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Abstract

Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity 
of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate 
dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated 
apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal 
levels, inhibit tumor growth and reduce proliferation by shifting the glucose metabolism in 
cancer cells from anaerobic to aerobic glycolysis. In this study, a series of DCA analogues 
were applied to quantitative structure–activity relationship (QSAR) analysis. A collection 
of chemometrics methods such as multiple linear regression (MLR), factor analysis–based 
multiple linear regression (FA-MLR), principal component regression (PCR), and partial least 
squared combined with genetic algorithm for variable selection (GA-PLS) were applied to 
make relations between structural characteristics and cytotoxic activities of a variety of DCA 
analogues. The best multiple linear regression equation was obtained from genetic algorithms 
partial least squares, which predict 90% of variances. Based on the resulted model, an in silico-
screening study was also conducted and new potent lead compounds based on new structural 
patterns were designed. Molecular docking as well as protein ligand interaction fingerprints 
(PLIF) studies of these compounds were also investigated and encouraging results were 
acquired. There was a good correlation between QSAR and docking results.
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Introduction

There has been a great detonation in the 
number of potential molecular targets that can 
be investigated for cancer treatment. Some 
metabolic pathways that play a great role in 

tumor growth are being explored as novel 
targets for anticancer drug development (1, 2). 
Mitochondria are essential for the continuation 
of life in higher eukaryotic cells, including 
cancer cells. Several common characteristics 
of recognized tumor cells directly or indirectly 
depend on mitochondrial deregulation (3). 
Meanwhile, they control programmed cell 
death (apoptosis). Extensive investigation has 
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been focused on the progression of strategies 
designed in order to selectively induce apoptosis 
in cancer cells (1, 4). Pyruvate dehydrogenase 
complex (PDC) is one of the major regulators 
of mitochondrial function. PDC is a complex of 
three enzymes that convert pyruvate into acetyl-
CoA by pyruvate decarboxylation. PDC via 
production of reactive oxygen species (ROS) 
and followed by oxidative damage, can induce 
apoptosis. The activity of PDC is regulated 
by reversible phosphorylation of three serine 
residues on the E1α subunit. PDH kinases 
(PDK) phosphorylate these sites. There are four 
known isoforms of PDKs that are distributed in a 
different manner in the tissues. Their expressions 
are regulated by factors like hypoxia, starvation 
and employment of glucose and fatty acids in 
various tissues. It should be noted that the role of 
PDK (1–4) is inactivation of PDC (1, 5).

It was discovered that dichloroacetate (DCA) 
acts as a pyruvate dehydrogenase activator 
through stimulating PDC activity. DCA is a 
lactate-lowering drug, which has been in use 
for many years to treat various diseases such as 
lactic acidosis, inborn errors in mitochondrial 
function (6, 7). In 2007 it was discovered that 
the drug DCA induced the death of human lung, 
breast and brain cancer cells that were embedded 
into rats, while being non-toxic to healthy cells 
(8). DCA prevent cell growth of a large range of 
tumor cells like lung, breast, glioblastoma (8), 
endometrial (9), prostate (10), pediatric (11), 
pancreatic (12), cervical (13)  and colorectal 
(14) cancer cells by promoting mitochondria-
regulated apoptosis and decreasing proliferation. 
Nevertheless, it exerted no obvious toxicities on 
the normal cells.

Molecular modelling studies such as 
quantitative structure activity relationship 
(QSAR) and molecular docking have a great 
importance in the field of medicinal chemistry. 
There are different variable selection methods 
available for QSAR studies such as multiple 
linear regression (MLR), principal component or 
factor analysis (PCA ⁄ FA), genetic algorithm, and 
so on (15). Recently structure-based design of 
some PDK2 inhibitors from molecular docking 
studies has been reported and some compounds 
were introduced as the potent inhibitors of PDK2 
(16, 17).

Here, in this paper, QSAR studies of a 
series of N-arylphenyl-2, 2-dichloroacetamide 
analogues with cytotoxic activity on human 
non-small cell lung cancer cell line (A 549). 
which recently designed and synthesized by 
Li et al. (18) have been explored. Among 
different QSAR models, the best multiple linear 
regression equation was obtained from GA-PLS 
models, which was a linear seven-parameter 
model. Thereafter, a virtual screening study was 
employed to determine novel biologically active 
patterns by insertion, deletion and substitution of 
different substitutes on the primary molecules. 
The results of this study led to the identification 
of novel structures, which are potent anticancer 
agents according to the QSAR model. It also 
should be mentioned that molecular docking as 
well as PLIF studies of these compound were 
also carried out and the promising results were 
obtained.

Experimental

Data set
The biological data used in this paper are 

cytotoxic activity of a series of N-arylphenyl-2, 
2-dichloroacetamide analogues on human non-
small cell lung cancer cell line (A 549). which 
were designed, synthesized and evaluated for 
their anticancer activity by Li et al. (18). The 
structural features and biological activity of these 
compounds are listed in Table 1 The biological 
data were converted to logarithmic scale (pIC50) 
and then used for subsequent QSAR analysis as 
dependent variables.

Molecular descriptors
The two dimensional structures of the ligands 

were drawn using ACD chemsketch software. 
Then the ligands were subjected to minimization 
procedures by means of an in house TCL 
script using Hyperchem (Version 8, Hypercube 
Inc., Gainesville, FL, USA). Each ligand was 
optimized with different minimization methods 
such as commonly used molecular mechanics 
method (MM+) and then quantum based semi-
emprical method (AM1) using Hyperchem 
package. The Z-matrices of the structures were 
constructed by the software and then transferred 
to the Gaussian 98 program (19). HyperChem, 
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Table 1. Chemical structure of the N-arylphenyl-2, 2-dichloroacetamideanalogues used in this study and their docking binding energy, 
experimental and cross-validated predicted activity (by GA-PLS) for cytotoxic activity.

