosing chemical features, 
such as hydrogen bond acceptor (HBA), 

hydrogen bond donor (HBD), hydrophobic 
(HYP), and positive ionizable (PI).

Each of the molecules in training set was 
submitted to the common feature pharmacophore 
generation procedure. The “common 
feature pharmacophore generation”protocol 
implemented in ADS was used to identify and 
overlay common features shared by a training set. 
Hypothesis generation run develops 10 possible 
pharmacophore hypotheses having a different 
arrangement of above mentioned features and 
sorts them according to the ranking scores. The 
Uncertainty value was changed to 2.5 from the 
default value of 3 as the training set molecules 
that scarcely spanned the required range of 
bioactivity (i.e., four orders of magnitude) 
(45). The Uncertainty value of 1.5 is defined by 
program as a measured value being 2.5 times 
higher or 2.5 times lower than the true value.

Pharmacophore validation
Commonly developed pharmacophore 

models are usually employed as 3D queries to 
search chemical databases to discover new and 
highly potent lead compounds. The developed 
pharmacophore models should be statistically 
significant and able to predict the pIC50s of new 
molecules and retrieve active molecules from 
the database. The best pharmacophore model 
was validated employing four techniques, 
cost analysis, test set prediction, Fischer 
randomization test, and enrichment factor 
calculation (E). Common feature pharmacophore 
generation protocol ranks the 10 generated 
hypothesis pharmacophore models on their cost 
values. The weight, error and configuration costs 
are three components that build the overall cost 
of a hypothesis. The value of the weight cost 
increases in a Gaussian form as this function 
weighs a model′s deviation from the ideal value 
of two. The error cost value shows the root 
mean square (RMS) difference between the 
observed and predicted pIC50s of the training set 
molecules. The configuration cost denotes the 
complexity or the entropy of the conformational 
space being optimized and is constant for a given 
data set.

Common feature pharmacophore generation 
also calculates two additional costs for each 
hypothesis, fixed cost, and null cost, and also, a 
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Table 1. Details of compounds used in this study: (A) Training Set, (B) Test Set.

Compound R IC50

1 NH2
0.07

2 OH 0.08

4 CO2 Me 0.30

5
NO2

0.05

6 F 0.1

7

NH2

0.34

8
CN

0.05

10
CO2Et

0.26

12
Ph

0.30

14

Cl

1.4

15 0.8

16 0.18

17 H 0.16

were used as input (42). Molecules were further separated into the training (20 

compounds), and test (39 compounds) sets.The studied molecules and structural 

details are reported in Table 1. 
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Table 1. Continued.
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Table 1. Continued.
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IC50RCompound
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H3C

51
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Table 1. Continued.
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Table 1. Continued.
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Table 1. Continued.

IC50RCompound

0.42

OMe

52

1.0
Br

54

0.18OMe55

0.18 
OMe

 

55 

 

  

 

N
H

CH

N

F

R

 

 

IC50 R compound 

0.0053 SMe 60 

 

  

IC50RCompound

0.0053SMe60

The IC50 values of these 59 compounds spanned across a wide range from 0.01µM to 14µM.
In this study  20  ,out of 59 compounds were chosen as the training set based on the diversity observed in chemical structures and 
experimental activity values. The remaining 39 compounds were employed in the validation process as the test set. The activity values 
of the data set were classified into four categories, active (IC50 ≤0.5  µM, ++++), moderately active ((0.5 ≤ IC50 ≤5  µM, +++), less active 
(5 ≤ IC50 ≤50 , ++), and inactive (IC50 > 50 µM +), to simplify the results of pharmacophore model building and validation.

cost for every hypothesis namely total cost. The 
fixed cost is the lowest possible cost denoting 
a simplest hypothetical model that fits all data 
completely and the null cost denotes the maximum 
cost of a pharmacophore with no features 
and estimates the biological activity to be the 
average activity of the molecules in training set 
and the total cost for every hypothesis. A larger 
difference between the fixed and null costs than 
that between the fixed and total costs signifies the 
quality of a pharmacophore model. All of these 
cost values are reported in bits and a difference 
of 40–60 bits between the total and null costs 
suggests a 75–90% chance of representing a true 
correlation in the data. 20 molecules were used as 

the test set to validate the developed hypothesis. 
Fischer randomization (Cat-Scramble) is another 
technique for pharmacophore model validation. 
The 95% confidence level was selected in this 
validation study and 19 random spreadsheets 
were built. This validation technique checks the 
correlation between the chemical structures and 
pIC50. This technique produces model employing 
the same parameters as those employed to 
generate the original pharmacophore model by 
shuffling the pIC50s of the training set molecules. 
The fourth way for validating the developed 
pharmacophore model is based on the E value, 
which is estimated employing a database 
containing active and inactive molecules.
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Enrichment factor calculation
The GH scoring method or Güner-Henry 

scoring method (46, 47) was employed following 
external test set validation to evaluate the quality 
of the developed pharmacophore model. The GH 
score has been successfully applied to quantify 
model selectivity precision of hits and the recall 
of actives from a 1733 (D) molecule dataset 
consisting of known actives and in-actives.

