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Abstract

In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted 
from their structural molecular descriptors by using quantitative structure-property relationship 
(QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives 
which were obtained by DC-polarography. Descriptors which were selected by stepwise 
multiple selection procedure are: HOMO energy, partial positive surface area, maximum 
valency of carbon atom, relative number of hydrogen atoms and maximum electrophilic 
reaction index for nitrogen atom. These descriptors were used for development of multiple 
linear regression (MLR) and artificial neural network (ANN) models. The statistical parameters 
of MLR model are standard errors of 0.016 and 0.018 for training and test sets, respectively. 
Also, these values are 0.012 and 0.017 for training and test sets of ANN model, respectively. 
The predictive power of these models was further examined by leave-eight-out cross validation 
procedure. The obtained statistical parameters are Q2 = 0.920 and SPRESS = 0.020 for MLR 
model and Q2 = 0.949 and SPRESS = 0.015 for ANN model, which reveals the superiority of 
ANN over MLR model. Moreover, the results of sensitivity analysis on ANN model indicate 
that the order of importance of descriptors is: Relative number of H atom > HOMO energy > 
Maximum electrophyl reaction index for N atom > Partial positive surface area (order-3) > 
maximum valency of C atom.
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Introduction

Benzoxazine is the reaction product of 
amine, phenol and formaldehyde which can 
provide polymers with high glass transition 
temperature, low water absorption, excellent 
physical and electrical performances and 
excellent fire resistance properties (1). One 
of the interesting features of these compounds 
is the drug properties. These were used as 

bacteriocides, fungicides, antitumor agents, 
herbicides, microbiocides or anti-inflammatory 
agents, tyrosine mimetics, bacteriostatic, 
immunomodulating agents, neuroprotective 
antioxidants and were used as antituberculotic 
agents in various cancer chemotherapy regimens 
for the treatment of sarcoma and cerebral tumors. 
(2-10). 

Oxidation reactions played an important role 
in establishing structures and chemical properties 
of benzoxazines. Since these reactions are the 
most common pathways at the first phase of drug 
biotransformation. Therefore the electrochemical 



half wave potential of benzoxazines can be 
directly useful for investigation of their biological 
properties (11). Drugs with low oxidation 
potential can operate more successfully in the 
treatment of disease. A common technique in 
studies of electro-oxidations of benzoxazines is 
the voltammetric method (12). This method is the 
electrochemical technique. Since generation and 
examination of new drugs based on benzoxazine 
and its investigation by the voltammetric method 
is limited in time and cost (13) therefore, the 
development of theoretical model to predict the 
properties of these compounds are interesting 
and necessary. Quantitative structure activity 
relationship (QSAR) methods enable in 
prediction and interpretation of the properties and 
activities of a wide range of drugs and organic 
compounds based on the correlation between 
their properties and molecular characteristics 
(molecular descriptors) (14-18). There are some 
reports about the applications of QSPR/QSAR in 
electrochemistry (19-22). Wei et al. studied the 
relationship between the reduction characteristics 
and molecular structure of 87 chlorinated 
aromatics, such as naphthalenes, biphenyls, 
benzenes and phenols (19). Shamsipur and 
Hemmateenejad employed principle component 
regression (PCR) and principle component 
artificial neural network (PC-ANN) models in 
QSPR study of E1/2 of some organic compounds. 
Their best PC- ANN model can explain the 96% 
of variances in the E1/2 data (22). Fatemi et al. 
applied support vector machine (SVM) for the 
prediction of selectivity coefficients of anion-
selective electrode for some univalent anions. 
The calculated root-mean-square errors of SVM 
for training and test set of their model are: 
0.878 and 0.890 respectively. The correlation 
coefficients of training and test set are: 0.95 
and 0.94, respectively. Also the obtained 
statistical parameters of cross-validation test 
on SVM model were: Q2 = 0.858 and SPRESS 
= 1.050, which revealed the reliability of their 
model (23). Gallegos et-al. developed some 
models to predict the logarithm of minimum 
inhibitory concentration (log MIC) of a subset 
of 39 substituted benzoxazines using a quantum 
molecular similarity approach (24). Nesmerak 
et al. was used Hammet substitutent constants 
(25) for calculation of half-wave potentials for 

40 benzoxazine (20). Toropov et-al. calculated 
optimal descriptors with simplified molecular 
input line entry system (SMILES) notation of 
same Nesmerek group chemicals (26) and used 
QSPR modeling to calculate the electrochemical 
half-wave potentials of these compound (26). 

In the present work, we tried to predict the 
half-wave potential of some benzoxazine derives 
from their molecular descriptors by using 
artificial neural network (ANN) and multiple 
linear regression (MLR) techniques. 