Name R Exp. pIC50 Pred. pIC50
a Binding Energy (kcal/

mol) Leverage

1a                    Ph 5.05061 4.8485 -6.36 0.01161

1b                     Furan-3-yl 5.071604 4.9098 -6.43 0.00281

1c                     Thiophen-2-yl 4.322484 4.4432 -5.89 0.01231

2a                    Me 5.006123 4.8475 -6.12 0.01121

2b                    F 4.879097 4.8434 -6.01 0.01127

2c                    Cl 4.646661 4.9101 -5.93 0.00278

2d                    OMe 4.881735 4.8335 -5.85 0.01073

2e                     CF3 5.124939 4.9422 -6.59 0.01051

3a                 Me 5.060481 4.8621 -6.39 0.01123

3b                    F 5.020907 4.8436 -6.51 0.01153

3c                    Cl 4.668978 4.9230 -6.01 0.00170

3d                   OMe 5.365523 4.9751 -7.05 0.0064

3e                 CF3 4.732828 4.9418 -6.07 0.00200

3f                    NHCOCHCl2 4.320118 4.3482 -5.86 0.01161

4a                   Me 5.080922 4.9111 -6.29 0.01012

4b                    F 5.105684 4.9632 -6.57 0.01159

4c                   Cl 4.440812 4.5109 -5.98 0.00186

4d                   OMe 5.069051 4.9034 -6.45 0.01208

4e                    CF3 4.627456 4.7315 -5.92 0.01117

5a                  2-OMe 4.59346 4.4290 -5.95 0.00283

5b                  3-OMe 5.026872 5.1020 -6.32 0.01401

5c                   4-OMe 4.682354 4.6284 -5.99 0.02014

5d                  2-OEt 5.137869 5.0302 -6.73 0.00294

5e                    3-OEt 5.054039 5.0937 -6.39 0.01232

5f                   4-OEt 5.094204 5.1284 -6.3 0.02014

5g                  2-SMe 5.186419 4.9985 -6.71 0.01132

5h                  3-SMe 4.798603 4.8185 -6.02 0.01195

5i                    4-SMe 4.651695 4.7485 -5.93 0.01201

5j                    4-OiPr 5.417937 5.3289 -6.77 0.02025

5k                 3,4-diO-CH2 5.761954 5.5788 -7.89 0.29556

5l 4-(Tetrahydro-2H-pyran-2-yl)oxy 5.560667 5.6437 -7.27 0.36181

5m 4-iPr 4.759201 4.8005 -6.05 0.01161

5n 3-F-4-OMe 5.709965 5.7285 -7.74 0.02016

5o 3-F-5-OMe 5.04624 5.0865 -6.4 0.01092
aCross-validated prediction by
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Gaussian 98 and Dragon softwares (20) were 
used for calculation of molecular descriptors. 
Highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO) 
energies and molecular dipole moment were 
calculated by Gaussian98. Quantum chemical 
indices of hardness (η = 0.5 (HOMO+LUMO)); 
softness (S = 1 ⁄ η); electronegativity (χ = 
-0.5 (HOMO-LUMO)); and electrophilicity 
(ω = χ2⁄2η) were calculated according to the 
equations proposed by Thanikaivelan et al. 
(21). Some chemical parameters including 
molar volume (V). molecular surface area (SA), 
hydrophobicity (logP), hydration energy (HE) 
and molecular polarizability were calculated 
using Hyperchem software. Dragon calculated 
different topological, geometrical, charge, 
empirical and constitutional descriptors for 
each molecule. 2D autocorrelations, aromaticity 
indices, atom-centered fragments and functional 
groups were also calculated by dragon.

In the case of docking procedure, each ligand 
was optimized with different minimization 
MM+ then AM1 using HyperChem 8. The 
output structures were thereafter converted 
to PDBQT using MGL tools 1.5.6 (22). The 
three dimensional crystal structure of pyruvate 
dehydrogenase kinase 2 (PDB ID: 2BU8) was 
retrieved from protein data bank (23). Co-
crystal ligand molecules were excluded from the 
structures and the PDBs were checked in terms 
of missing atom types by modeller 9.12 (24). 
An in house application (MODELFACE) was 
used for generation of python script and running 
modeller software. Subsequently, the enzymes 
were converted to PDBQT and gasteiger partial 
charges were added using MGLTOOLS 1.5.6.

Model development
Four different regression methods were 

conducted for constructing QSAR equations: 1) 
simple multiple linear regression with stepwise 
variable selection (MLR) 2) factor analysis as 
the data preprocessing step for variable selection 
(FA-MLR), 3) principal component regression 
analysis (PCRA), and 4) genetic algorithm–
partial least squares (GA-PLS). These methods 
are well substantiated in the QSAR studies, and 
therefore, these methods are described briefly 
(25).

Stepwise regression is a semi-automated 
process of building a model by successively 
adding or removing variables based solely on 
the t-statistics of their estimated coefficients. 
In stepwise regression (26), a multiple-term 
linear equation was constructed step by step. 
The basic procedures include (i) recognizing a 
primary model, (ii) iteratively ‹steppingʹ, that 
is, repetitively changing the model at the prior 
step by adding or removing a predictor variable 
in accordance with the ‹stepping criteriaʹ (in 
our case, probability of F = 0.05 for inclusion; 
probability of F = 0.1 for leaving out for the 
forward selection method), and (iii) terminating 
the search when stepping is no longer possible 
given the stepping criteria, or when a known 
maximum number of steps have been obtained. 
Particularly, at each step, for determining which 
one will contribute most to the equation, all 
variables are reviewed for evaluation (26). The 
variable will then be applied in the model, and the 
process starts again. A limitation of the stepwise 
regression search approach is that it assumes 
there is a single ‹bestʹ subset of X variables and 
search for identifying it. There is often no unique 
‹bestʹ subset, and whole possible regression 
models with a similar number of X variables 
as in the stepwise regression solution should 
be fitted subsequently to explore whether some 
other subsets of X variables might be better (27). 
Here in this study, MLR with stepwise selection 
and elimination of variables was applied for 
developing QSAR models using SPSS software 
(version 21; SPSS Inc., IBM, Chicago, IL, USA). 
Using MATLAB 2015 software (version 8.5; 
Math work Inc., Natick, MA, USA), the resulted 
models were validated by leave-one-out cross-
validation procedure to check their prediction 
ability and robustness.

In FA-MLR method, although classical 
approach of multiple regression technique was 
applied as the final statistical tool for developing 
QSAR relation, factor analysis (FA) (15, 26) was 
used as the data-preprocessing step to identify 
the important predictor variables contributing to 
the response variable and to avoid collinearities 
among them. In a typical factor analysis 
procedure, standardizing of the data matrix 
followed by constructing a correlation matrix 
is done. An eigenvalue problem is then solved 



QSAR and Docking on N-arylphenyl-2, 2-Dichloroacetamide

985

and the factor pattern can be acquired from 
the corresponding eigenvectors (characteristic 
vector). The principal objectives of factor 
analysis (FA) are to display multidimensional 
data in a space of lower dimensionality with 
minimum loss of information (explaining >95% 
of the variance of the data matrix) and to extract 
the basic features behind the data with ultimate 
goal of interpretation or prediction. Factor 
analysis was done on the data set containing 
biological activity and all descriptor variables, 
which were to be considered. The factors were 
extracted by principal component method and 
then rotated by (VARIMAX) rotation (28).

Along with FA-MLR, PCRA was also tried for 
the data set. In this method (15, 26), factor scores 
that obtained from FA are used as the predictor 
variables. PCRA has a benefit that collinearities 
among X variables are not a disturbing factor 
and that the number of variables included in the 
analysis may exceed the number of observations 
(29). While the main purpose of FA-MLR is to 
identify relevant descriptors, in PCRA model all 
descriptors are supposed to be important.