Of these molecules, 39 compounds (A) 
are known inhibitors of glucagon antagonists 
that were selected from literature (30-34) 
while the other 1694 molecules were from the 
already prepared chemical dataset. The Güner-
Henry scoring method consists of calculating 
the following parameters: the percent yield of 
actives in a database (%Y, recall) the percent 
ratio of actives in the hit list (%A, precision), 
and the enrichment factor E, and the GH score. 
The following formula was used to calculate the 
different parameters 

E = (Ha×D)/ (Ht×A).

The GH score ranges from 0 to 1, where a 
value of 1 signifies the ideal model.

Virtual screening
Virtual screening, an in silico technique 

for drug design and discovery, has been 
extensively employed for lead identification 
in drug discovery process. Virtual screening 
techniques are generally divided into ligand-
based screening and structure-based virtual 
screening. Pharmacophore-based database 
searching is considered a type of ligand-based 
virtual screening, which can be powerfully 
employed to find novel, potential leads for further 
development of drug discovery from a released 
database. A well-validated pharmacophore model 
includes the chemical features responsible for 

bioactivities of drug candidates; consequently, 
it can be applied to carry out a database search. 
The best pharmacophore model developed was 
employed as a 3D query in database searching. 
This virtual screening was carried out to find 
novel and diverse virtual leads. Leads introduced 
are appropriate for further drug design and 
discovery. One of the main advantages of 
applications of database searching is that the 
retrieved molecules are typically more easily 
available for testing than those based on denovo 
design techniques (48). A molecule must be 
able to map the entire features of the developed 
hypothesis to be listed as a hit. All screening 
experiments were carried out employing the 
Ligand Pharmacophore Mapping protocol with 
the Best Flexible Search option as available in 
ADS. Hit molecules from the database searching 
with less than 0.1 M predicted pIC50 values 
were retained. In addition, hit compounds with 
good estimated activity were predicted for the 
drug-likeness using Lipinski′s rule of five (39). 
A “Lipinski rule of five”said a drug candidate 
molecule has (i) a molecular weight less than 
500; (ii) less than 10 hydrogen bond acceptor 
groups; (iii) less than 5 hydrogen bond donor 
groups, and (iv) an octanol/water partition co-
efficient (Log P) value less than 5.

Docking Protocol 
Sixty five compounds that were predicted to 

be positive in Lipinski drug likeness screening 
were subjected to molecular docking studies. The 
crystal structure of glucagon receptor retrieved 
from the Protein Data Bank (PDB code: 5EE7) 
was used.

AutoDock Vina is a more recent release of 
AutoDock program, which uses own scoring 
function in combination with an Iterated Local 
Search Global Optimizer. The Vina scoring 
function is a weighted sum of distance-dependent 
atom pair interactions, which are defined relative 
to the surface distance dij (49, 50).

Here dij is a function of the interatomic 
distance (rij) and the van der Waals radii of the 
atoms in the pair (Ri and Rj).

Optimal binding sites were searched in a box 
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Optimal binding sites were searched in a box of 20 Å in each Cartesian direction. 

The box had 1.0 Å grid spacing and centered at the allosteric site of the protein. 

The box was adequately large to include the active site of protein as well as 

significant regions of the surrounding surface. For this step, default values of 

parameters were used. 

First of all, the internal docking validation was carried out. For this step, the ligand 

structure was extracted from the Protein Data bank (PDB) file using a plain text 

editor. After assigning bond orders, missing hydrogen atoms were added and a 

short minimization (100 steepest descent steps using MM+ force field with a 

gradient convergence value of 0.05 kcal/mol Å) was performed using HyperChem 

in order to release any internal strain (51-54). Then, in the AutoDock Tools 

package, the partial atomic charges were calculated using Gasteiger–Marsili 
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of 20 Å in each Cartesian direction. The box had 
1.0 Å grid spacing and centered at the allosteric 
site of the protein. The box was adequately large 
to include the active site of protein as well as 
significant regions of the surrounding surface. 
For this step, default values of parameters were 
used.

First of all, the internal docking validation 
was carried out. For this step, the ligand 
structure was extracted from the Protein Data 
bank (PDB) file using a plain text editor. After 
assigning bond orders, missing hydrogen 
atoms were added and a short minimization 
(100 steepest descent steps using MM+ force 
field with a gradient convergence value of 0.05 
kcal/mol Å) was performed using HyperChem 
in order to release any internal strain (51-54). 
Then, in the AutoDock Tools package, the partial 
atomic charges were calculated using Gasteiger–
Marsili method (55) and after merging non-polar 
hydrogens, the rotatable bonds were assigned.

For protein, after determining Kollman 
united atom charges (56) and merging non-polar 
hydrogens, the rotatable bonds were assigned. 

Applying 2.0 Å clustering tolerance to 
construct clusters of the closest compounds, the 
initial coordinates of the ligand were used as 
the reference structure. Finally, docking results 

(protein-ligand complexes) were visualized 
using VMD 1.9.3.

Results and Discussion

Pharmacophore modeling
Before beginning of pharmacophore 

modeling procedure, a total of 59 glucagon 
receptor antagonists were gathered from 
published resources. As mentioned before, of 
these molecules, 20 were selected to form a 
training set based on broad coverage of activity 
range and structural diversity using Kennard 
and Stone algorithm. The top ten hypotheses 
were composed of HYP, HYP aliphatic, HBA 
lipid, HBD, and PI features. Table 2 reports 
the statistics of the generated pharmacophore 
hypotheses. The values of the ten hypotheses 
such as pharmacophore features, root-mean-
square deviations (rmsd) correlation (r), cost 
values, and Fischer confidence levels showed 
statistical significance (Table 2).