Experimental 

Software
The 3D structures of the studied compounds 

were optimized using semi-empirical quantum-
chemical methods of AM1 in HyperChem (Ver.7) 
package (27). The structural descriptors are 
numerical values that encode structural features 
of the molecular structures.  In the present work, 
the CODESSA software was used to calculate 
393 constitutional, topological and geometrical 
descriptors (28). Then heuristic method (HM) 
was used to search the best set of descriptors for 
multilinear correlations (29).  

Artificial neural networks are mathematical 
systems that simulate biological neural networks 
(30-32). They consist of processing elements 
(nodes or neurons) which organized in some 
layers. Back-propagation neural networks are 
most often used in analytical applications. 
The back-propagation network receives a 
set of inputs, which are multiplied by each 
node and then a nonlinear transfer function 
is applied for their processing. The goal of 
training the network is to change the weights 
between the layers in a direction to minimize 
the output errors. More details about the theory 
of the neural networks have been adequately 
described in many literatures (32-38). The 
ANN programs were written in FORTRAN 77 
in our laboratory. A three-layer network with a 
sigmoid transfer function was design for each 
ANN. The generated artificial neural network 
uses descriptors selected by HM as inputs. The 
number of nodes in the input layer is dependent 
on the number of descriptors introduced in the 
network. The number of nodes in the output 
layer for both subsets (training and test sets) 
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was set to be one. The inputs and outputs values 
of ANN were normalized between 0.1 and 0.9. 
The initial weights were selected randomly 
between −0.3 and 0.3. The number of nodes in 
the hidden layers, learning rate, and momentum 
would be optimized before training the network. 
During the training of ANN, the values of 
weights and biases continuously changed to 
minimize the differences between ANN outputs 
and desired activity/property values, using the 
back propagation of errors. In order to evaluate 
the performance of the ANN, the standard error 
of training (SET) and the standard error of 
prediction (SEP) were used. The training iteration 
was stopped at overtraining point, where SEP is 
started to increase. Then the trained network was 
used to calculation the E1/2 values of test set. In 
order to further investigation of the credibility 
of obtained ANN model leave-eight-out cross 
validation method was used. Finally, the 
sequential zeroing weight (SZW) approach was 
used for evaluation of the relative importance of 
selected molecular descriptors. 

Dataset and Molecular descriptors
New groups of antimycobacterial agents that 

were studied in the present work as dataset are 
derivatives of benzoxazine which their half-
wave potentials were obtained from reference 

(20). The electrochemical measurements on 
these compounds were performed by an EKO-
Tribo Polarograph. The reference electrode was 
a silver plate which immersed in a solution of 
acetonitrile that consists 0.01M of AgNO3 and 
1M of NaClO4. The chemical structures and 
experimental oxidation half-wave potential of 
these compounds are shown in Figure 1 and Table 
1. The 3D structures of the studied compounds 
were optimized using semi-empirical quantum-
chemical methods of AM1. The data set was 
separated into two groups: training and test sets. 
All molecules were placed by Y-ranking method 
in these sets. The training set, consisted of 35 
molecules, was used for the model generation 
and the test set, consisted of 5 molecules, was 
used to take care of the overtraining and evaluate 
the prediction power of the generated model.

Data screening and descriptor selection
The CODESSA software was used to calculate 

constitutional, topological and geometrical 
descriptors. Then heuristic method (HM) was 
used to search the best set of descriptors for 
multilinear correlations. In the first step of this 
method, descriptors with constant values for 
all molecules were eliminated from the pool 
of descriptors. Also, pairs of variables with a 
correlation coefficient greater than 0.90 were 
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Fig. 1. Plot of R2 for the obtained models versus the number of descriptors involved 
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Figure 1. Plot of R2 for the obtained models versus the number of descriptors involved.
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Table 1. Structures, experimental, MLR and ANN-predicted values of oxidation half-wave.