Genetic algorithms (GA) generate solutions 
to optimization problems using techniques 
inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover.

Partial least square (PLS) is a generalization 
of regression, that can handle data with forcefully 
correlated and numerous X variables (30). It 
gives reduced solution, which is statistically 
more robust and reliable than MLR. The linear 
PLS model finds ‹new variablesʹ (latent variables 
or X scores) that are linear combination of the 
original variables. To avoid overfitting, a strict 
test for the significance of each consecutive 
PLS component is necessary and then stopping 
when the components are non-significant. Cross-
validation is a practical and credible method of 
testing this significance (31). Application of PLS 
thus allows the construction of larger QSAR 
equations while still avoiding over fitting and 
eliminating most variables. Usually PLS is 
applied in combination with cross-validation to 
obtain the optimum number of components (26, 
32, 33). In the GA-PLS procedure, in addition to 
the best set of descriptor, the optimum number 
of concealed variable must be determined. 
Here, for each subset of descriptors (i.e., for 

each chromosome of the GA), a PLS model was 
developed separately and therefore the number 
of latent variables was optimized. The PLS 
regression method was applied the NIPALS-
based algorithm existed in the chemometrics 
toolbox of MATLAB software. Leave-one-out 
cross-validation procedure was used to obtain 
the optimum number of factors based on the 
Haaland and Thomas F-ration criterion (26, 
34). The MATLAB PLS toolbox developed by 
eigenvector company was used for PLS and 
GA modeling. All calculations were run on a 
core i7 personal computer (CPU at 6 MB) with 
Windows 7 operating system.

Model validation
Statistical parameters including correlation 

coefficient (R2), standard error of regression 
(SE), and variance ratio (F) at specified degrees of 
freedom were used for validating the goodness-
of-fit of the resulted QSAR models. The 
generated QSAR equations were also validated 
by leave-one-out cross-validation correlation 
coefficient (Q2), root mean square error of cross-
validation (RMScv) and cross validation cross 
validation (Cvcv). According to Tropsha et al. 
(35) the predictive ability of a QSAR model 
should be tested on an external set of data that has 
not been taken into account during the process 
of developing the model. Therefore, as it was 
shown in table 1, an external test set composed 
of randomly selected 7 molecules (for example 
1a, 2a, 2e, 3c, 4d, 5 h. and 5m) were applied to 
determine the overall prediction ability of the 
resulted models. It should be emphasized that we 
carried out each QSAR model with more than 3 
test set and the best equation was considered as 
the best model.

Applicability domain
One of the great uses of a QSAR model is 

based on its precise prediction ability for new 
compounds. A model validation is just within 
its training domain, and new compounds 
must be appraised as belonging to the domain 
before the model is applied. The applicability 
domain is appraised by the leverage values for 
each compound. A Williams’s plot (the plot of 
standardized residuals versus leverage values 
(h)) can then be used for an immediate and 
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simple graphical detection of both the response 
outliers (Y outliers) and structurally influential 
chemicals (X outliers) in our model. In this graph, 
the applicability domain is established inside 
a squared area within ±x (standard deviations) 
and a leverage threshold h*. The threshold h* is 
generally fixed at 3(k + 1) ⁄ n (k is the number of 
model parameters and n is the number of training 
set compounds), whereas x = 2 or 3. Prediction 
must be considered unreliable for compounds 
with a high leverage value (h > h*). From the 
other point of view, when the leverage value of a 
compound is lower than the threshold value, the 
probability of agreement between observed and 
predicted values is as high as that for the training 
set compounds (36, 37).

Docking procedure
The docking simulations were carried out by 

means of an in house batch script (DOCKFACE) 
for automatic running of AutoDock 4.2 (38) 
in a parallel mode using all system resources. 
In all experiments Genetic algoritm search 
method was used to find the best pose of each 
ligand in the active site of the target enzyme. 
Random orientations of the conformations were 
generated after translating the center of the 
ligand to a specified position within the receptor 
active site, and making a series of rotamers. 
This process was recursively repeated until the 
desired number of low-energy orientations was 
obtained. No attempt was made to minimize 
the ligand-receptor complex (rigid docking). 
For Lamarckian GA method; 27,000 maximum 
generations; 2500000 maximum No. of 
evaluations, 150population size, mutation rate 
of 0.02; and a crossover rate of 0.8 were used. 
A grid box of 50×50×50 points in x, y, and z 
direction with a grid spacing of 0.375 Å was 
built. No. of points in x, y and z was 50, 40 and 
81 respectively. 

Protein ligand interaction fingerprint (PLIF)
In order to perform PLIF studies on docking 

results, the poses of docking were extracted from 
dlg files using an in house vb.net application 
(pre Aupos SOM) (39). The resulted pdbqts 
and the receptor were converted to mol2 using 
Open Babel 2.3.1. The resulted mol2 files were 
submitted to Aupos SOM 2.1 web server (40-

42). Two training phases with 1000 iterations 
were set in the self-organizing map settings of 
Aupos SOM conf files. Other parameters of the 
software were remained as default. The output 
files were subjected to Dendroscope 3.2.10 for 
visualization of the results (43, 44). The PLIF 
parameters were set as default of the AuPos 
SOM v2.1 Web Application.

Results and Discussion

In this study, we executed a detailed 
QSAR study using a combination of chemical, 
electronic and substituent constant, to explore 
structural parameters affecting cytotoxic activity 
of novel N-arylphenyl-2,2-  dichloroacetamide 
analogues. Among the different chemometrics 
tools available for modeling the relationship 
between the biological activity and molecular 
descriptors, four methods (i.e. stepwise MLR, 
FA-MLR, PCRA, and GA-PLS) were applied 
and compared here. A comparison between 
stepwise FA-MLR and MLR will indicate which 
variable selection method (stepwise or FA) is well 
suited for MLR, whereas a comparison between 
FA-MLR and PCRA reveals for modeling of 
the studied biological activities, using original 
descriptors selected based on factor loading or 
using the factor scores calculated based on all 
calculated descriptors results in more suitable 
model. Eventually, GA-PLS, which is assumed 
to produce the most useful model, was employed, 
and its results were compared with the other 
employed models. 