A significant pharmacophore model should 
have a large difference between its total and null 
cost values. In this work, the best hypothesis, 
Hypo1, as indicate in Figure 1 and reported in 
Table 2 is characterized by the lowest total cost 
value (113.989), the highest cost difference 

Table 2. Results of the top 10 pharmacophore hypotheses generated by the HypoGen algorithm.

Hypothesis Total cost Cost difference a RMSD Error cost Correlation Features b

1 113.989 64.38 2.14865 93.5037 0.805377 HBD, HYP, PI

2 116.752 61.617 2.21863 96.5597 0.790605 HBD, HYP aliphatic, PI

3 120.691 57.678 2.31742 101.041 0.768374 HBD, HYP aliphatic, PI

4 124.388 53.981 2.40129 104.999 0.748323 HBD, HYP aliphatic, PI

5 124.527 53.842 2.26536 2.26536 0.786852 HBA lipid, HBA lipid, HYP 
aliphatic

6 125.362 53.007 2.4219 105.993 0.74324 HBD, HYP , PI

7 127.274 51.095 2.37537 103.761 0.758553 HBA lipid, HBA lipid, HYP

8 128.58 49.789 2.44362 107.05 0.739536 HBD, HBD

9 134.536 43.833 2.55966 112.855 0.707545 HBA lipid, HYP aliphatic, PI

10 134.67 43.699 2.58868 114.349 0.699263 HBA lipid , HYP aliphatic, PI
Null cost = 178.369; fixed cost = 66.403; configuration cost = 19.818.
a Cost difference = null cost - total cost.
b Abbreviations used for features: hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HYP), positive ionizable 
(PI)
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(64.38) and the lowest RMSD (2.14865).
The developed pharmacophore showed the 
highest correlation coefficient value of 0.80, 
highlighting its strong predictive ability. The 
fixed cost and null cost are 66.403 and 178.369 
bits, respectively. The total cost is low and close 
to the fixed cost, as well as being less and differs 
greatly from the null cost. The entire evidences 
indicate that the developed model has good 
predictive ability. Consequently, Hypo1 was 
chosen as the best pharmacophore model for 
further analyses and application.

Application of developed Pharmacophore 
model on training set

As mentioned above, all of the molecules 
in the studied dataset set were categorized 
into four different groups based on their 
biological activity (IC50) values: active 
(IC50 ≤0.5  µM, ++++), moderately active (0.5 
≤ IC50 ≤ 5µM, +++) less active (5 ≤ IC50 ≤ 50, 
++) and inactive (IC50 > 50, +) (Table 3). The 
activity of each training set molecule was 
predicted by a fitting procedure based on the best 
pharmacophore model, Hypo1, and the results are 
displayed in Table 3. As it can be seen, three of 
training set molecules were predicted as having 
different IC50s than their experimental values. 
It must be noted that all active molecules in the 
training set were predicted as active glucagon 

receptor antagonists. One moderately active 
compound, molecule 19, was underestimated 
as a less active compound. Also, the estimated 
activity of two molecules, 16, and 17 were 
underestimated. Error values depict the ratio 
between the experimental and estimated activity 
values. Positive error values are calculated when 
the predicted activity value is higher than the 
observed value and a negative value shows the 
opposite. All of the active compounds listed in 
Table 3 contained all of the five chemical features 
in Hypo 1, whereas all of the other compounds 
mapped four or less pharmacophoric features 
of hypothesis. Figure. 2A and B depicts the 
mapping of the most and least active molecules 
(molecule 13 and 19 respectively) of the training 
set on Hypo1, respectively.

Validation method
As well as the training set prediction 

by Hypo1, the predictive ability of the best 
developed pharmacophore model was tested 
using additional methods such as cost analysis, 
prediction of biological activity of test set, 
Fischer randomization, and E value calculation. 
Cost analysis is based on the statistical cost 
values generated during pharmacophore model 
building phase. A diverse test set was employed 
to verify if the pharmacophore model predicts 
the biological IC50 of the molecules that are 

Figure 1. The best pharmacophore model Hypo1 represented with distance constraints. Pharmacophoric features colored as follows: PI 
(Red), HBD (Violate), hydrophobic (Blue).

Hypo1 was chosen as the best pharmacophore model for further analyses and 

application. 

 

 

 

Figure 1. The best pharmacophore model Hypo1 represented with distance constraints. 
Pharmacophoric features colored as follows: PI (Red), HBD (Violate), hydrophobic (Blue). 

 

Application of developed Pharmacophore model on training set 

As mentioned above, all of the molecules in the studied dataset set were 

categorized into four different groups based on their biological activity (IC50) 

values: active (IC50 ≤ 0.5 µM, ++++), moderately active (0.5 ≤ IC50 ≤ 5µM, +++) 
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structurally distinct to the training set. The 
Fischer randomization test was also used to 
verify that the chosen pharmacophore model was 
not generated as a result of chance correlation. 
The E value calculation was built to verify the 
selectivity of the developed pharmacophore 
model towards actives molecules rather than in-
actives.