Derivate X R1 R2 E(1/2)-Exp E(1/2)-MLR E(1/2)-ANN

 1 O 7-OCH3 1.420 1.413 1.419

 2 O 7-OCH3 4-F 1.430 1.434 1.424

3 O 7-OCH3 4-Br 1.440 1.465 1.453

4 O 7-OCH3 3-F 1.445 1.458 1.441

5 O 7-OCH3 3-Cl 1.450 1.461 1.447

6 O 7-CH3 4-CH3 1.415 1.412 1.418

7 O 6-CH3 4-CH3 1.420 1.416 1.423

8T O 4-Br 1.490 1.522 1.533

9 O 6-OCH3 4-CH3 1.450 1.425 1.433

10 O 6-OCH3 4-F 1.460 1.480 1.460

11 O 6-OCH3 4-Br 1.465 1.487 1.474

12 O 6-OCH3 4-Cl 1.470 1.487 1.473

13 O 6-OCH3 3-F 1.480 1.481 1.462

14 O 6-OCH3 4-CN 1.510 1.516 1.512

15 O 6-Cl 1.530 1.525 1.535

16 O 6-Cl 3-Cl 1.590 1.589 1.591

17 S 7-OCH3 4-CH3 1.280 1.312 1.309

18 S 7-OCH3 1.315 1.323 1.318

19 S 7-OCH3 4-F 1.350 1.348 1.366

20 S 7-OCH3 4-Br 1.360 1.378 1.359

21 S 7-OCH3 4-Cl 1.370 1.368 1.362

22 S 7-OCH3 3-F 1.390 1.363 1.376

23T S 7-OCH3 3-Cl 1.395 1.370 1.364

24 S 7-OCH3 4-CF3 1.405 1.433 1.430

25T S 7-OCH3 3,4-Cl2 1.420 1.417 1.408

26 S 7-CH3 4-CH3 1.305 1.323 1.308

27T S 6-CH3 4-CH3 1.320 1.328 1.308

28 S 4-Br 1.420 1.449 1.428

29 S 6-OCH3 4-CH3 1.330 1.336 1.326

30 S 6-OCH3 1.360 1.353 1.350

31 S 6-OCH3 4-F 1.380 1.395 1.403

32 S 6-OCH3 4-Br 1.400 1.406 1.408

33 S 6-OCH3 4-Cl 1.400 1.402 1.402

34 S 6-OCH3 3-F 1.410 1.399 1.407

35 S 6-OCH3 3-Cl 1.430 1.405 1.404

36 S 6-OCH3 4-CF3 1.440 1.455 1.451

37T S 6-OCH3 3,4-Cl2 1.445 1.451 1.444

38 S 6-OCH3 4-CN 1.450 1.437 1.438

39 S 6-Cl 1.420 1.443 1.420

40 S 6-Cl 3-Cl 1.520 1.498 1.503
T: denotes the test set.
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classified as intercorrelated variables, and 
only one of them was used in developing the 
model. In deleting one descriptor from one 
pair of correlated descriptors we tried to keep 
descriptor which has these criteria: 1) has the 
higher correlation with independent variable 
(half wave oxidation potential), 2) its calculation 
is simpler and easier, 3) has more information 
about interested activity/properties, 4) is more 
interpretable. At the end of this step  total 
of 284 descriptors were reminded to further 
investigations. 

A major decision in developing successive 
QSPR model is when to stop adding descriptors 
to the model during the forward selection 
procedure. A simple technique to control the 

model expansion is the ‘break-point’ procedure 
(39). In this method, improvement of the 
statistical quality of the models is analyzed 
by plotting the squared correlation coefficient 
values (R2) of the obtained models versus the 
number of descriptors involved in each model. 
Consequently, the model corresponding to the 
break point is considered as the best/optimum 
model. 

Thus, HM procedure was applied to the 
training set and multilinear regression equations 
of up to 16 descriptors were developed. Variations 
of R2 against the number of descriptors in the 
models were recorded and are shown in Figure 
2. The application of the break-point algorithm 
led to the conclusion that the best model had five 

Table 2. Specification of multiple linear regression model.

Name of descriptors Symbol Coefficient SE Mean effect

Relative number of H atom X1 -0.13 ±0.027 -0.796

Partial positive surface area(order-3) X2 -0.1 ±0.004 -0.086

Maximum electrophyl reaction index for N atom X3 0.023 ±0.002 0.075

HOMO energy X4 -0.079 ±0.051 1.010

Maximum valency of C atom X5 2.298 ±1.012 8.880

Constant -7.903 ±3.65
n =35, R =0.97, SE = 0.016, F =512 
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Fig. 2. Scatter plot of samples for training and test sets according to the mean distances 

distribution 
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Figure 2. Scatter plot of samples for training and test sets according to the mean distances distribution.
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parameters. The specifications of this model w 
shown in Table 2. Then the artificial network 
was used to calculation the E1/2 values of training 
and test set, respectively. Also, in order to further 
investigation of the credibility of obtained ANN 
model leave-8-out cross validation method was 
used. Finally, the sequential zeroing weight 
(SZW) approach was used for evaluation of 
the relative importance of selected molecular 
descriptors.