MLR modeling
Firstly, separate stepwise selection-based 

MLR analyses were performed using different 
types of descriptors, and then, a MLR equation 
was obtained utilizing the pool of all calculated 
descriptors. As it was shown in Table 2, statistical 
parameters such as correlation coefficient (R2). 
correlation coefficient (R2

p) of test set, standard 
error of regression (SE), and variance ratio (F) 
at specified degrees of freedom, leave-one-out 
cross-validation correlation coefficient (Q2), 
cross validation cross validation (Cvcv) and root 
mean square error of cross-validation (RMScv) 
were used for validating the goodness-of-fit 
of the resulted QSAR equations. Equation 1 
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was selected as the best equation in the MLR 
model. The selected variables demonstrate that 
quantum (DipY), geometrical (G (O..O)), 2D 
autocorrelations (MATS2e, MATS7e, GATS7v), 
and functional (nPhX, nROR) descriptors affect 
the cytotoxic activity of the studied compounds.

A small difference between the conventional 
and cross-validate correlation coefficients of the 
different MLR equations reveals that none of the 
models are over fitted, which can be partially 
attributed to absence of collinearity between 

the variables in one hand and using of no extra 
variables in the other hand. The correlation 
coefficient (r2) matrix for the descriptors used 
in MLR equation 1, shows that no significant 
correlation exists between pairs of descriptors 
(Table 3).

FA-MLR and PCRA
It was discovered that five factors could 

explain the data matrix to the extent of 96.3%, 
from the factor analysis on the data matrix 

Table 2. The results of different QSAR models with different type of dependant variables

Model Eq.no. MLR Equation na R2
c Q2 Rmscv Cvcv F SE R2

 p

MLR 1 pIC50 = 0.010G(O..O) (±0.003) 
- 0.376nPhX (±0.058) + 

0.265DipY(±0.072) -1.574GATS7v 
(±0.258) + 1.076MATS2e 

(±0.362)+ 0.205nROR (±0.063) 
+ 0.997MATS7e(±0..401)+7.562 

(±0.488)

27 0.917 0.76 0.159 2.78 25.0 0.12 0.70

FA-
MLR

2 pIC50 = 2.152MATS7v(±0.537)  + 
0.230DipY(±0.083) + 0.244nROR 

(±0.048) + 0.020Ss (±0.003) +3.538 
(±0.204)

27 0.895 0.81 0.197 3.29 19.8 0.22 0.69

PCRA 3 pIC50 = 0.240 FAC1 (±0.048) + 
0.139 FAC2 (±0.048) + 0.114 FAC4 

(±0.048) + 0.117 FAC7 (±0.048) 
+ 0.103 FAC9 (±0.048)  + 4.969 

(±0.047)

27 0.906 0.87 0.168 3.24 19.8 0.27 0.71

GA-
PLS

4 pIC50 = -20.126X3A 
(±7.555)+3.685MATS7v (±0.391)+ 

2.655MATS5p (±0.471) + 
0.319DipY(±0.053) + 0.230H-048 
(±0.036) -1.084MATS6e (±0.304) 

-0.637 ASP (±0.234)+8.553 (±1.397)

27 0.943 0.82 0.148 2.99 31.7 0.09 0.87

aNumber of molecules of training set used to derive the QSAR modelT

Table 3. Correlation coefficient (R2) matrix for descriptors represented in multiple linear regression eqn 1.

MATS2e MATS7e GATS7v DipY nROR nPhX G(O..O)

MATS2e 1 -0.160 0.217 0.315 -0.192 -0.207 -0.294

MATS7e 1 0.130 0.013 0.003 -0.048 0.205

GATS7v 1 0.088 0.209 0.090 0.075

DipY 1 -0.233 -0.088 -0.218

nROR 1 -0.134 0.227

nPhX 1 -0.159

G(O..O) 1
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consisting of the pIC50 and calculated molecular 
descriptors. Table 4 shows that the biological 
activity is highly loaded with factors 2 and 
especially 1. The highest loading values for 
factor 2 are associated with X3AV, and G (N.F) 
descriptors whereas Ss, ASP, qpos, G(O.O), 

MATS7v, MATS7e, GATS5e and GATS8earethe 
highly loaded descriptors of factor 1. Table 4 
revealed that, factors 1 and 2 are moderately 
loaded with cytotoxicity activity. Interestingly, 
the former possessed the highest loadings from 
geometrical (G(O..O), ASP), constitutional 

Table 4. Factor loadings of some significant descriptors after VARIMAX rotation.

Descriptor factor1 factor2 Factor4 Factor7 Factor9 Communalities PIC50

pIC50 0.596 0.476 0.389 0.218 -0.169 0.939

Mp -0.578 -0.397 -0.210 0.082 -0.049 0.993 -0.021

G(O..O) 0.679 0.445 -0.463 -0.022 -0.023 0.988 0.345

qpos 0.821 0.515 -0.175 0.083 -0.069 0.984 0.234

H-048 0.310 0.371 -0.552 -0.288 -0.128 0.956 0.561

H-052 0.544 -0.019 0.165 0.306 -0.016 0.932 0.508

nROR 0.259 0.364 -0.608 -0.270 -0.067 0.956 0.676

nPhX -0.159 0.282 -0.063 0.611 0.342 0.970 0.441

X3A -0.706 -0.386 -0.059 0.198 0.094 0.979 0.398

X3AV -0.078 -0.757 0.026 -0.125 0.162 0.965 -0.243

lop -0.482 -0.180 0.415 0.409 -0.243 0.983 -0.129

ATS8p 0.054 -0.527 -0.180 0.387 0.157 0.981 0.256

GATS6m -0.581 -0.431 -0.133 0.052 0.001 0.940 0.436

GATS8m -0.590 -0.537 -0.028 0.166 0.122 0.894 0.450

GATS5e -0.605 0.355 0.037 -0.132 0.079 0.871 0.164

GATS8e -0.817 -0.100 0.113 0.055 0.027 0.830 0.237

GATS4p 0.120 0.059 0.417 -0.698 -0.151 0.938 0.461

GATS7p -0.371 0.156 -0.127 -0.118 -0.013 0.903 0.219

GATS4v 0.035 0.086 -0.111 -0.050 0.603 0.965 0.065

MATS5p -0.145 0.209 -0.616 -0.124 0.086 0.881 -0.432

MATS7v -0.815 -0.218 -0.018 0.313 0.115 0.944 0.712

MATS4m -0.288 0.114 -0.008 0.053 -0.008 0.993 0.349

MATS6m -0.352 -0.088 0.264 0.102 -0.454 0.816 0.415

MATS6e 0.576 -0.346 0.086 -0.040 0.116 0.954 -0.291

MATS7e 0.637 0.047 0.038 -0.098 -0.198 0.858 -0.123

ASP -0.907 -0.012 -0.017 0.019 -0.072 0.971 -0.293

Ss 0.708 0.586 0.232 0.122 0.032 0.997 0.608

G(N..F) -0.310 0.721 0.488 -0.046 0.258 0.992 0.341

MAXDP 0.551 0.435 0.145 0.134 .264 0.954 0.326

DipY -0.027 -0.210 0.357 -0.144 -0.693 0.774 0.632
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(Ss), 2D autocorrelations (MATS7v, MATS7e, 
GATS5e, GATS8e) and charge (qpos) descriptors 
whereas the latter is containing the information 
from topological (X3Av) and geometrical (G 
(N.F)) descriptors. As it was shown in equation 
6, the highly loaded descriptors of factors 1, 2, 
4, 7and 9 (instead of applying the pool of all 
calculated descriptors) can be considered as the 
source of molecular descriptors for QSAR model 
building. So, the probability of obtaining chance 
models is decreased (45).