Cost analysis
The “common feature pharmacophore 

generation”algorithm generated three cost 
values during pharmacophore building step 
to evaluate the quality and reliability of the 
pharmacophore hypothesis. As described in 
Method section, the first cost value is the fixed 
cost value (also called ideal cost) denotes the 
simplest model that fits the data completely. 
The second one is the null cost value (no 
correlation cost) denotes the highest cost of a 
pharmacophore with no features estimating the 
activity to be the average IC50s of the training set 
molecules. A statistical significant and predictive 
pharmacophore hypothesis should have a large 
difference between these two cost values. Hypo1 
was generated with a fixed cost value of 66.403 
and a null cost value of 178.369, thus with a 
difference of 64.38. The third cost is the total 
cost value estimated for every pharmacophore 
hyothesis and should be close to the fixed cost 
value. A large difference between the total and 
null costs shows a more predictive and statistical 
meaningful pharmacophore model. Hypo1 
scored a total cost value of 113.989, which is 
closer to the fixed cost, for a cost difference of 
134.158 (reported in Table 2).

Test set prediction
A set of 39 molecules with structures quite 

similar to training set and range of IC50 values 
was employed to assess the best developed 
pharmacophore model, Hypo1. The chemical 
structures of the test set compounds are provided 
in Table 1. The “Ligand Pharmacophore 
Mapping”protocol implemented in ADS with the 
Best Flexible Search option was applied to map 
all of the molecules in test data (Table 4). Using 
this protocol, the activity values were calculated 
for each molecule in test data. In particular, no 
compound in the test set was predicted with an 

error value more than 10, thus not exhibiting 
more than one order of magnitude between 
experimental and estimated activities (Table 4). 
Noticeably, 76.92% (30 molecules) of the test 
set molecules were predicted within their IC50 
scales while the remaining 23.07% (9 molecules) 
were estimated in different activity scales. From 
these 9 molecules, 3 active molecules were 
underestimated as active; 4 moderately active 
molecules were overestimated as active molecule 
and 2 less active molecules were overstimated 
as moderately active and active molecules. All 
of the less active and inactive compounds were 
predicted within their activity scales. 

Fit values were calculated using all ten 
hypotheses and correlated with experimental 
activities. The best hypothesis, Hypo1, showed 
a correlation coefficient (R2 = 0.805).

Fischer randomization test
Furthermore, Fischer randomization test 

technique was applied to evaluate the statistical 
robustness of developed pharmacophore model 
(Hypo1). The third method to validate the 
robustness of the developed model is based on 
Fischerʹs randomization technique. The observed 
biological activities of the training set were 
shuffled randomly and the resulting training set 
was used in common feature pharmacophore 
generation protocol with the parameters selected 
for the original model building step. Thereby, 
a set of 19 random tables was generated to 
reach a 95% confidence level that the best 
pharmacophore, Hypo1, was not developed 
by chance. Figure 3 indicates that none of the 
randomly developed pharmacophore models 
were generated with better statistical values than 
Hypo1. The results of Fischer randomization test 
technique clearly demonstrate that the original 
hypothesis is far more superior to those of the 19 
randomization produced hypotheses, which give 
confidence on developed pharmacophore model.

Estimation of Enrichment factor
The GH score has been effectively used 

to determine model selectivity (best model) 
accuracy of hits, and the recall of active 
molecules from a molecule dataset consisting 
of known active and inactive molecules. GH 
scoring methodology has been successfully 
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applied for quantification of model selectivity 
and coverage of activity space from database 
mining (57) and for the evaluation of the 
effectiveness of similarity search in databases 
containing both structural and biological activity 
data (58). The GH score contains a coefficient 
to penalize excessive hit list size and, when 
evaluating hit lists, is calibrated by weighting the 
score with respect to the yield and coverage. The 
GH score ranges from 0, which indicates the null 
model, to 1, which indicates the ideal model (i.e., 
containing all of, and only, the active ligands). 
The GH value is expected to be greater than 0.7 

(59). It is considered a relevant metric, as it takes 
into account both the percent yield of actives in 
a database (%Y, recall) and the percent ratio of 
actives in the hit list (%A, precision). The GH 
scoring formula can be applied to identify best 
tolerance for an analysis testing different RMS 
tolerance in fixed atomic position. For fixed 
positions tolerance an optimum GH score can be 
calculated. This method can also be applied to 
calculate highest GH score for the activity of a 
class of compounds clustered in a group. Hence, 
using the GH score method for each cluster of 
compounds aimed for particular activity, one can 

Table 3. Experimental and predicted IC50 values of the training set compounds against Hypo1.