Result and discussion

Molecular diversity validation
Diversity is a fundamental research subject 

in chemical database analysis of sampling (40). 
Molecular diversity analysis explores the way of 
molecules to cover a determined structural space 
and underlies many approaches for compound 
selection and design of combinatorial libraries. 
The diversity problem involves defining a 
diverse subset of “representative” compounds 
so that researchers can scan only a subset of the 
huge database each time.  Therefore, the choice 
of an optimal metric space that represents the 
structural diversity of a compound population is 
determinant in the efficiency of the model (38, 

41). In this work, diversity analysis was done for 
the data set to make sure the structures of the 
training or test sets could represent those of the 
whole ones.

For a database of n compounds generated 
from m highly correlated chemical descriptors, a 
distance score (dij) for two compounds Xi and X j 
can be measured by the Euclidean distance norm 
based on the compounds descriptors:

∑
=

−=−=
m

k
jkikjiij xxXXd

1

2)(

                                                                                     
 

(1)

Each compound Xi is represented as a vector:
Xi = (xi1, xi2, xi3, . . . , xim)T  for i = 1, 2, . . . , n

where xi j denotes the value of descriptor 
j of compound Xi and T indicates vector 
transposition. The mean distances ( ijd  ) of one 
sample to the remaining ones were computed as 
follow:
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Then the mean distances were normalized 

Table 3. Internal correlation matrix between molecular descriptors.

 X1 X2 X3 X4 X5

X1 1.000 0.255 0.075 0.650 0.670

X2 1.000 -0.027 -0.010 -0.163

X3 1.000 -0.352 0.009

X4 1.000 0.253

X5 1.000

Table  4. The statistical results of ANN and MLR models.

Models Training set Test set Cross-validation Test

R SE R SE Q2 SPRESS

ANN 0.983 0.012 0.971 0.017 0.949 0.015

MLR 0.969 0.016 0.970 0.018 0.920 0.020
R, SE, Q2 and SPRESS are regression coefficient, standard error, correlation coefficient of cross validation and square of predictive error 
sum of squares respectively.
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within the interval (0, 1). In our data sets, the 
mean distances of samples versus oxidation half-
wave potential are plotted in Figure 3. 

The distribution of points in this figure 
illustrates the diversity of the molecules in the 
training and test sets. As can be seen from this 
figure, the structures of compounds are diverse 
in the training and test sets. The training set with 
a broad representation was adequate to ensure 
model stability. 

Linear modeling
The SPSS software (Ver. 14) was used to 

developing many MLR models (43). The best 
model was selected based on the statistics of 
correlation coefficient (R), standard error (SE) 
and Fisher-statistics value (F). Consequently, 
among different models, the five-parameter 
model was chosen based on the break point 
procedure. Descriptors which were selected 
by this method are: high occupied molecular 
orbital energy(HOMO), partial positive surface 
area, maximum valency of carbon atom, relative 
number of hydrogen atoms and maximum 
electrophilic reaction index for nitrogen atom 
that have shown in Table 2. 

Table 5. Architecture of ANN.

Transfer Function Sigmoidal 
No. of Hidden Layer Nods 2
Weight Learning Rate 0.2
Bias  Learning Rate 0.6
Momentum 0.3
No. of Input Layer Nods 5
No. of Output Layer Nods 1
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Fig. 3. Calculated. E1/2 versus Experimental E1/2 plot 
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Figure 3. Calculated. E1/2 versus Experimental E1/2 plot.
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Multicollinearity for the selected parameters 
(descriptors) was also checked and its result was 
presented in Table 3. As can be seen in this table 
there are not any high correlation between these 
descriptors. Then the MLR model was used to 
calculate of E1/2 for test set as well as training set. 
The MLR predicted values of E1/2 were shown in 
Table 1. 

Finally, the leave 8-out cross-validation 
(L8O) was used to evaluate credibility and 
robustness of these models. The statistical 
parameters of this test were shown in Table 4. 
Other statistical parameters of MLR model are: 
average error = 0.0002, relative error = 0.0022 
and absolute error = 0.0102, respectively.

Non-linear modeling
A three-layer network with a sigmoid transfer 

function was designed for ANN model. The 
network was trained using the training set by 
the back propagation strategy for optimization 
of the weights and bias values. To obtain the 
best result the weight and bias learning rate and 
momentum value as well as ANN’s topology 
were optimized. The procedure for optimization 
of ANN’s parameters is given elsewhere (37, 
38). The optimized values of these terms and 

ANN characteristics are given in Table 5. 
Then the constructed ANN model was used to 
calculate the E1/2 for test set as well as training 
set. The predicted values of E1/2 by ANN model 
were shown in Table 1. Moreover, the leave-8-
out cross-validation (L8O) was used to evaluate 
the credibility and robustness of the ANN model. 
The statistical parameters of this test were 
shown in Table 4. Other statistical parameters of 
ANN model are, average error = 0.0046, relative 
error = 0.0040 and absolute error = 0.0137, 
respectively. In comparison whit MLR statistical 
parameters and other statistical values in Table 
4, it can be seem that the performance of ANN 
model was better than MLR ones.