The subsequent FA-MLR equation using 
highly loaded descriptors is shown in Table 2, 
Eq.2.

PCRA 
When factor scores were used as the predictor 

parameters in a multiple regression equation 
(instead of their highly loaded descriptors), 
a predictive QSAR model with factor scores 
number 1, 2, 4, 7and 9 as input variable was 
obtained (Eq. 3). This equation shows statistical 
quantities similar to those obtained by FA-MLR 
method (Table 2). However, it shows slightly 
higher calibration and lower cross-validation 
statistics with respect to Eq 2. This shows a sign 
of overfitting since the factors considered in Eq. 
3 have information from irrelevant descriptors 
too. Considering this information in modeling 
may apparently increase the model variances 
(i.e., R2) but they are not useful for prediction. 
On the other hand, the advantage of the QSAR 
model obtained by PCRA is that the factors 
appeared in the MLR equation 3 are orthogonal. 
The regression coefficients calculated for such 
variables are more stable and thus are closer 
to the real values. In addition, from the factor 
scores used, significance of the original variables 
for modeling the activity can be obtained. Factor 
score 1 indicates the importance of geometrical 
(G(O..O), ASP). constitutional (Ss), 2D 
autocorrelations (MATS7v, MATS7e, GATS5e, 
GATS8e) and charge (qpos) descriptors. 
The factor score 2 indicates importance of 
topological (X3Av) and geometrical (G (N.F)) 
descriptors, and factor score 4 signifies the 
importance of functional (nROR) and 2D 
autocorrelations (MATS5p) descriptors. The 
factor score 7reveals the importance of the 2D 
autocorrelations parameters (GATS4p) and 

functional (nPhX) descriptors. The factor score 
9 signifies the importance of quantum (DipY) 
and 2D autocorrelations (GATS4v) descriptors. 

GA-PLS
In PLS analysis, having decomposed the 

descriptors data matrix to orthogonal matrices, 
then the scores are constrained to have inner 
relationship with the dependent variables. Hence 
similar to PCRA, the multicollinearity problem 
in the descriptors is omitted by PLS analysis. 
Genetic algorithm was applied to find the more 
useful set of descriptors in PLS modeling. So, 
many different GA-PLS runs were done using 
different initial set of populations. The results of 
this model are summarized in Table 2.

As it is shown in Table 2 Eq 4, a combination of 
quantum (DipY)2 .D autocorrelations (MATS7v, 
MATS5p, MATS6e), atom- centered fragments 
(H-048), geometrical (ASP) and topological 
(X3A) descriptors have been selected by GA-
PLS to account for the cytotoxic activity of 
N-arylphenyl-2, 2-dichloroacetamide analogues. 
The resulted GA-PLS model possessed very 
high statistical quality parameters (i.e., R2 = 
0.94and Q2 = 0.82). The predictive ability of the 
model was measured by application to 7 external 
test set molecules. The squared correlation 
coefficient for prediction was 0.87, and standard 
error of prediction was 0.099.

Table 2 shows that none of the proposed 
QSAR models were obtained by chance and the 
GA-PLS model because of its greatest statistical 
parameters is the best predictive model.

The brief description of the descriptors used 
by QSAR models are summarized in Table 5.

In silico screening
In silico research in medicine is thought to 

have the potential to speed the rate of discovery, 
predicting and identifying new biologically 
active compounds while reducing the need for 
expensive lab work and clinical trials. One way 
to attaint his is by generating and screening drug 
candidates more effectively. On the other hand, 
the in silico procedure minimizes the time and 
cost associated with identifying new leads (46, 
47). 

A virtual screening was applied by deletion, 
insertion and substitution of different substitutes 
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Table 5. Definitions of molecular descriptors present in the models.

No. Descriptors Brief description

1 ATS8p Broto-Moreau autocorrelation of a topological structure - lag 8 / weighted by atomic polarizabilities

2 MATS7v Moran autocorrelation - lag 7 / weighted by atomic van der Waals volumes

3 MATS4m Moran autocorrelation - lag 4 / weighted by atomic masses

4 MATS6m Moran autocorrelation - lag 6 / weighted by atomic masses

5 MATS5p Moran autocorrelation - lag 5 / weighted by atomic polarizabilities

6 MATS6e Moran autocorrelation - lag 6 / weighted by atomic Sanderson electronegativities

7 MATS7e Moran autocorrelation - lag 7 / weighted by atomic Sanderson electronegativities

8 GATS4v Geary autocorrelation - lag 4 / weighted by atomic van der Waals volumes

9 GATS7v Geary autocorrelation - lag 7 / weighted by atomic van der Waals volumes

10 GATS6m Geary autocorrelation - lag 6 / weighted by atomic masses

11 GATS4p Geary autocorrelation - lag 4 / weighted by atomic polarizabilities

12 GATS7p Geary autocorrelation - lag 7 / weighted by atomic polarizabilities

13 GATS8e Moran autocorrelation - lag 8 / weighted by atomic Sanderson electronegativities

14 X3A average connectivity index chi-3

15 X3AV average valence connectivity index chi-3

16 H-048 H attached to C2(sp3) / C1(sp2) / C0(sp)

17 H-052 H attached to C0(sp3) with 1X attached to next C

18 G(O..O) sum of geometrical distances between O..O

19 Lop Lopping centric index

20 nPhX number of X-C on aromatic ring

21 nROR number of ethers (aliphatic)

22 ASP Asphericity

23 DMY(DipY) Molecular dipole moment at Y-direction

on the parent molecules and the effects of the 
structural modifications on the biological 
activity were investigated. Then, the domain 
application of QSAR model was determined to 
apply the model for screening new compounds. 
The applicability domain (AD) of QSAR model 
was used to verify the prediction reliability, to 
identify the troublesome compounds and to 
predict the compounds with accep table activity 
that falls within this domain.