Name
IC50

Fit Value a Error b
Activity scale c

experimental estimate experimental estimate

1 0.07 0.064 7.36342 -1.08746 ++++ ++++

2 0.08 0.068 7.33657 -1.16831 ++++ ++++

3 0.1 0.071 7.32137 -1.41017 ++++ ++++

4 0.3 0.092 7.2064 -3.24652 ++++ ++++

5 0.05 0.096 7.18909 +1.92327 ++++ ++++

6 0.12 0.135 7.0406 +1.12802 ++++ ++++

7 0.34 0.156 6.97872 -2.17819 ++++ ++++

8 0.05 0.163 6.95839 3.27144 ++++ ++++

9 0.1 0.164 6.95596 +1.64491 ++++ ++++

10 0.26 0.191 6.89303 -1.36742 ++++ ++++

11 0.117 0.202 6.8661 +1.72909 ++++ ++++

12 0.3 0.232 6.80592 -1.29105 ++++ ++++

13 0.29 0.271 6.73877 -1.06922 ++++ ++++

14 1.4 0.811 6.263 -1.72595 +++ +++

15 0.8 0.885 6.22506 +1.1065 +++ +++

16 0.18 0.8852 6.22506 +4.91778 ++++ +++

17 0.16 0.920137 6.20825 +5.75086 ++++ ++

18 2.68 1.54629 5.98281 -1.73318 +++ +++

19 14.2 1.81386 5.9135 -7.82861 ++ +++

20 2.8 2.28485 5.81324 -1.22546 +++ +++
a Positive value indicates that the predicted IC50 is higher than the experimental IC50; negative value indicates that the predicted IC50 is 
lower than the experimental IC50.
b Fit value indicates how well the features in the pharmacophore map the chemical features in the compound.
c Activity scale: active, ++++ (IC50 ≤ 0.5 µM); moderately active, +++ (0.5 < IC50 ≤ 5 µM); less active, ++ (5 < IC50 ≤ 50 µM); poor active, 
+ (IC50 > 50 µM).
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associate ownership for each cluster. 
Generated pharmacophore model was also 

validated employing which determines whether 
the best hypothesis can choose active molecules 
during the virtual screening procedure from 
a database of 1733 molecules consisting of 39 
experimentally determined glucagon receptor 
antagonists retrieved from the recently published 
studies. 

Statistics used in this section includes 
calculation of false positives, false negatives, 
enrichment factor, and goodness of hit to 
determine the robustness of the generated 
hypotheses (47) (reported in Table 5). Not only 
should the pharmacophore model generated 
predict the biological activity of the molecules 
applied for model building, but it should also be 
skilled for predicting the biological activities of 
other molecules as active or inactive.

Using the best developed pharmacophore 
model, Hypo1, 35 molecules (Ht) were retrieved 
as hits from the database screening. 

Among these hits, 32 (Ha) molecules were 
from the A list of known antagonists. Therefore, 
the enrichment factor was calculated to be 40.62, 
indicating that it is 40.62 times more probable to 
pick an active compound from the database than 
an inactive one. This value of enrichment factor 
and a GH score of 0.89 indicated the quality of the 
model and high efficiency of the screening test.

As it can be seen from this table, selected 
pharmacophore model is successful in retrieving 
90% of the active molecules, 3 inactive molecules 
(false positives) and predicted 7 active molecules 
as inactive (false negatives).

Virtual Screening and drug-likeness 
pred ic t ion

In drug design and discovery procedure 
virtual screening (database searching) is an 
efficient alternative way to high throughput 
screening (HTS). The best pharmacophore 
model, Hypo1, was used as a 3D query to 
search a chemical database, Maybridge for 
a total of 174000 compounds. The “Ligand 
Pharmacophore Mapping protocol”with the Best 
Flexible Search option was employed to search 
these databases. Inhibitory activity values were 
estimated for the compounds obtained from the 
database screening. A total of 2000 molecules 
were mapped upon all of the pharmacophoric 
features present in Hypo1. A total of 100 
compounds mapped in previous step scored an 
estimated activity value less than 0.07 µM and 
were considered for further studies. 

Lipinski’s rule of five evaluation
Drug-likeness properties are one of the 

key indicators for selecting the molecules for 
in-vitro studies, which includes molecular or 

 

Figure 2. Overlay of most active (A) and least active (B) molecules in the training set upon the 
best pharmacophore model Hypo1. For details of Pharmacophoric features colors refer to Figure 
1. 

 

Validation method 

As well as the training set prediction by Hypo1, the predictive ability of the best 

developed pharmacophore model was tested using additional methods such as cost 

analysis, prediction of biological activity of test set, Fischer randomization, and E 

value calculation. Cost analysis is based on the statistical cost values generated 

during pharmacophore model building phase. A diverse test set was employed to 

verify if the pharmacophore model predicts the biological IC50 of the molecules 

that are structurally distinct to the training set. The Fischer randomization test was 

also used to verify that the chosen pharmacophore model was not generated as a 

result of chance correlation. The E value calculation was built to verify the 

Figure 2. Overlay of most active (A) and least active (B) molecules in the training set upon the best pharmacophore model Hypo1. For 
details of Pharmacophoric features colors refer to Figure 1.
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Table 4. Experimental and predicted IC50 data values of the test set compounds against Hypo1.