Figure 4 indicates the variation of ANN 
predicted against experimental values of E1/2 
that the agreement between the predicted and 
experimental values is clear (R (training set) =0.0983 
and R (test set) =0.971). Also, the residual values 
between ANN predicted and experimental 
values of half-wave electrooxidation potential of 
benzoxazines were traced in Figure 5. 

The random distribution of residuals about 
zero line confirms that there is no systematically 
error in developed ANN model. To verify the 
chemical domain of the consensus model and 
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Fig. 4. Residual versus Experimental E1/2 plot 
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the distribution of the studied chemicals in this 
new multidimensional space, the chemicals are 
plotted in a principal components 3D-graph 
(Figure 6), which was obtained by applying 
PCA on all molecular descriptors used by these 
models. This PCA plot shows that chemicals 
have fine distribution in the molecular descriptors 
domain.

Sensitivity analysis and descriptor 
interpretation

By interpreting selected descriptors in the 
ANN model, it is possible to gain some insight 
into the factors that are likely to govern the E1/2 
of benzoxazines. Here, a brief interpretation of 
these factors in order to determine the relative 
importance of each variable is given based on 

Figure 5. Principal component analysis on the selected molecular descriptors for the consensus model.

Figure 6. Sensitivity analysis results.
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the results of sensitivity analysis. 
The procedure of this approach is based on 

the sequential removal of variables by zeroing 
the specific connection weights for that specific 
input variable in the first layer of the ANN (44). 
For each sequentially zeroed input variable, root 
mean square error of prediction set (RMSEP) 
as the prediction error of this network was 
calculated. Generally RMSEP value increases 
in this way. Then, differences between RMSEP 
and root mean square error of established ANN 
(RMSE) was calculated and shown as DRMSE. 
Each variable which causes greater value of 
DRMSE is more important. The DRMSE values 
are shown for each descriptor in Figure 7. As the 
mentioned earlier, five descriptors were used for 
ANN model to comprise:  relative number of 
H atom, HOMO energy, maximum electrophyl 
reaction index for N atom, partial positive 
surface area (order-3), maximum valency of C 
atom that belonging for constitutional, quantum 
chemical and charge descriptors and encode 
electronic aspects of the molecular structure. The 
order of importance of descriptors is: Relative 
number of H atom > HOMO energy > Maximum 
electrophyl reaction index for N atom > Partial 
positive surface area (order-3) > maximum 
valency of C atom.

First important descriptor in the model is 
relative number of H atom that is a simple 
constitutional type descriptor. This factor 
indicates the size of molecules as well as the 
degree of saturation of molecule. The second 
one is the highest occupied molecular orbital 
energy which is belonging to quantum chemical 
descriptors and determines the needed energy to 
drawing the electron in oxidation process (45). 
Molecule with high HOMO energy values can 
donate its electron more easily than the molecule 
with lower HOMO value, and hence is more 
reactive (26). Next descriptor is maximum 
electrophylic reaction index for N atom that 
is the quantum chemical descriptor too. This 
index provides feasible chemical interaction 
with electrophilic attack as electron affinity (46) 
and is important in molecular properties and 
reactivity in particular for radical reactions. 

The forth descriptor is partial positive surface 
area (order-3) which is a charge descriptor and 
contains the electronic and structural information 

of molecule (46). This descriptor encodes the 
solvent accessible surface area of molecule 
in electrochemical reaction, and can well 
estimate the absolute hardness and can affect 
on electrooxidation of benzoxazines. The last 
descriptor is maximum valency of C atom. This 
parameter is a charge type descriptor which can 
affect on electron affinity of the molecule and 
therefore can correlate to the E1/2 of a molecule. 
Thus these descriptors can encode different 
aspects of molecules which can effect on their 
E1/2 values.

Conclusion

The obtained results indicate that QSPR 
approaches can be used to predict the 
electrooxidation half-wave potentials of 
benzoxazine derivatives from their structural 
molecular descriptors. Also, comparison between 
statistical parameters of ANN and MLR models 
indicates that the ANN model produces better 
results due to non-linear characteristic of ANN. 
Finally, total descriptors which were appeared 
in this model can encode features of molecules 
which were responsible in electrooxidation 
characteristics of these molecules. 
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