The important descriptors selected by GA-
PLS model (because of its greatest statistical 
parameters compared to the others it was chosen 
as the best model) could be used for designing 
new active compounds. Analyzing the model 

applicability domain (AD) in the Williams 
plot (Figure 1) of the GA-PLS model based on 
the whole data set, appeared that none of the 
compounds were identified as an obvious outlier 
for the cytotoxic activity if the limit of normal 
values for the Y outliers (response outliers) was 
set as 2.5 times of the standard deviation units. 
As it is cleared, none of the compounds have 
leverage (h) values greater than the threshold 
leverages (h*). The warning leverage (h*), 
was found to be 0.89 for the developed QSAR 
model. The compounds that had a standardized 
residual more than three times of the standard 
deviation units were considered to be outliers. 
For both the training set and prediction set, 
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the presented model matches the high quality 
parameters with good fitting power and the 
capability of assessing external data. Moreover, 
almost all of the compounds were within the 
applicability domain of the proposed model and 
were evaluated accurately. While chemicals with 
a leverage value higher than h* were considered 
to be influential or high leverage chemicals (26, 
34).

Next, the in silico screening was used to 
the design of new compounds with potential 
cytotoxic activity according to the developed 
QSAR model and was validated by the developed 
GA-PLS model. So, the compounds in Tables 
1 with IC50 <9.0μm were selected as template 
due to their good cytotoxic activity. Then, the 
in silico screen was applied by substituting 
different bioisosteric groups (O, S) in the place 
of-NH group; the results of this investigation are 
summarized in Table 6.

The model tolerated various bioisosteric 
changes of NH groups by sulfur and oxygen 
groups. Since all of the studied derivatives 
were within the applicability domain. Among 
different designated molecules, the compound 
4c, 4g, 4i, 4j, 4k, 4m showed the best activity 

(pIC50 >5.25). Thus, in order to clarify the 
relation between the activities of the compounds 
with different functional groups, this compound 
was chosen for more structural modification. 
As it was shown in table 9, some esteric and 
thioesteric derivatives of this class of anticancer 
compounds have a good potentially for becoming 
anticancer agent. Finally, this result confirms the 
reliability of the models and it shows that with 
the aim of the QSAR model and use of in silico 
screening, it is possible to identify new synthetic 
compounds for drug discovery.

The proposed QSAR models have all 
conditions to be considered as predictive models. 
Firstly, all have correlation coefficient of cross-
validation (Q2) larger than 0.5 and of prediction 
(r2) higher than 0.6. Thus, according to great 
statistics, GA-PLS can be considered as the 
most predictive model. According to the cross-
validation results all models have Q2> 0.7 and 
can be considered predictive models. To have a 
consideration on the cross-validated prediction 
results, the predicted activity data are plotted 
against the experimental activities in Figure 
2. As it was mentioned in the article, the least 
scattering of data was obtained from GA-PLS.

Figure 1. Williams plot for the training set and external prediction set for cytotoxic activity of N-arylphenyl-2,2-dichloroacetamide 
analogues.
Next, the in silico screening was used to the design of new compounds with potential cytotoxic activity according to the developed 
QSAR model and was validated by the developed GA-PLS model. So, the compounds in Tables 1 with IC50 <9.0μm were selected as 
template due to their good cytotoxic activity. Then, the in silico screen was applied by substituting different bioisosteric groups (O, S) in 
the place of-NH group; the results of this investigation are summarized in Table 6.

to verify the prediction reliability, to identify the troublesome compounds and to predict the 

compounds with accep table activity that falls within this domain.

The important descriptors selected by GA-PLS model (because of its greatest statistical 

parameters compared to the others it was chosen as the best model) could be used for designing 

new active compounds. Analyzing the model applicability domain (AD) in the Williams plot 

(Figure 1) of the GA-PLS model based on the whole data set, appeared that none of the 

compounds were identified as an obvious outlier for the cytotoxic activity if the limit of normal 

values for the Y outliers (response outliers) was set as 2.5 times of the standard deviation units. 

As it is cleared, none of the compounds have leverage (h) values greater than the threshold 

leverages (h*). The warning leverage (h*), was found to be 0.89 for the developed QSAR model. 

The compounds that had a standardized residual more than three times of the standard deviation 

units were considered to be outliers. For both the training set and prediction set, the presented 

model matches the high quality parameters with good fitting power and the capability of 

assessing external data. Moreover, almost all of the compounds were within the applicability 

domain of the proposed model and were evaluated accurately. While chemicals with a leverage 

value higher than h* were considered to be influential or high leverage chemicals (26, 34).

Figure 1. Williams plot for the training set and external prediction set for cytotoxic activity of N-arylphenyl-2,2-
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Table 6. Structural modification of N-arylphenyl-2, 2-dichloroacetamide analogues and their predicted activities and docking binding 
energy.

Name R X pIC50 pred leverage Docking Binding Energy 
(kcal/mol)

11a H O 4.82834 0.010839 -5.93

11b Furan-3-yl O 4.97586 0.003205 -5.82

11c H S 4.74324 0.010721 -5.76

11d Furan-3-yl S 4.90973 0.002659 -6.05

12a Me O 4.74095 0.010605 -5.91

12b F O 4.97864 0.010118 -6.06

12c CF3 O 5.14431 0.010435 -6.12

12d Me S 4.66754 0.012149 -5.89

12e F S 4.86423 0.022139 -5.91

12f CF3 S 5.04231 0.002139 -6.01

13a F O 4.81908 0.010553 -6.15

13b Cl O 4.54678 0.010299 -5.79

13c F S 4.74390 0.011123 -5.58

13d Cl S 4.60043 0.010075 -5.83

14a 2-OEt O 5.10686 0.013994 -6.01

14b 2-OEt S 4.94502 0.004364 -6.26

14c 4-OEt O 5.28557 0.069692 -6.53

14d 4-OEt S 5.13035 0.019082 -6.24

14e 2-SMe O 4.95452 0.010975 -5.76

14f 2-SMe S 4.83654 0.010499 -5.69

14g 4-OiPr O 5.28557 0.069692 -6.37

14h 4-OiPr S 5.13026 0.019061 -6.24

14i 3,4-diO-CH2 O 5.87894 0.078891 -7.14

14j 3,4-diO-CH2 S 5.58176 0.218303 -6.97

14k 4-(Tetrahydro-2H-pyran-2-yl)oxy O 5.97755 0.027392 -6.92

14l 4-(Tetrahydro-2H-pyran-2-yl)oxy S 5.64426 0.025294 -7.02

14m 3-F-4-OMe O 5.28666 0.070138 -6.62

14n 3-F-4-OMe S 5.13081 0.019188 -6.09

dichloroacetamide analogues.
Next, the in silico screening was used to the design of new compounds with potential cytotoxic 

activity according to the developed QSAR model and was validated by the developed GA-PLS

model. So, the compounds in Tables 1 with IC50 <9.0μm were selected as template due to their 

good cytotoxic activity. Then, the in silico screen was applied by substituting different

bioisosteric groups (O, S) in the place of-NH group; the results of this investigation are

summarized in Table 6.

Table 6. Structural modification of N-arylphenyl-2, 2-dichloroacetamide analogues and their 

predicted activities and docking binding energy.