Name
IC50(µM)

Error Fit Value
Activity scale

experimental estimate experimental estimate

21 0.19 0.059793 -3.177619 7.39545 ++++ ++++

22 0.21 0.059814 -3.510872 7.3953 ++++ ++++

23 0.59 0.05992 -9.846429 7.39453 +++ ++++

24 0.09 0.060491 -1.487815 7.39041 ++++ ++++

25 0.11 0.062979 -1.746603 7.3729 ++++ ++++

26 0.1 0.065565 -1.525216 7.35543 ++++ ++++

27 0.09 0.065565 -1.372694 7.35543 ++++ ++++

28 0.15 0.06803 -2.204903 7.3394 ++++ ++++

29 0.13 0.069603 -1.867725 7.32947 ++++ ++++

30 0.053 0.072127 +1.360883 7.314 ++++ ++++

31 0.023 0.072832 +3.166617 7.30978 ++++ ++++

32 0.027 0.073341 +2.716326 7.30675 ++++ ++++

33 0.06 0.0735 +1.225003 7.30581 ++++ ++++

34 0.1 0.073576 -1.359146 7.30537 ++++ ++++

35 0.1 0.07371 -1.356675 7.30458 ++++ ++++

36 0.014 0.075042 +5.360157 7.29679 ++++ ++++

37 0.08 0.075179 -1.064134 7.29601 ++++ ++++

38 0.19 0.077713 -2.444887 7.28161 ++++ ++++

39 0.15 0.078717 -1.905558 7.27603 ++++ ++++

40 0.11 0.095641 -1.150136 7.19146 ++++ ++++

41 0.13 0.107363 -1.210845 7.14124 ++++ ++++

42 0.05 0.125811 +2.51622 7.07238 ++++ ++++

43 0.02 0.160961 +8.04805 6.96538 ++++ ++++

44 0.04 0.162512 +4.0628 6.96121 ++++ ++++

45 1.44 0.386826 -3.722604 6.58458 +++ ++++

46 0.95 0.429214 -2.213348 6.53943 +++ ++++

47 0.14 0.477763 +3.412593 6.49289 ++++ ++++

48 0.13 0.497664 +3.828185 6.47516 ++++ ++++

49 0.074 0.5272 +7.124324 6.45012 ++++ +++

50 1.15 0.568055 -2.024452 6.41771 +++ +++

51 0.99 0.57235 -1.729711 6.41444 +++ +++

52 0.42 0.577576 +1.375181 6.41049 ++++ +++

53 1.69 0.579427 -2.916675 6.4091 +++ +++

54 0.061 0.621097 +10.18192 6.37894 ++++ ++

55 0.027 0.632999 +23.44441 6.3707 ++++ ++

56 1.36 0.827474 -1.643556 6.25435 +++ +++
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Table 4. Continued.

Name
IC50(µM)

Error Fit Value
Activity scale

experimental estimate experimental estimate

57 0.18 0.8425 +4.680556 6.24653 ++++ +++

58 2.8 0.903949 -3.09752 6.21596 +++ +++

59 0.43 1.05557 +2.454814 6.14861 ++++ +++

60 0.49 1.1109 +2.267143 6.12642 ++++ +++

physicochemical properties that contribute to 
favorable Lipinski’s rule of five. The parameters 
were described in the Lipinski’s rule of five 
including logP (the logarithm of octanol/water 
partition coefficient), number of hydrogen 
bond donor groups, number of hydrogen bond 
acceptor groups, and molecular weight. They 
have been proved to have a correlation with drug 
absorption. These properties describe the ‘drug-
likeness’ and predict a poor oral absorption or 
permeation when the investigated molecules 
have more than five H-bond donors (HBD), 10 
H-bond acceptors (HBA) a molecular weight 
(MW) greater than 500 Da and calculated LogP 
(cLogP) higher than 5. Compounds breaching 
more than one of the conditions may have 
small oral bioavailability. However, among 
100 considered compounds, the 66 compounds 
that are listed in Table 6 did not breach any 
parameter of Lipinski’s proposed rule, and thus 

are supposed to have high bioavailability. So, 
finally 66 molecules were further selected for 
docking studies.

Docking
In the internal validation step, MK-0893 

was docked onto receptor, according to the 
above docking protocol. After superimposing 
the experimental and predicted conformations, 
the RMSD were 1.88Å, which is considered 
as successfully docked (60, 61) and indicating 
that the parameters set for the AutoDock Vina 
simulations are reasonable for reproducing the 
X-ray structures. This result demonstrates that 
these in silico methods are quite robust and 
suitable for assessing the interaction of such 
ligands with Glucagon receptor.

The proposed approach was further validated 
by docking a series of retrieved inhibitors (The 
87 hit compounds that were chosen from the 

hypothesis is far more superior to those of the 19 randomization produced 

hypotheses, which give confidence on developed pharmacophore model. 

. 

 

 

Figure 3. The difference between cost values of developed pharmacophore model and the 
scrambled models. 

 

Estimation of Enrichment factor 

The GH score has been effectively used to determine model selectivity (best 

model) accuracy of hits, and the recall of active molecules from a molecule dataset 

consisting of known active and inactive molecules. GH scoring methodology has 

Figure 3. The difference between cost values of developed pharmacophore model and the scrambled models.
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pharmacophore filtering studies) reported in 
Table 6 in the binding site. Docking studies on 
binding modes are very informative to clarify 
key structural characteristics and interactions 
to provide helpful data for suggesting effective 
glucagon receptor antagonist. To take a snapshot 
of the activities and binding affinity of the 
selected compounds, the predicted binding 
affinity values for each compound are presented 
in Table 7.

With respect to the obtained results, 
compound 38472 (maybridge code) was selected 
for further evaluation. As reported in Table 7, 
some compounds have more negative estimated 

binding affinity value than -7.5 which their 2D 
structures are reported in Figure 4.

On the basis of binding affinity, the order 
of compounds is: C38472> C26319> C26315> C19450> 
C39388> C24155

As it is obvious, compound C38472 interacts 
more strongly with glucagon receptor site than 
the other compounds. The binding modes and 
molecular interactions between compound C38472 
(Figure 5) (with more binding affinity) and the 
active site components are discussed below.

As reported in literature (62) the X-ray 
diffraction studies showed that the residues in 
outside of the seven transmembrane (7TM) 

Table 5. Statistical parameters of GH score validation for Hypo1.

Serial No. Parameters Results

1 Total number of molecules in database (D) 1733

2 Total number of actives in database (A) 39

3 Total number of hit molecules from the hit database (Ht) 35

4 Total number of active molecules in hit list (Ha) 32

5 % Yield of actives (Ha/Ht) × 100 91.4

6 % Ratio of actives (Ha/A) × 100 82.05

7 Enrichment Factor (EF) 40.62

8 FALSE negative [A-Ha] 7

9 FALSE positives [Ht-Ha] 3

10 Goodness of hit (GH)* 0.89

*[(Ha/4HtA) (3A + Ht) × (1–(Ht –Ha) /(D–A))]

Figure 4. Lead molecules retrieved from the database searching as potent glucagon receptor antagonist. (A) Compound C38472 
(B)compound C26319 (C) compound C26315 (D) compound C 19450 (E) compound C 39388 and, (F) compound C 24155 .

 

Figure 4. Lead molecules retrieved from the database searching as potent glucagon receptor 

antagonist. (A) Compound C38472 (B) compound C26319 (C) compound C26315 (D) compound C 

19450 (E) compound C 39388 and, (F) compound C 24155 . 

 

On the basis of binding affinity, the order of compounds is: C38472> C26319> C26315> 

C19450> C39388> C24155 

As it is obvious, compound C38472 interacts more strongly with glucagon receptor 

site than the other compounds. The binding modes and molecular interactions 

between compound C38472 (Figure 5) (with more binding affinity) and the active 

site components are discussed below. 

As reported in literature (62) the X-ray diffraction studies showed that the residues 

in outside of the seven transmembrane (7TM) helical bundle in a position between 
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Table 6. Results for the calculated Lipinski’s rule of five.

Molecule code logP MW nON nONHN

8219 4.89 461.65 7 2

20540 2.37 436.51 8 2

52875 0.36 195.22 4 3

53104 4.56 486.64 6 1

5594 1.34 209.25 4 3

42406 3.38 398.5 6 1

7981 1.2 352.19 7 3

19450 -6.18 367.43 10 3

31628 1.72 408.54 5 1

29669 1.7 496.46 7 3

39647 2.42 465.02 7 2

37962 3. 4 444.63 6 2

39022 3.45 453.55 8 1

24155 1.83 282.44 6 4

22846 3.33 498.63 8 3

38472 4.09 488.59 8 3

21055 5.98 434.63 4 4

39388 3.19 397.47 4 1

12340 -0.73 174.24 4 4

40885 4.52 439.58 6 2

54183 3.17 348.54 4 2

37909 -5.89 387.44 9 2

39337 -0.47 284.22 9 2

53091 0.35 315.33 7 2

38518 2.62 268.31 6 2

52990 -4.29 372.45 7 2

50154 3.44 483.01 7 2

48286 3.6 456.6 8 3

35463 -5.93 296.37 7 2

28032 3.62 456.64 6 3

49622 1.54 264.32 5 1

21648 2.09 248.33 4 1
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Molecule code logP MW nON nONHN

19696 2.25 462.53 10 5

34378 3.32 379.47 8 1

32291 3 283.78 4 2

821 1.55 237.3 4 3

1792 2.09 248.33 4 1

10093 2 306.41 5 1

1966 0.36 195.22 4 3

18612 5.12 436.98 4 1

43891 1.34 209.25 4 3

20415 3.38 398.5 6 1

970 -0.13 211.22 5 4

32552 -1.42 402.01 5 3

8272 2.38 329.4 5 2

36902 1.26 235..31 4 2

44033 4.89 461.65 7 2

18412 0.3 333.39 7 1

59021 2.04 403.5 7 1

38608 0.63 261.33 6 1

27733 5.01 633.7 10 2

53227 4.8 467.47 5 2

19739 2.73 437.54 8 2

26319 -5.12 319.35 8 2

24809 -0.44 410.5 9 1

26315 -4.31 381.42 8 2

12709 2.21 290.19 4 2

1968 4.75 458.79 4 1

19736 3.74 423.92 7 2

1969 4.63 494.85 5 1

21083 0.84 430.96 8 1

53437 2.56 357.45 6 1

41692 -0.75 319.12 9 4

53365 -6.13 267.33 7 3

47246 3.62 417.57 6 1

Table 6. Results for the calculated Lipinski’s rule of five.



Discovery of Novel Glucagon Receptor Antagonists

1283

Table 7. Predicted activity is theoretical inhibitory activity calculated using Hypo1. Predicted binding affinity of each compound 
calculated by Autodock Vina.