Name R X pIC50 pred leverage

Docking Binding 
Energy 

(kcal/mol)

11a H O 4.82834 0.010839 -5.93
11b Furan-3-yl O 4.97586 0.003205 -5.82
11c H S 4.74324 0.010721 -5.76
11d Furan-3-yl S 4.90973 0.002659 -6.05
12a Me O 4.74095 0.010605 -5.91
12b F O 4.97864 0.010118 -6.06
12c CF3 O 5.14431 0.010435 -6.12
12d Me S 4.66754 0.012149 -5.89
12e F S 4.86423 0.022139 -5.91
12f CF3 S 5.04231 0.002139 -6.01
13a F O 4.81908 0.010553 -6.15
13b Cl O 4.54678 0.010299 -5.79
13c F S 4.74390 0.011123 -5.58
13d Cl S 4.60043 0.010075 -5.83
14a 2-OEt O 5.10686 0.013994 -6.01
14b 2-OEt S 4.94502 0.004364 -6.26
14c 4-OEt O 5.28557 0.069692 -6.53
14d 4-OEt S 5.13035 0.019082 -6.24
14e 2-SMe O 4.95452 0.010975 -5.76
14f 2-SMe S 4.83654 0.010499 -5.69
14g 4-OiPr O 5.28557 0.069692 -6.37
14h 4-OiPr S 5.13026 0.019061 -6.24
14i 3,4-diO-CH2 O 5.87894 0.078891 -7.14
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Docking Studies
Docking is frequently used to predict the binding 

orientation of small molecule drug candidates to 
their protein targets in order to in turn predict 
the affinity and activity of the small molecule. 
Hence docking plays a great role in the rational 
design of drugs. DCA stimulates the activity 
of the enzyme PDH through inhibition of the 
enzyme PDKs. The crystal structure of PDK2 
in complex with DCA has been acquired, and it 
shows that DCA indwells the pyruvate binding 
site in the N-terminal regulatory (R) domain (1).

Here, in this study docking studies were 
carried out on the compounds in Table 1 and 6 
to find their binding site, binding modes and the 
best direction on the base of their binding energy. 
The docking simulations were carried out by 

means of an in house batch script (DOCKFACE) 
for automatic running of AutoDock 4.2 in 
a parallel mode using all system resources. 
Having completed the docking process, then 
the protein–ligand complex was analyzed to 
investigate the type of interactions. Top ranked 
binding energies (kcal/moL) in AutoDock dlg 
output file were considered as response in each 
run. Docking results were supported almost by 
high cluster populations. The conformation with 
the lowest binding energy was considered as the 
best docking result in each case.

As it was shown in figure 3 there is a good 
relationship between experimental pIC50 and 
docking binding energy. Hence, our docking 
protocol can discriminate between the ligand 
(active) and decoys (non-active). The validated 

Figure 2. Plots of cross-validated predicted values of activity by GA-PLS against the experimental values

Figure 3. Plots of experimental pIC50 values versus docking binding energy.

Figure 2. Plots of cross-validated predicted values of activity by GA-PLS against the 

experimental values

Docking Studies

Docking is frequently used to predict the binding orientation of small molecule drug candidates 

to their protein targets in order to in turn predict the affinity and activity of the small molecule. 

Hence docking plays a great role in the rational design of drugs. DCA stimulates the activity of

the enzyme PDH through inhibition of the enzyme PDKs. The crystal structure of PDK2 in 

complex with DCA has been acquired, and it shows that DCA indwells the pyruvate binding site 

in the N-terminal regulatory (R) domain (1).

Here, in this study docking studies were carried out on the compounds in Table 1 and 6 to find 

their binding site, binding modes and the best direction on the base of their binding energy. The 

docking simulations were carried out by means of an in house batch script (DOCKFACE) for 

automatic running of AutoDock 4.2 in a parallel mode using all system resources. Having 

completed the docking process, then the protein–ligand complex was analyzed to investigate the 

type of interactions. Top ranked binding energies (kcal/moL) in AutoDock dlg output file were 

considered as response in each run. Docking results were supported almost by high cluster

populations. The conformation with the lowest binding energy was considered as the best 
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docking result in each case.

As it was shown in figure 3 there is a good relationship between experimental pIC50 and docking 

binding energy. Hence, our docking protocol can discriminate between the ligand (active) and 

decoys (non-active). The validated docking procedure was also applied to our designed ligands.

Figure 4, shows that this correlation was also existed between predicted pIC50 of QSAR studies 

and docking binding energy. Compounds 14i-m based on the best docking binding energy can be

considered as good candidates for synthesis.

Figure 3. Plots of experimental pIC50 values versus docking binding energy.

20



 Fereidoonnezhad M et al. / IJPR (2017), 16 (3): 981-998

994

docking procedure was also applied to our 
designed ligands. Figure 4, shows that this 
correlation was also existed between predicted 
pIC50 of QSAR studies and docking binding 
energy. Compounds 14i-m based on the best 
docking binding energy can be considered as 
good candidates for synthesis.

The results for each ligand were compared to 
its corresponding co-crystal ligand. Hydrogen 
bindings between docked potent agents such as 
3g and the PDK receptor (2BU8) was analyzed 
using Autodock tools program (ADT, Version 
1.5.6). ligplotv.4.5.3 (48) and Ligand Scout 3.12 
(49). As it was shown in figure 5, a hydrogen 
bond acceptor interaction exists between 
oxygens of carboxyl group of co-crystal ligand 
(DCA) and Arg 154, Tyr 80 in receptor (figure 
5A). Meanwhile, a hydrogen bond acceptor 
interaction existed between oxygen of methoxy 
group of 4d with Arg158, in receptor. There is 
also exists an arene-cation interaction between 
the phenyl group that bearing amide substituent 
with Arg158 and an arene-cation interaction 
between the phenyl group that bearing methoxy 
group in the receptor with Arg154 (Figure 5B).

Protein ligand interaction fingerprint (PLIF) 
studies could be used as a more reliable analysis 
technique (40). This method makes it possible 
to study the effect of different starting states 
of the structures on generated poses as well as 
their corresponding vector of contacts towards 
receptor during docking procedure. For this 
purpose, the docking of all 34 compounds 
of QSAR study as well as our designated 

compounds were carried out, then all generated 
poses of the ligands were subjected to Aupos 
SOM 2.1 to calculate their contact vectors within 
the receptor binding cavity. In this procedure, the 
contacts between the structures and the protein 
comprise of hydrophobic, hydrogen bonding 
and coulombic interactions. The resulted 
vectors of contacts are then analyzed using 
self-organizing map as implemented in Aupos 
SOM software. The output of self-organizing 
map is a classification pattern for ligands. For 
visualization of the results, the output files were 
subjected to Dendroscope 3.2.10. To the best of 
our knowledge, ligands in the same subgroup 
may show a similar behavior. As it was shown 
in figure 6, designated ligands such as 14g, 
14h, 14k and 14l are clustered in the 5b (the 
best compound due to its greatest IC50), 5e, 5f 
and 5i-o subgroup. Meanwhile, compounds 
2e, 3a-d, 11d, 12c-f, 13a-c are clustered in the 
same subgroup. So these compounds may have 
a similar behavior as theirs and can be good 
candidates for synthesis.

Conclusion

In this study, four different QSAR modeling 
methods, MLR, FA-MLR, PCR and GA-PLS 
as well as FWA were used in the construction 
of a QSAR model for cytotoxic activity of 
N-arylphenyl-2, 2-dichloroacetamide analogues 
and the resulting models were compared. As it 
was shown in the article, having performed GA 
before the calibration, a regression model with 

Figure 4. Plots of predicted pIC50 values versus docking binding energy.
Figure 4. Plots of predicted pIC50 values versus docking binding energy.

The results for each ligand were compared to its corresponding co-crystal ligand. Hydrogen 

bindings between docked potent agents such as 3g and the PDK receptor (2BU8) was analyzed 

using Autodock tools program (ADT, Version 1.5.6). ligplotv.4.5.3 (48) and Ligand Scout 3.12 

(49). As it was shown in figure 5, a hydrogen bond acceptor interaction exists between oxygens 

of carboxyl group of co-crystal ligand (DCA) and Arg 154, Tyr 80 in receptor (figure 5A). 

Meanwhile, a hydrogen bond acceptor interaction existed between oxygen of methoxy group of 

4d with Arg158, in receptor. There is also exists an arene-cation interaction between the phenyl 

group that bearing amide substituent with Arg158 and an arene-cation interaction between the 

phenyl group that bearing methoxy group in the receptor with Arg154 (Figure 5B).
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Figure 5. Interactions of A) DCA and B) compound 4d with the residues in the binding site of PDK (2BU8) receptor.
Figure 5. Interactions of A) DCA and B) compound 4d with the residues in the binding site of PDK 
(2BU8) receptor.

Protein ligand interaction fingerprint (PLIF) studies could be used as a more reliable analysis 

technique (40). This method makes it possible to study the effect of different starting states of the 

structures on generated poses as well as their corresponding vector of contacts towards receptor 

during docking procedure. For this purpose, the docking of all 34 compounds of QSAR study as 

well as our designated compounds were carried out, then all generated poses of the ligands were 

subjected to Aupos SOM 2.1 to calculate their contact vectors within the receptor binding cavity. 

In this procedure, the contacts between the structures and the protein comprise of hydrophobic, 

hydrogen bonding and coulombic interactions. The resulted vectors of contacts are then analyzed 

using self-organizing map as implemented in Aupos SOM software. The output of self-
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Figure 6. AuposSOM results for poses of docking.

organizing map is a classification pattern for ligands. For visualization of the results, the output 

files were subjected to Dendroscope 3.2.10. To the best of our knowledge, ligands in the same 

subgroup may show a similar behavior. As it was shown in figure 6, designated ligands such as 

14g, 14h, 14k and 14l are clustered in the 5b (the best compound due to its greatest IC50), 5e, 5f

and 5i-o subgroup. Meanwhile, compounds 2e, 3a-d, 11d, 12c-f, 13a-c are clustered in the same 

subgroup. So these compounds may have a similar behavior as theirs and can be good candidates 

for synthesis. 

Figure 6. AuposSOM results for poses of docking.

Conclusion
In this study, four different QSAR modeling methods, MLR, FA-MLR, PCR and GA-PLS as 

well as FWA were used in the construction of a QSAR model for cytotoxic activity of N-

arylphenyl-2, 2-dichloroacetamide analogues and the resulting models were compared. As it was 

shown in the article, having performed GA before the calibration, a regression model with 
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enhanced predictive power would be obtained. 
The reliability, accuracy and predictability of 
the proposed models were evaluated by various 
criteria, including cross-validation, the root mean 
square error of prediction (RMSEP), root mean 
square error of cross-validation (RMSECV), 
validation through and Y-randomization. It was 
also shown that the proposed model is a useful 
aid for reduction of the time and cost of synthesis 
and biological evaluation of DCA analogues. 
Moreover, the results confirm that among the 
applied models, the GA-PLS is superior for 
prediction of the pIC50 of DCA analogues. 
The statistical parameters of the four different 
chemometrics methods used in this study are 
represented in Table 2. Some models represent 
high goodness of fit (measured by R2), whereas 
that obtained by GA-PLS is significantly better 
than that of the other models. To the best of 
our knowledge, GA-PLS is the best choice for 
the prediction purpose of QSAR study, and for 
descriptive purpose it should be better to use MLR 
method. The cross-validation statistics reported 
in Table 2 suggest the higher prediction ability 
of the GA-PLS model. This can be ascribed to 
the exploit of a large number of descriptors by 
GA-PLS in compared to the MLR. The study 
suggests the importance of dipole moment in 
y-direction (DMY), 2D autocorrelations and a 
sphericity (ASP) of molecules for DCA analogues 
cytotoxic activity. It is clearly understood 
that 2D autocorrelation descriptors such as 
MATS7v, MATS6e, MATS5p, geometrical 
descriptors such as ASP, atom- centered 
fragments likeH-048, topological descriptors 
like X3A and quantum chemical parameter 
(DMY) are important structural parameters that 
significantly influence the cytotoxic activity. 
The 2D autocorrelation descriptors depict the 
topological structure of the compounds, but are 
more complicated in nature with respect to the 
classical topological descriptors. The calculation 
of these descriptors includes the summations of 
different autocorrelation functions corresponding 
to different structural lags and leads to different 
autocorrelation vectors corresponding to the 
lengths of the substructural fragments. As a 
result, these descriptors address the topology of 
the structure or parts thereof in association with a 
specific physicochemical property. According to 

the developed QSAR model, in silico screening 
was applied and new compounds such as 4c, 
4g, 4i, 4j, 4k, and 4m with potential cytotoxic 
activity were suggested for synthesis.

There was a good correlation between docking 
binding energy and experimental pIC50. The 
molecular docking study revealed that there is an 
arene-arene interaction between phenyl group the 
phenyl group that bearing amide substituent with 
Arg158 and an arene-cation interaction between 
the phenyl group that bearing substituents with 
Arg154 in the receptor. As it was shown in figure 
4, based on the substituent on phenyl group, a 
hydrogen bond acceptor interaction also existed 
with the substituent and Arg158 in receptor. 
The docking results were also subjected to 
PLIF studies and compounds 11d, 12c-f, 13a-c, 
14g, 14h, 14k and 14l are introduced as a good 
candidates for synthesis. 
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