Compound Predicted Binding 
Affinity (kcal/mol) Predicted Activity (nM) Compound Predicted Binding 

Affinity (kcal/mol)
Predicted Activity 

(nM)

38472 -7.9 0.061804 49622 -6.3 0.05982

26319 -7.7 0.075916 42406 -6.3 0.066033

26315 -7.7 0.077099 32552 -6.3 0.067345

19450 -7.6 0.064345 19739 -6.3 0.075227

39388 -7.5 0.061199 53091 -6.2 0.060509

24155 -7.5 0.06229 53365 -6.2 0.082079

27733 -7.4 0.074549 8272 -6.1 0.067413

39022 -7.2 0.062373 32291 -6 0.059546

37909 -7.1 0.060783 39337 -6 0.060593

41692 -7.1 0.081302 44033 -6 0.069144

7981 -7 0.064607 18412 -6 0.070891

21083 -7 0.079932 53104 -5.9 0.066588

48286 -6.8 0.060237 821 -5.9 0.059928

53437 -6.8 0.079941 40885 -5.8 0.061049

47246 -6.8 0.082623 43891 -5.8 0.066763

29669 -6.8 0.064053 35463 -5.7 0.060168

19696 -6.7 0.059706 8219 -5.7 0.070047

28032 -6.7 0.059844 19736 -5.7 0.07958

39647 -6.7 0.063692 34378 -5.7 0.059621

59021 -6.7 0.073843 38518 -5.6 0.06042

52990 -6.6 0.060312 10093 -5.6 0.059499

21055 -6.6 0.061294 31628 -5.5 0.064185

1968 -6.6 0.078896 37962 -5.5 0.063519

21648 -6.5 0.059809 5594 -5.5 0.066397

50154 -6.5 0.06022 1966 -5.5 0.066588

22846 -6.5 0.062048 970 -5.5 0.066838

20415 -6.5 0.066815 36902 -5.5 0.067675

20540 -6.5 0.067413 38608 -5.5 0.0743

1792 -6.4 0.059809 53227 -5.5 0.074616

54183 -6.4 0.060812 12709 -5.5 0.078052

18612 -6.4 0.066599 52875 -5.4 0.066852

24809 -6.4 0.07648 12340 -5.1 0.061091

1969 -6.3 0.079728
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helical bundle in a position between TM6 and 
TM7, extending into the lipid bilayer, play an 
important role in the ligand binding.

Compound C38472 has a free energy of binding 
of -7.9 kcal.mol-1 and was in contact with the 
important residues of glucagon receptor such as 
Ser350, Leu399, Asn404, Thr353 and Lys349 
(shown in Figure 5). 

Results of docking study showed 
that interactions were dominated by the 
hydrophobicity and aromaticity due to the 
presence of phenyls, amines, carbonyl and 
thiophenyl moieties.

The phenyl and thiophenyl rings of compound 
C38472 is situated in the pocket with high degree 

of hydrophobic property. This pocket includes 
the side chains of residues Leu 347, Ser 350, Tyr 
400 and Tyr 343.

The carbonyl group between piperazine and 
amine group of C38472 has shown a hydrogen 
bond interaction with the backbone of SER350.

Binding mode of the compound C38472 
correlated well with the pharmacophore overlay 
(Figure 1). 

These findings well corroborates with the best 
pharmacophore hypothesis where the importance 
of hydrophobic functionality at the active site 
has been described by HYDROPHOBIC feature 
while H-bond interactions at the binding site has 
been well described by two HBD feature of the 

TM6 and TM7, extending into the lipid bilayer, play an important role in the ligand 

binding. 

 

 

 

Figure 5. Molecular docking results (A) 2D representation and (B, C) 3D representation of 
docked orientations of C38472 in the binding site of glucagon receptor. 
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and thiophenyl moieties. 
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Figure 6. The pharmacophore overlay of the compound C38472 on the Hypo1.  

 

Figure 6. The pharmacophore overlay of the compound C38472 on the Hypo1.
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pharmacophore (Figure 6).

Conclusion

Combined computational approaches 
(pharmacophore modeling and docking 
approaches) were applied to give insight into the 
structural basis and inhibition mechanism for a 
series of glucagon antagonists.

Three-dimensional distances among 
pharmacophoric features were used as the 
criteria in the screening process. Since the top 
10 pharmacophore models contained the same 
feature (HBD, HYP, PI, HBA lipid, and HYP 
aliphatic), first hypothesis (Hypo1) seemed to be 
the most predictive model with highest rank score. 
The selected hypothesis was made of HBD, HYP, 
PI (Figure 1) features with a high correlation 
value of 0.805 and was validated using 20 
molecules assigned as test set compounds. With 
respect to the obtained results, it appears that the 
hydrogen bond donor, hydrophobic, and positive 
ionizable features play an important role, in 
binding of compounds to the glucagon receptor. 
This 3D pharmacophore was then further 
assessed by using it to search 3D databases. 
Both positive and negative results of this search 
provided validation of the pharmacophore. The 
model was further used in database screening to 
find novel and diverse virtual leads for glucagon 
receptor antagonist. The retrieved compounds 
from database searching were further examined 
at the active site of glucagon receptor where 
the docking study well corroborates with the 
pharmacophore model. 

Further, ADME predictions were performed 
for these compounds. Conclusively, the hits 
obtained on virtual screening of the database 
have provided new chemical starting points 
for design and development of novel glucagon 
receptor antagonist.
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